cpu.c revision 1.78.4.3 1 /* $NetBSD: cpu.c,v 1.78.4.3 2013/01/16 05:32:43 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.78.4.3 2013/01/16 05:32:43 yamt Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57
58 #include <uvm/uvm_extern.h>
59
60 #include <arm/cpuconf.h>
61 #include <arm/undefined.h>
62
63 char cpu_model[256];
64
65 #ifdef MULTIPROCESSOR
66 volatile u_int arm_cpu_hatched = 0;
67 u_int arm_cpu_max = 0;
68 uint32_t arm_cpu_mbox __cacheline_aligned = 0;
69 uint32_t arm_cpu_marker __cacheline_aligned = 1;
70 #endif
71
72 /* Prototypes */
73 void identify_arm_cpu(device_t dv, struct cpu_info *);
74 void identify_cortex_caches(device_t dv);
75 void identify_features(device_t dv);
76
77 /*
78 * Identify the master (boot) CPU
79 */
80
81 void
82 cpu_attach(device_t dv, cpuid_t id)
83 {
84 const char * const xname = device_xname(dv);
85 struct cpu_info *ci;
86
87 if (id == 0) {
88 ci = curcpu();
89
90 /* Get the CPU ID from coprocessor 15 */
91
92 ci->ci_arm_cpuid = cpu_id();
93 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
94 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
95 } else {
96 #ifdef MULTIPROCESSOR
97 KASSERT(cpu_info[id] == NULL);
98 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
99 KASSERT(ci != NULL);
100 ci->ci_cpl = IPL_HIGH;
101 ci->ci_cpuid = id;
102 ci->ci_data.cpu_core_id = id;
103 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
104 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
105 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
106 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
107 cpu_info[ci->ci_cpuid] = ci;
108 if ((arm_cpu_hatched & (1 << id)) == 0) {
109 ci->ci_dev = dv;
110 dv->dv_private = ci;
111 aprint_naive(": disabled\n");
112 aprint_normal(": disabled (unresponsive)\n");
113 return;
114 }
115 #else
116 aprint_naive(": disabled\n");
117 aprint_normal(": disabled (uniprocessor kernel)\n");
118 return;
119 #endif
120 }
121
122 ci->ci_dev = dv;
123 dv->dv_private = ci;
124
125 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
126 NULL, xname, "arm700swibug");
127
128 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
129 NULL, xname, "vector abort");
130 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
131 NULL, xname, "terminal abort");
132 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
133 NULL, xname, "external linefetch abort (S)");
134 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
135 NULL, xname, "external linefetch abort (P)");
136 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
137 NULL, xname, "external non-linefetch abort (S)");
138 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
139 NULL, xname, "external non-linefetch abort (P)");
140 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
141 NULL, xname, "external translation abort (L1)");
142 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
143 NULL, xname, "external translation abort (L2)");
144 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
145 NULL, xname, "alignment abort (0)");
146 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
147 NULL, xname, "alignment abort (1)");
148 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
149 NULL, xname, "translation abort (S)");
150 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
151 NULL, xname, "translation abort (P)");
152 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
153 NULL, xname, "domain abort (S)");
154 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
155 NULL, xname, "domain abort (P)");
156 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
157 NULL, xname, "permission abort (S)");
158 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
159 NULL, xname, "permission abort (P)");
160
161 #ifdef MULTIPROCESSOR
162 /*
163 * and we are done if this is a secondary processor.
164 */
165 if (!CPU_IS_PRIMARY(ci)) {
166 aprint_naive(": %s\n", cpu_model);
167 aprint_normal(": %s\n", cpu_model);
168 mi_cpu_attach(ci);
169 return;
170 }
171 #endif
172
173 identify_arm_cpu(dv, ci);
174
175 #ifdef CPU_STRONGARM
176 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
177 ci->ci_arm_cpurev < 3) {
178 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
179 }
180 #endif
181
182 #ifdef CPU_ARM8
183 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
184 int clock = arm8_clock_config(0, 0);
185 char *fclk;
186 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
187 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
188 aprint_normal("%s", (clock & 2) ? " sync" : "");
189 switch ((clock >> 2) & 3) {
190 case 0:
191 fclk = "bus clock";
192 break;
193 case 1:
194 fclk = "ref clock";
195 break;
196 case 3:
197 fclk = "pll";
198 break;
199 default:
200 fclk = "illegal";
201 break;
202 }
203 aprint_normal(" fclk source=%s\n", fclk);
204 }
205 #endif
206
207 vfp_attach(); /* XXX SMP */
208 }
209
210 enum cpu_class {
211 CPU_CLASS_NONE,
212 CPU_CLASS_ARM2,
213 CPU_CLASS_ARM2AS,
214 CPU_CLASS_ARM3,
215 CPU_CLASS_ARM6,
216 CPU_CLASS_ARM7,
217 CPU_CLASS_ARM7TDMI,
218 CPU_CLASS_ARM8,
219 CPU_CLASS_ARM9TDMI,
220 CPU_CLASS_ARM9ES,
221 CPU_CLASS_ARM9EJS,
222 CPU_CLASS_ARM10E,
223 CPU_CLASS_ARM10EJ,
224 CPU_CLASS_SA1,
225 CPU_CLASS_XSCALE,
226 CPU_CLASS_ARM11J,
227 CPU_CLASS_ARMV4,
228 CPU_CLASS_CORTEX,
229 };
230
231 static const char * const generic_steppings[16] = {
232 "rev 0", "rev 1", "rev 2", "rev 3",
233 "rev 4", "rev 5", "rev 6", "rev 7",
234 "rev 8", "rev 9", "rev 10", "rev 11",
235 "rev 12", "rev 13", "rev 14", "rev 15",
236 };
237
238 static const char * const pN_steppings[16] = {
239 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
240 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
241 };
242
243 static const char * const sa110_steppings[16] = {
244 "rev 0", "step J", "step K", "step S",
245 "step T", "rev 5", "rev 6", "rev 7",
246 "rev 8", "rev 9", "rev 10", "rev 11",
247 "rev 12", "rev 13", "rev 14", "rev 15",
248 };
249
250 static const char * const sa1100_steppings[16] = {
251 "rev 0", "step B", "step C", "rev 3",
252 "rev 4", "rev 5", "rev 6", "rev 7",
253 "step D", "step E", "rev 10" "step G",
254 "rev 12", "rev 13", "rev 14", "rev 15",
255 };
256
257 static const char * const sa1110_steppings[16] = {
258 "step A-0", "rev 1", "rev 2", "rev 3",
259 "step B-0", "step B-1", "step B-2", "step B-3",
260 "step B-4", "step B-5", "rev 10", "rev 11",
261 "rev 12", "rev 13", "rev 14", "rev 15",
262 };
263
264 static const char * const ixp12x0_steppings[16] = {
265 "(IXP1200 step A)", "(IXP1200 step B)",
266 "rev 2", "(IXP1200 step C)",
267 "(IXP1200 step D)", "(IXP1240/1250 step A)",
268 "(IXP1240 step B)", "(IXP1250 step B)",
269 "rev 8", "rev 9", "rev 10", "rev 11",
270 "rev 12", "rev 13", "rev 14", "rev 15",
271 };
272
273 static const char * const xscale_steppings[16] = {
274 "step A-0", "step A-1", "step B-0", "step C-0",
275 "step D-0", "rev 5", "rev 6", "rev 7",
276 "rev 8", "rev 9", "rev 10", "rev 11",
277 "rev 12", "rev 13", "rev 14", "rev 15",
278 };
279
280 static const char * const i80321_steppings[16] = {
281 "step A-0", "step B-0", "rev 2", "rev 3",
282 "rev 4", "rev 5", "rev 6", "rev 7",
283 "rev 8", "rev 9", "rev 10", "rev 11",
284 "rev 12", "rev 13", "rev 14", "rev 15",
285 };
286
287 static const char * const i80219_steppings[16] = {
288 "step A-0", "rev 1", "rev 2", "rev 3",
289 "rev 4", "rev 5", "rev 6", "rev 7",
290 "rev 8", "rev 9", "rev 10", "rev 11",
291 "rev 12", "rev 13", "rev 14", "rev 15",
292 };
293
294 /* Steppings for PXA2[15]0 */
295 static const char * const pxa2x0_steppings[16] = {
296 "step A-0", "step A-1", "step B-0", "step B-1",
297 "step B-2", "step C-0", "rev 6", "rev 7",
298 "rev 8", "rev 9", "rev 10", "rev 11",
299 "rev 12", "rev 13", "rev 14", "rev 15",
300 };
301
302 /* Steppings for PXA255/26x.
303 * rev 5: PXA26x B0, rev 6: PXA255 A0
304 */
305 static const char * const pxa255_steppings[16] = {
306 "rev 0", "rev 1", "rev 2", "step A-0",
307 "rev 4", "step B-0", "step A-0", "rev 7",
308 "rev 8", "rev 9", "rev 10", "rev 11",
309 "rev 12", "rev 13", "rev 14", "rev 15",
310 };
311
312 /* Stepping for PXA27x */
313 static const char * const pxa27x_steppings[16] = {
314 "step A-0", "step A-1", "step B-0", "step B-1",
315 "step C-0", "rev 5", "rev 6", "rev 7",
316 "rev 8", "rev 9", "rev 10", "rev 11",
317 "rev 12", "rev 13", "rev 14", "rev 15",
318 };
319
320 static const char * const ixp425_steppings[16] = {
321 "step 0", "rev 1", "rev 2", "rev 3",
322 "rev 4", "rev 5", "rev 6", "rev 7",
323 "rev 8", "rev 9", "rev 10", "rev 11",
324 "rev 12", "rev 13", "rev 14", "rev 15",
325 };
326
327 struct cpuidtab {
328 uint32_t cpuid;
329 enum cpu_class cpu_class;
330 const char *cpu_classname;
331 const char * const *cpu_steppings;
332 };
333
334 const struct cpuidtab cpuids[] = {
335 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
336 generic_steppings },
337 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
338 generic_steppings },
339
340 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
341 generic_steppings },
342
343 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
344 generic_steppings },
345 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
346 generic_steppings },
347 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
348 generic_steppings },
349
350 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
351 generic_steppings },
352 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
353 generic_steppings },
354 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
355 generic_steppings },
356 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
357 generic_steppings },
358 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
359 generic_steppings },
360 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
361 generic_steppings },
362 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
363 generic_steppings },
364 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
365 generic_steppings },
366 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
367 generic_steppings },
368
369 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
370 generic_steppings },
371
372 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
373 generic_steppings },
374 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
375 generic_steppings },
376 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
377 generic_steppings },
378 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
379 generic_steppings },
380 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
381 generic_steppings },
382 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
383 generic_steppings },
384 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
385 generic_steppings },
386 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
387 generic_steppings },
388 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
389 generic_steppings },
390 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
391 generic_steppings },
392
393 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
394 generic_steppings },
395 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
396 generic_steppings },
397 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
398 generic_steppings },
399
400 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
401 sa110_steppings },
402 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
403 sa1100_steppings },
404 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
405 sa1110_steppings },
406
407 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
408 ixp12x0_steppings },
409
410 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
411 xscale_steppings },
412
413 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
414 i80321_steppings },
415 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
416 i80321_steppings },
417 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
418 i80321_steppings },
419 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
420 i80321_steppings },
421
422 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
423 i80219_steppings },
424 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
425 i80219_steppings },
426
427 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
428 pxa27x_steppings },
429 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
430 pxa2x0_steppings },
431 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
432 pxa2x0_steppings },
433 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
434 pxa2x0_steppings },
435 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
436 pxa2x0_steppings },
437 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
438 pxa255_steppings },
439 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
440 pxa2x0_steppings },
441
442 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
443 ixp425_steppings },
444 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
445 ixp425_steppings },
446 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
447 ixp425_steppings },
448
449 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
450 pN_steppings },
451 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
452 pN_steppings },
453 #if 0
454 /* The ARM1156T2-S only has a memory protection unit */
455 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
456 pN_steppings },
457 #endif
458 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
459 pN_steppings },
460
461 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
462 generic_steppings },
463
464 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
465 pN_steppings },
466 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
467 pN_steppings },
468 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
469 pN_steppings },
470 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
471 pN_steppings },
472 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
473 pN_steppings },
474 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
475 pN_steppings },
476 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
477 pN_steppings },
478 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
479 pN_steppings },
480 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
481 pN_steppings },
482
483 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
484 generic_steppings },
485
486 { 0, CPU_CLASS_NONE, NULL, NULL }
487 };
488
489 struct cpu_classtab {
490 const char *class_name;
491 const char *class_option;
492 };
493
494 const struct cpu_classtab cpu_classes[] = {
495 [CPU_CLASS_NONE] = { "unknown", NULL },
496 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
497 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
498 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
499 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
500 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
501 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
502 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
503 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
504 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
505 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
506 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
507 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
508 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
509 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
510 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
511 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
512 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
513 };
514
515 /*
516 * Report the type of the specified arm processor. This uses the generic and
517 * arm specific information in the CPU structure to identify the processor.
518 * The remaining fields in the CPU structure are filled in appropriately.
519 */
520
521 static const char * const wtnames[] = {
522 "write-through",
523 "write-back",
524 "write-back",
525 "**unknown 3**",
526 "**unknown 4**",
527 "write-back-locking", /* XXX XScale-specific? */
528 "write-back-locking-A",
529 "write-back-locking-B",
530 "**unknown 8**",
531 "**unknown 9**",
532 "**unknown 10**",
533 "**unknown 11**",
534 "**unknown 12**",
535 "**unknown 13**",
536 "write-back-locking-C",
537 "write-back-locking-D",
538 };
539
540 static void
541 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
542 {
543 if (info->cache_unified) {
544 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Unified cache\n",
545 info->dcache_size / 1024,
546 info->dcache_line_size, info->dcache_ways,
547 wtnames[info->cache_type], level + 1);
548 } else {
549 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u Instruction cache\n",
550 info->icache_size / 1024,
551 info->icache_line_size, info->icache_ways, level + 1);
552 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Data cache\n",
553 info->dcache_size / 1024,
554 info->dcache_line_size, info->dcache_ways,
555 wtnames[info->cache_type], level + 1);
556 }
557 }
558
559 void
560 identify_arm_cpu(device_t dv, struct cpu_info *ci)
561 {
562 enum cpu_class cpu_class = CPU_CLASS_NONE;
563 const u_int cpuid = ci->ci_arm_cpuid;
564 const char * const xname = device_xname(dv);
565 const char *steppingstr;
566 int i;
567
568 if (cpuid == 0) {
569 aprint_error("Processor failed probe - no CPU ID\n");
570 return;
571 }
572
573 for (i = 0; cpuids[i].cpuid != 0; i++)
574 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
575 cpu_class = cpuids[i].cpu_class;
576 steppingstr = cpuids[i].cpu_steppings[cpuid &
577 CPU_ID_REVISION_MASK];
578 snprintf(cpu_model, sizeof(cpu_model),
579 "%s%s%s (%s core)", cpuids[i].cpu_classname,
580 steppingstr[0] == '*' ? "" : " ",
581 &steppingstr[steppingstr[0] == '*'],
582 cpu_classes[cpu_class].class_name);
583 break;
584 }
585
586 if (cpuids[i].cpuid == 0)
587 snprintf(cpu_model, sizeof(cpu_model),
588 "unknown CPU (ID = 0x%x)", cpuid);
589
590 if (ci->ci_data.cpu_cc_freq != 0) {
591 char freqbuf[8];
592 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
593 "Hz", 1000);
594
595 aprint_naive(": %s %s\n", freqbuf, cpu_model);
596 aprint_normal(": %s %s\n", freqbuf, cpu_model);
597 } else {
598 aprint_naive(": %s\n", cpu_model);
599 aprint_normal(": %s\n", cpu_model);
600 }
601
602 aprint_normal("%s:", xname);
603
604 switch (cpu_class) {
605 case CPU_CLASS_ARM6:
606 case CPU_CLASS_ARM7:
607 case CPU_CLASS_ARM7TDMI:
608 case CPU_CLASS_ARM8:
609 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
610 aprint_normal(" IDC disabled");
611 else
612 aprint_normal(" IDC enabled");
613 break;
614 case CPU_CLASS_ARM9TDMI:
615 case CPU_CLASS_ARM9ES:
616 case CPU_CLASS_ARM9EJS:
617 case CPU_CLASS_ARM10E:
618 case CPU_CLASS_ARM10EJ:
619 case CPU_CLASS_SA1:
620 case CPU_CLASS_XSCALE:
621 case CPU_CLASS_ARM11J:
622 case CPU_CLASS_ARMV4:
623 case CPU_CLASS_CORTEX:
624 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
625 aprint_normal(" DC disabled");
626 else
627 aprint_normal(" DC enabled");
628 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
629 aprint_normal(" IC disabled");
630 else
631 aprint_normal(" IC enabled");
632 break;
633 default:
634 break;
635 }
636 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
637 aprint_normal(" WB disabled");
638 else
639 aprint_normal(" WB enabled");
640
641 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
642 aprint_normal(" LABT");
643 else
644 aprint_normal(" EABT");
645
646 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
647 aprint_normal(" branch prediction enabled");
648
649 aprint_normal("\n");
650
651 #if defined(CPU_CORTEX)
652 if (CPU_ID_CORTEX_P(cpuid)) {
653 identify_features(dv);
654 }
655 #endif
656 /* Print cache info. */
657 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
658 print_cache_info(dv, &arm_pcache, 0);
659 }
660 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
661 print_cache_info(dv, &arm_scache, 1);
662 }
663
664
665 switch (cpu_class) {
666 #ifdef CPU_ARM2
667 case CPU_CLASS_ARM2:
668 #endif
669 #ifdef CPU_ARM250
670 case CPU_CLASS_ARM2AS:
671 #endif
672 #ifdef CPU_ARM3
673 case CPU_CLASS_ARM3:
674 #endif
675 #ifdef CPU_ARM6
676 case CPU_CLASS_ARM6:
677 #endif
678 #ifdef CPU_ARM7
679 case CPU_CLASS_ARM7:
680 #endif
681 #ifdef CPU_ARM7TDMI
682 case CPU_CLASS_ARM7TDMI:
683 #endif
684 #ifdef CPU_ARM8
685 case CPU_CLASS_ARM8:
686 #endif
687 #ifdef CPU_ARM9
688 case CPU_CLASS_ARM9TDMI:
689 #endif
690 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
691 case CPU_CLASS_ARM9ES:
692 case CPU_CLASS_ARM9EJS:
693 #endif
694 #ifdef CPU_ARM10
695 case CPU_CLASS_ARM10E:
696 case CPU_CLASS_ARM10EJ:
697 #endif
698 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
699 defined(CPU_SA1110) || defined(CPU_IXP12X0)
700 case CPU_CLASS_SA1:
701 #endif
702 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
703 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
704 case CPU_CLASS_XSCALE:
705 #endif
706 #if defined(CPU_ARM11)
707 case CPU_CLASS_ARM11J:
708 #endif
709 #if defined(CPU_CORTEX)
710 case CPU_CLASS_CORTEX:
711 #endif
712 #if defined(CPU_FA526)
713 case CPU_CLASS_ARMV4:
714 #endif
715 break;
716 default:
717 if (cpu_classes[cpu_class].class_option == NULL) {
718 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
719 ostype);
720 } else {
721 aprint_error_dev(dv, "This kernel does not fully support "
722 "this CPU.\n");
723 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
724 "correct this.\n", cpu_classes[cpu_class].class_option);
725 }
726 break;
727 }
728 }
729
730 #if defined(CPU_CORTEX)
731 void
732 identify_features(device_t dv)
733 {
734 uint32_t isar0 = armreg_isar0_read();
735 uint32_t isar1 = armreg_isar1_read();
736 uint32_t isar2 = armreg_isar2_read();
737 uint32_t isar3 = armreg_isar3_read();
738 uint32_t isar4 = armreg_isar4_read();
739 uint32_t isar5 = armreg_isar5_read();
740
741 uint32_t mmfr0 = armreg_mmfr0_read();
742 uint32_t mmfr1 = armreg_mmfr1_read();
743 uint32_t mmfr2 = armreg_mmfr2_read();
744 uint32_t mmfr3 = armreg_mmfr3_read();
745
746 if (__SHIFTOUT(mmfr3, __BITS(23,20))) {
747 /*
748 * Updates to the translation tables do not require a clean
749 * to the point of unification to ensure visibility by subsequent
750 * translation table walks.
751 */
752 pmap_needs_pte_sync = 0;
753 }
754
755 uint32_t pfr0 = armreg_pfr0_read();
756 uint32_t pfr1 = armreg_pfr1_read();
757
758 aprint_verbose_dev(dv,
759 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
760 isar0, isar1, isar2, isar3, isar4, isar5);
761 aprint_verbose_dev(dv,
762 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
763 mmfr0, mmfr1, mmfr2, mmfr3);
764 aprint_verbose_dev(dv,
765 "pfr: [0]=%#x [1]=%#x\n",
766 pfr0, pfr1);
767 }
768 #endif /* CPU_CORTEX */
769