cpu.c revision 1.80 1 /* $NetBSD: cpu.c,v 1.80 2012/05/20 17:58:32 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.80 2012/05/20 17:58:32 skrll Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70
71 char cpu_model[256];
72
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75
76 /*
77 * Identify the master (boot) CPU
78 */
79
80 void
81 cpu_attach(struct device *dv)
82 {
83 int usearmfpe;
84
85 usearmfpe = 1; /* when compiled in, its enabled by default */
86
87 curcpu()->ci_dev = dv;
88
89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 NULL, dv->dv_xname, "arm700swibug");
91
92 /* Get the CPU ID from coprocessor 15 */
93
94 curcpu()->ci_arm_cpuid = cpu_id();
95 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 curcpu()->ci_arm_cpurev =
97 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98
99 identify_arm_cpu(dv, curcpu());
100
101 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 curcpu()->ci_arm_cpurev < 3) {
103 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 dv->dv_xname);
105 }
106
107 #ifdef CPU_ARM8
108 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 int clock = arm8_clock_config(0, 0);
110 char *fclk;
111 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 aprint_normal("%s", (clock & 2) ? " sync" : "");
114 switch ((clock >> 2) & 3) {
115 case 0:
116 fclk = "bus clock";
117 break;
118 case 1:
119 fclk = "ref clock";
120 break;
121 case 3:
122 fclk = "pll";
123 break;
124 default:
125 fclk = "illegal";
126 break;
127 }
128 aprint_normal(" fclk source=%s\n", fclk);
129 }
130 #endif
131
132 #ifdef ARMFPE
133 /*
134 * Ok now we test for an FPA
135 * At this point no floating point emulator has been installed.
136 * This means any FP instruction will cause undefined exception.
137 * We install a temporay coproc 1 handler which will modify
138 * undefined_test if it is called.
139 * We then try to read the FP status register. If undefined_test
140 * has been decremented then the instruction was not handled by
141 * an FPA so we know the FPA is missing. If undefined_test is
142 * still 1 then we know the instruction was handled by an FPA.
143 * We then remove our test handler and look at the
144 * FP status register for identification.
145 */
146
147 /*
148 * Ok if ARMFPE is defined and the boot options request the
149 * ARM FPE then it will be installed as the FPE.
150 * This is just while I work on integrating the new FPE.
151 * It means the new FPE gets installed if compiled int (ARMFPE
152 * defined) and also gives me a on/off option when I boot in
153 * case the new FPE is causing panics.
154 */
155
156
157 if (boot_args)
158 get_bootconf_option(boot_args, "armfpe",
159 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 if (usearmfpe)
161 initialise_arm_fpe();
162 #endif
163
164 #ifdef FPU_VFP
165 vfp_attach();
166 #endif
167 }
168
169 enum cpu_class {
170 CPU_CLASS_NONE,
171 CPU_CLASS_ARM2,
172 CPU_CLASS_ARM2AS,
173 CPU_CLASS_ARM3,
174 CPU_CLASS_ARM6,
175 CPU_CLASS_ARM7,
176 CPU_CLASS_ARM7TDMI,
177 CPU_CLASS_ARM8,
178 CPU_CLASS_ARM9TDMI,
179 CPU_CLASS_ARM9ES,
180 CPU_CLASS_ARM9EJS,
181 CPU_CLASS_ARM10E,
182 CPU_CLASS_ARM10EJ,
183 CPU_CLASS_SA1,
184 CPU_CLASS_XSCALE,
185 CPU_CLASS_ARM11J,
186 CPU_CLASS_ARMV4,
187 CPU_CLASS_CORTEX,
188 };
189
190 static const char * const generic_steppings[16] = {
191 "rev 0", "rev 1", "rev 2", "rev 3",
192 "rev 4", "rev 5", "rev 6", "rev 7",
193 "rev 8", "rev 9", "rev 10", "rev 11",
194 "rev 12", "rev 13", "rev 14", "rev 15",
195 };
196
197 static const char * const pN_steppings[16] = {
198 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
199 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
200 };
201
202 static const char * const sa110_steppings[16] = {
203 "rev 0", "step J", "step K", "step S",
204 "step T", "rev 5", "rev 6", "rev 7",
205 "rev 8", "rev 9", "rev 10", "rev 11",
206 "rev 12", "rev 13", "rev 14", "rev 15",
207 };
208
209 static const char * const sa1100_steppings[16] = {
210 "rev 0", "step B", "step C", "rev 3",
211 "rev 4", "rev 5", "rev 6", "rev 7",
212 "step D", "step E", "rev 10" "step G",
213 "rev 12", "rev 13", "rev 14", "rev 15",
214 };
215
216 static const char * const sa1110_steppings[16] = {
217 "step A-0", "rev 1", "rev 2", "rev 3",
218 "step B-0", "step B-1", "step B-2", "step B-3",
219 "step B-4", "step B-5", "rev 10", "rev 11",
220 "rev 12", "rev 13", "rev 14", "rev 15",
221 };
222
223 static const char * const ixp12x0_steppings[16] = {
224 "(IXP1200 step A)", "(IXP1200 step B)",
225 "rev 2", "(IXP1200 step C)",
226 "(IXP1200 step D)", "(IXP1240/1250 step A)",
227 "(IXP1240 step B)", "(IXP1250 step B)",
228 "rev 8", "rev 9", "rev 10", "rev 11",
229 "rev 12", "rev 13", "rev 14", "rev 15",
230 };
231
232 static const char * const xscale_steppings[16] = {
233 "step A-0", "step A-1", "step B-0", "step C-0",
234 "step D-0", "rev 5", "rev 6", "rev 7",
235 "rev 8", "rev 9", "rev 10", "rev 11",
236 "rev 12", "rev 13", "rev 14", "rev 15",
237 };
238
239 static const char * const i80321_steppings[16] = {
240 "step A-0", "step B-0", "rev 2", "rev 3",
241 "rev 4", "rev 5", "rev 6", "rev 7",
242 "rev 8", "rev 9", "rev 10", "rev 11",
243 "rev 12", "rev 13", "rev 14", "rev 15",
244 };
245
246 static const char * const i80219_steppings[16] = {
247 "step A-0", "rev 1", "rev 2", "rev 3",
248 "rev 4", "rev 5", "rev 6", "rev 7",
249 "rev 8", "rev 9", "rev 10", "rev 11",
250 "rev 12", "rev 13", "rev 14", "rev 15",
251 };
252
253 /* Steppings for PXA2[15]0 */
254 static const char * const pxa2x0_steppings[16] = {
255 "step A-0", "step A-1", "step B-0", "step B-1",
256 "step B-2", "step C-0", "rev 6", "rev 7",
257 "rev 8", "rev 9", "rev 10", "rev 11",
258 "rev 12", "rev 13", "rev 14", "rev 15",
259 };
260
261 /* Steppings for PXA255/26x.
262 * rev 5: PXA26x B0, rev 6: PXA255 A0
263 */
264 static const char * const pxa255_steppings[16] = {
265 "rev 0", "rev 1", "rev 2", "step A-0",
266 "rev 4", "step B-0", "step A-0", "rev 7",
267 "rev 8", "rev 9", "rev 10", "rev 11",
268 "rev 12", "rev 13", "rev 14", "rev 15",
269 };
270
271 /* Stepping for PXA27x */
272 static const char * const pxa27x_steppings[16] = {
273 "step A-0", "step A-1", "step B-0", "step B-1",
274 "step C-0", "rev 5", "rev 6", "rev 7",
275 "rev 8", "rev 9", "rev 10", "rev 11",
276 "rev 12", "rev 13", "rev 14", "rev 15",
277 };
278
279 static const char * const ixp425_steppings[16] = {
280 "step 0", "rev 1", "rev 2", "rev 3",
281 "rev 4", "rev 5", "rev 6", "rev 7",
282 "rev 8", "rev 9", "rev 10", "rev 11",
283 "rev 12", "rev 13", "rev 14", "rev 15",
284 };
285
286 struct cpuidtab {
287 u_int32_t cpuid;
288 enum cpu_class cpu_class;
289 const char *cpu_classname;
290 const char * const *cpu_steppings;
291 };
292
293 const struct cpuidtab cpuids[] = {
294 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
295 generic_steppings },
296 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
297 generic_steppings },
298
299 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
300 generic_steppings },
301
302 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
303 generic_steppings },
304 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
305 generic_steppings },
306 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
307 generic_steppings },
308
309 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
310 generic_steppings },
311 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
312 generic_steppings },
313 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
314 generic_steppings },
315 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
316 generic_steppings },
317 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
318 generic_steppings },
319 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
320 generic_steppings },
321 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
322 generic_steppings },
323 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
324 generic_steppings },
325 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
326 generic_steppings },
327
328 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
329 generic_steppings },
330
331 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
332 generic_steppings },
333 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
334 generic_steppings },
335 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
336 generic_steppings },
337 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
338 generic_steppings },
339 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
340 generic_steppings },
341 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
342 generic_steppings },
343 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
344 generic_steppings },
345 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
346 generic_steppings },
347 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
348 generic_steppings },
349 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
350 generic_steppings },
351
352 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
353 generic_steppings },
354 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
355 generic_steppings },
356 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
357 generic_steppings },
358
359 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
360 sa110_steppings },
361 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
362 sa1100_steppings },
363 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
364 sa1110_steppings },
365
366 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
367 ixp12x0_steppings },
368
369 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
370 xscale_steppings },
371
372 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
373 i80321_steppings },
374 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
375 i80321_steppings },
376 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
377 i80321_steppings },
378 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
379 i80321_steppings },
380
381 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
382 i80219_steppings },
383 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
384 i80219_steppings },
385
386 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
387 pxa27x_steppings },
388 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
389 pxa2x0_steppings },
390 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
391 pxa2x0_steppings },
392 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
393 pxa2x0_steppings },
394 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
395 pxa2x0_steppings },
396 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
397 pxa255_steppings },
398 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
399 pxa2x0_steppings },
400
401 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
402 ixp425_steppings },
403 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
404 ixp425_steppings },
405 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
406 ixp425_steppings },
407
408 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
409 pN_steppings },
410 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
411 pN_steppings },
412 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
413 pN_steppings },
414 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
415 pN_steppings },
416
417 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
418 generic_steppings },
419
420 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
421 pN_steppings },
422 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
423 pN_steppings },
424 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
425 pN_steppings },
426 { CPU_ID_CORTEXA9R1, CPU_CLASS_CORTEX, "Cortex-A9 r1",
427 pN_steppings },
428 { CPU_ID_CORTEXA8R3, CPU_CLASS_ARM11J, "Cortex-A8 r3",
429 pN_steppings },
430
431 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
432 generic_steppings },
433
434 { 0, CPU_CLASS_NONE, NULL, NULL }
435 };
436
437 struct cpu_classtab {
438 const char *class_name;
439 const char *class_option;
440 };
441
442 const struct cpu_classtab cpu_classes[] = {
443 [CPU_CLASS_NONE] = { "unknown", NULL },
444 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
445 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
446 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
447 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
448 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
449 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
450 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
451 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
452 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
453 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
454 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
455 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
456 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
457 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
458 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
459 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
460 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
461 };
462
463 /*
464 * Report the type of the specified arm processor. This uses the generic and
465 * arm specific information in the CPU structure to identify the processor.
466 * The remaining fields in the CPU structure are filled in appropriately.
467 */
468
469 static const char * const wtnames[] = {
470 "write-through",
471 "write-back",
472 "write-back",
473 "**unknown 3**",
474 "**unknown 4**",
475 "write-back-locking", /* XXX XScale-specific? */
476 "write-back-locking-A",
477 "write-back-locking-B",
478 "**unknown 8**",
479 "**unknown 9**",
480 "**unknown 10**",
481 "**unknown 11**",
482 "**unknown 12**",
483 "**unknown 13**",
484 "write-back-locking-C",
485 "**unknown 15**",
486 };
487
488 void
489 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
490 {
491 u_int cpuid;
492 enum cpu_class cpu_class = CPU_CLASS_NONE;
493 int i;
494 const char *steppingstr;
495
496 cpuid = ci->ci_arm_cpuid;
497
498 if (cpuid == 0) {
499 aprint_error("Processor failed probe - no CPU ID\n");
500 return;
501 }
502
503 for (i = 0; cpuids[i].cpuid != 0; i++)
504 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
505 cpu_class = cpuids[i].cpu_class;
506 steppingstr = cpuids[i].cpu_steppings[cpuid &
507 CPU_ID_REVISION_MASK],
508 sprintf(cpu_model, "%s%s%s (%s core)",
509 cpuids[i].cpu_classname,
510 steppingstr[0] == '*' ? "" : " ",
511 &steppingstr[steppingstr[0] == '*'],
512 cpu_classes[cpu_class].class_name);
513 break;
514 }
515
516 if (cpuids[i].cpuid == 0)
517 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
518
519 aprint_naive(": %s\n", cpu_model);
520 aprint_normal(": %s\n", cpu_model);
521
522 aprint_normal("%s:", dv->dv_xname);
523
524 switch (cpu_class) {
525 case CPU_CLASS_ARM6:
526 case CPU_CLASS_ARM7:
527 case CPU_CLASS_ARM7TDMI:
528 case CPU_CLASS_ARM8:
529 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
530 aprint_normal(" IDC disabled");
531 else
532 aprint_normal(" IDC enabled");
533 break;
534 case CPU_CLASS_ARM9TDMI:
535 case CPU_CLASS_ARM9ES:
536 case CPU_CLASS_ARM9EJS:
537 case CPU_CLASS_ARM10E:
538 case CPU_CLASS_ARM10EJ:
539 case CPU_CLASS_SA1:
540 case CPU_CLASS_XSCALE:
541 case CPU_CLASS_ARM11J:
542 case CPU_CLASS_ARMV4:
543 case CPU_CLASS_CORTEX:
544 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
545 aprint_normal(" DC disabled");
546 else
547 aprint_normal(" DC enabled");
548 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
549 aprint_normal(" IC disabled");
550 else
551 aprint_normal(" IC enabled");
552 break;
553 default:
554 break;
555 }
556 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
557 aprint_normal(" WB disabled");
558 else
559 aprint_normal(" WB enabled");
560
561 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
562 aprint_normal(" LABT");
563 else
564 aprint_normal(" EABT");
565
566 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
567 aprint_normal(" branch prediction enabled");
568
569 aprint_normal("\n");
570
571 /* Print cache info. */
572 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
573 goto skip_pcache;
574
575 if (arm_pcache_unified) {
576 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
577 dv->dv_xname, arm_pdcache_size / 1024,
578 arm_pdcache_line_size, arm_pdcache_ways,
579 wtnames[arm_pcache_type]);
580 } else {
581 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
582 dv->dv_xname, arm_picache_size / 1024,
583 arm_picache_line_size, arm_picache_ways);
584 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
585 dv->dv_xname, arm_pdcache_size / 1024,
586 arm_pdcache_line_size, arm_pdcache_ways,
587 wtnames[arm_pcache_type]);
588 }
589
590 skip_pcache:
591
592 switch (cpu_class) {
593 #ifdef CPU_ARM2
594 case CPU_CLASS_ARM2:
595 #endif
596 #ifdef CPU_ARM250
597 case CPU_CLASS_ARM2AS:
598 #endif
599 #ifdef CPU_ARM3
600 case CPU_CLASS_ARM3:
601 #endif
602 #ifdef CPU_ARM6
603 case CPU_CLASS_ARM6:
604 #endif
605 #ifdef CPU_ARM7
606 case CPU_CLASS_ARM7:
607 #endif
608 #ifdef CPU_ARM7TDMI
609 case CPU_CLASS_ARM7TDMI:
610 #endif
611 #ifdef CPU_ARM8
612 case CPU_CLASS_ARM8:
613 #endif
614 #ifdef CPU_ARM9
615 case CPU_CLASS_ARM9TDMI:
616 #endif
617 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
618 case CPU_CLASS_ARM9ES:
619 case CPU_CLASS_ARM9EJS:
620 #endif
621 #ifdef CPU_ARM10
622 case CPU_CLASS_ARM10E:
623 case CPU_CLASS_ARM10EJ:
624 #endif
625 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
626 defined(CPU_SA1110) || defined(CPU_IXP12X0)
627 case CPU_CLASS_SA1:
628 #endif
629 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
630 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
631 case CPU_CLASS_XSCALE:
632 #endif
633 #if defined(CPU_ARM11)
634 case CPU_CLASS_ARM11J:
635 #endif
636 #if defined(CPU_CORTEX)
637 case CPU_CLASS_CORTEX:
638 #endif
639 #if defined(CPU_FA526)
640 case CPU_CLASS_ARMV4:
641 #endif
642 break;
643 default:
644 if (cpu_classes[cpu_class].class_option == NULL)
645 aprint_error("%s: %s does not fully support this CPU."
646 "\n", dv->dv_xname, ostype);
647 else {
648 aprint_error("%s: This kernel does not fully support "
649 "this CPU.\n", dv->dv_xname);
650 aprint_normal("%s: Recompile with \"options %s\" to "
651 "correct this.\n", dv->dv_xname,
652 cpu_classes[cpu_class].class_option);
653 }
654 break;
655 }
656
657 }
658
659 /* End of cpu.c */
660