Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.80
      1 /*	$NetBSD: cpu.c,v 1.80 2012/05/20 17:58:32 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master CPU
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_multiprocessor.h"
     46 
     47 #include <sys/param.h>
     48 
     49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.80 2012/05/20 17:58:32 skrll Exp $");
     50 
     51 #include <sys/systm.h>
     52 #include <sys/malloc.h>
     53 #include <sys/device.h>
     54 #include <sys/proc.h>
     55 #include <sys/conf.h>
     56 #include <uvm/uvm_extern.h>
     57 #include <machine/cpu.h>
     58 
     59 #include <arm/cpuconf.h>
     60 #include <arm/undefined.h>
     61 
     62 #ifdef ARMFPE
     63 #include <machine/bootconfig.h> /* For boot args */
     64 #include <arm/fpe-arm/armfpe.h>
     65 #endif
     66 
     67 #ifdef FPU_VFP
     68 #include <arm/vfpvar.h>
     69 #endif
     70 
     71 char cpu_model[256];
     72 
     73 /* Prototypes */
     74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     75 
     76 /*
     77  * Identify the master (boot) CPU
     78  */
     79 
     80 void
     81 cpu_attach(struct device *dv)
     82 {
     83 	int usearmfpe;
     84 
     85 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     86 
     87 	curcpu()->ci_dev = dv;
     88 
     89 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     90 	    NULL, dv->dv_xname, "arm700swibug");
     91 
     92 	/* Get the CPU ID from coprocessor 15 */
     93 
     94 	curcpu()->ci_arm_cpuid = cpu_id();
     95 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     96 	curcpu()->ci_arm_cpurev =
     97 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     98 
     99 	identify_arm_cpu(dv, curcpu());
    100 
    101 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
    102 	    curcpu()->ci_arm_cpurev < 3) {
    103 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
    104 		       dv->dv_xname);
    105 	}
    106 
    107 #ifdef CPU_ARM8
    108 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    109 		int clock = arm8_clock_config(0, 0);
    110 		char *fclk;
    111 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    112 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    113 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    114 		switch ((clock >> 2) & 3) {
    115 		case 0:
    116 			fclk = "bus clock";
    117 			break;
    118 		case 1:
    119 			fclk = "ref clock";
    120 			break;
    121 		case 3:
    122 			fclk = "pll";
    123 			break;
    124 		default:
    125 			fclk = "illegal";
    126 			break;
    127 		}
    128 		aprint_normal(" fclk source=%s\n", fclk);
    129  	}
    130 #endif
    131 
    132 #ifdef ARMFPE
    133 	/*
    134 	 * Ok now we test for an FPA
    135 	 * At this point no floating point emulator has been installed.
    136 	 * This means any FP instruction will cause undefined exception.
    137 	 * We install a temporay coproc 1 handler which will modify
    138 	 * undefined_test if it is called.
    139 	 * We then try to read the FP status register. If undefined_test
    140 	 * has been decremented then the instruction was not handled by
    141 	 * an FPA so we know the FPA is missing. If undefined_test is
    142 	 * still 1 then we know the instruction was handled by an FPA.
    143 	 * We then remove our test handler and look at the
    144 	 * FP status register for identification.
    145 	 */
    146 
    147 	/*
    148 	 * Ok if ARMFPE is defined and the boot options request the
    149 	 * ARM FPE then it will be installed as the FPE.
    150 	 * This is just while I work on integrating the new FPE.
    151 	 * It means the new FPE gets installed if compiled int (ARMFPE
    152 	 * defined) and also gives me a on/off option when I boot in
    153 	 * case the new FPE is causing panics.
    154 	 */
    155 
    156 
    157 	if (boot_args)
    158 		get_bootconf_option(boot_args, "armfpe",
    159 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    160 	if (usearmfpe)
    161 		initialise_arm_fpe();
    162 #endif
    163 
    164 #ifdef FPU_VFP
    165 	vfp_attach();
    166 #endif
    167 }
    168 
    169 enum cpu_class {
    170 	CPU_CLASS_NONE,
    171 	CPU_CLASS_ARM2,
    172 	CPU_CLASS_ARM2AS,
    173 	CPU_CLASS_ARM3,
    174 	CPU_CLASS_ARM6,
    175 	CPU_CLASS_ARM7,
    176 	CPU_CLASS_ARM7TDMI,
    177 	CPU_CLASS_ARM8,
    178 	CPU_CLASS_ARM9TDMI,
    179 	CPU_CLASS_ARM9ES,
    180 	CPU_CLASS_ARM9EJS,
    181 	CPU_CLASS_ARM10E,
    182 	CPU_CLASS_ARM10EJ,
    183 	CPU_CLASS_SA1,
    184 	CPU_CLASS_XSCALE,
    185 	CPU_CLASS_ARM11J,
    186 	CPU_CLASS_ARMV4,
    187 	CPU_CLASS_CORTEX,
    188 };
    189 
    190 static const char * const generic_steppings[16] = {
    191 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    192 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    193 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    194 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    195 };
    196 
    197 static const char * const pN_steppings[16] = {
    198 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
    199 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
    200 };
    201 
    202 static const char * const sa110_steppings[16] = {
    203 	"rev 0",	"step J",	"step K",	"step S",
    204 	"step T",	"rev 5",	"rev 6",	"rev 7",
    205 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    206 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    207 };
    208 
    209 static const char * const sa1100_steppings[16] = {
    210 	"rev 0",	"step B",	"step C",	"rev 3",
    211 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    212 	"step D",	"step E",	"rev 10"	"step G",
    213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    214 };
    215 
    216 static const char * const sa1110_steppings[16] = {
    217 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    218 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    219 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    220 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    221 };
    222 
    223 static const char * const ixp12x0_steppings[16] = {
    224 	"(IXP1200 step A)",		"(IXP1200 step B)",
    225 	"rev 2",			"(IXP1200 step C)",
    226 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    227 	"(IXP1240 step B)",		"(IXP1250 step B)",
    228 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    229 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    230 };
    231 
    232 static const char * const xscale_steppings[16] = {
    233 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    234 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    235 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    236 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    237 };
    238 
    239 static const char * const i80321_steppings[16] = {
    240 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    241 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    242 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    243 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    244 };
    245 
    246 static const char * const i80219_steppings[16] = {
    247 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    248 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    249 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    250 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    251 };
    252 
    253 /* Steppings for PXA2[15]0 */
    254 static const char * const pxa2x0_steppings[16] = {
    255 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    256 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    257 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    258 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    259 };
    260 
    261 /* Steppings for PXA255/26x.
    262  * rev 5: PXA26x B0, rev 6: PXA255 A0
    263  */
    264 static const char * const pxa255_steppings[16] = {
    265 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
    266 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
    267 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    268 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    269 };
    270 
    271 /* Stepping for PXA27x */
    272 static const char * const pxa27x_steppings[16] = {
    273 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    274 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
    275 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    276 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    277 };
    278 
    279 static const char * const ixp425_steppings[16] = {
    280 	"step 0",	"rev 1",	"rev 2",	"rev 3",
    281 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    282 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    283 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    284 };
    285 
    286 struct cpuidtab {
    287 	u_int32_t	cpuid;
    288 	enum		cpu_class cpu_class;
    289 	const char	*cpu_classname;
    290 	const char * const *cpu_steppings;
    291 };
    292 
    293 const struct cpuidtab cpuids[] = {
    294 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    295 	  generic_steppings },
    296 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    297 	  generic_steppings },
    298 
    299 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    300 	  generic_steppings },
    301 
    302 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    303 	  generic_steppings },
    304 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    305 	  generic_steppings },
    306 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    307 	  generic_steppings },
    308 
    309 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    310 	  generic_steppings },
    311 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    312 	  generic_steppings },
    313 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    314 	  generic_steppings },
    315 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    316 	  generic_steppings },
    317 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    318 	  generic_steppings },
    319 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    320 	  generic_steppings },
    321 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    322 	  generic_steppings },
    323 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    324 	  generic_steppings },
    325 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    326 	  generic_steppings },
    327 
    328 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    329 	  generic_steppings },
    330 
    331 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    332 	  generic_steppings },
    333 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    334 	  generic_steppings },
    335 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
    336 	  generic_steppings },
    337 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    338 	  generic_steppings },
    339 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    340 	  generic_steppings },
    341 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    342 	  generic_steppings },
    343 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    344 	  generic_steppings },
    345 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
    346 	  generic_steppings },
    347 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
    348 	  generic_steppings },
    349 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
    350 	  generic_steppings },
    351 
    352 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
    353 	  generic_steppings },
    354 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
    355 	  generic_steppings },
    356 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
    357 	  generic_steppings },
    358 
    359 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    360 	  sa110_steppings },
    361 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    362 	  sa1100_steppings },
    363 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    364 	  sa1110_steppings },
    365 
    366 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    367 	  ixp12x0_steppings },
    368 
    369 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    370 	  xscale_steppings },
    371 
    372 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    373 	  i80321_steppings },
    374 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    375 	  i80321_steppings },
    376 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    377 	  i80321_steppings },
    378 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    379 	  i80321_steppings },
    380 
    381 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
    382 	  i80219_steppings },
    383 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
    384 	  i80219_steppings },
    385 
    386 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
    387 	  pxa27x_steppings },
    388 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    389 	  pxa2x0_steppings },
    390 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    391 	  pxa2x0_steppings },
    392 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    393 	  pxa2x0_steppings },
    394 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    395 	  pxa2x0_steppings },
    396 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
    397 	  pxa255_steppings },
    398 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    399 	  pxa2x0_steppings },
    400 
    401 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
    402 	  ixp425_steppings },
    403 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
    404 	  ixp425_steppings },
    405 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
    406 	  ixp425_steppings },
    407 
    408 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
    409 	  pN_steppings },
    410 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
    411 	  pN_steppings },
    412 	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
    413 	  pN_steppings },
    414 	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
    415 	  pN_steppings },
    416 
    417 	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
    418 	  generic_steppings },
    419 
    420 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
    421 	  pN_steppings },
    422 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
    423 	  pN_steppings },
    424 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
    425 	  pN_steppings },
    426 	{ CPU_ID_CORTEXA9R1,	CPU_CLASS_CORTEX,	"Cortex-A9 r1",
    427 	  pN_steppings },
    428 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_ARM11J,	"Cortex-A8 r3",
    429 	  pN_steppings },
    430 
    431 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
    432 	  generic_steppings },
    433 
    434 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    435 };
    436 
    437 struct cpu_classtab {
    438 	const char	*class_name;
    439 	const char	*class_option;
    440 };
    441 
    442 const struct cpu_classtab cpu_classes[] = {
    443 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
    444 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
    445 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
    446 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
    447 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
    448 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
    449 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
    450 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
    451 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
    452 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
    453 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
    454 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
    455 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
    456 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
    457 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
    458 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
    459 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
    460 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
    461 };
    462 
    463 /*
    464  * Report the type of the specified arm processor. This uses the generic and
    465  * arm specific information in the CPU structure to identify the processor.
    466  * The remaining fields in the CPU structure are filled in appropriately.
    467  */
    468 
    469 static const char * const wtnames[] = {
    470 	"write-through",
    471 	"write-back",
    472 	"write-back",
    473 	"**unknown 3**",
    474 	"**unknown 4**",
    475 	"write-back-locking",		/* XXX XScale-specific? */
    476 	"write-back-locking-A",
    477 	"write-back-locking-B",
    478 	"**unknown 8**",
    479 	"**unknown 9**",
    480 	"**unknown 10**",
    481 	"**unknown 11**",
    482 	"**unknown 12**",
    483 	"**unknown 13**",
    484 	"write-back-locking-C",
    485 	"**unknown 15**",
    486 };
    487 
    488 void
    489 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    490 {
    491 	u_int cpuid;
    492 	enum cpu_class cpu_class = CPU_CLASS_NONE;
    493 	int i;
    494 	const char *steppingstr;
    495 
    496 	cpuid = ci->ci_arm_cpuid;
    497 
    498 	if (cpuid == 0) {
    499 		aprint_error("Processor failed probe - no CPU ID\n");
    500 		return;
    501 	}
    502 
    503 	for (i = 0; cpuids[i].cpuid != 0; i++)
    504 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    505 			cpu_class = cpuids[i].cpu_class;
    506 			steppingstr = cpuids[i].cpu_steppings[cpuid &
    507 			    CPU_ID_REVISION_MASK],
    508 			sprintf(cpu_model, "%s%s%s (%s core)",
    509 			    cpuids[i].cpu_classname,
    510 			    steppingstr[0] == '*' ? "" : " ",
    511 			    &steppingstr[steppingstr[0] == '*'],
    512 			    cpu_classes[cpu_class].class_name);
    513 			break;
    514 		}
    515 
    516 	if (cpuids[i].cpuid == 0)
    517 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    518 
    519 	aprint_naive(": %s\n", cpu_model);
    520 	aprint_normal(": %s\n", cpu_model);
    521 
    522 	aprint_normal("%s:", dv->dv_xname);
    523 
    524 	switch (cpu_class) {
    525 	case CPU_CLASS_ARM6:
    526 	case CPU_CLASS_ARM7:
    527 	case CPU_CLASS_ARM7TDMI:
    528 	case CPU_CLASS_ARM8:
    529 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    530 			aprint_normal(" IDC disabled");
    531 		else
    532 			aprint_normal(" IDC enabled");
    533 		break;
    534 	case CPU_CLASS_ARM9TDMI:
    535 	case CPU_CLASS_ARM9ES:
    536 	case CPU_CLASS_ARM9EJS:
    537 	case CPU_CLASS_ARM10E:
    538 	case CPU_CLASS_ARM10EJ:
    539 	case CPU_CLASS_SA1:
    540 	case CPU_CLASS_XSCALE:
    541 	case CPU_CLASS_ARM11J:
    542 	case CPU_CLASS_ARMV4:
    543 	case CPU_CLASS_CORTEX:
    544 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    545 			aprint_normal(" DC disabled");
    546 		else
    547 			aprint_normal(" DC enabled");
    548 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    549 			aprint_normal(" IC disabled");
    550 		else
    551 			aprint_normal(" IC enabled");
    552 		break;
    553 	default:
    554 		break;
    555 	}
    556 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    557 		aprint_normal(" WB disabled");
    558 	else
    559 		aprint_normal(" WB enabled");
    560 
    561 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    562 		aprint_normal(" LABT");
    563 	else
    564 		aprint_normal(" EABT");
    565 
    566 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    567 		aprint_normal(" branch prediction enabled");
    568 
    569 	aprint_normal("\n");
    570 
    571 	/* Print cache info. */
    572 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    573 		goto skip_pcache;
    574 
    575 	if (arm_pcache_unified) {
    576 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
    577 		    dv->dv_xname, arm_pdcache_size / 1024,
    578 		    arm_pdcache_line_size, arm_pdcache_ways,
    579 		    wtnames[arm_pcache_type]);
    580 	} else {
    581 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
    582 		    dv->dv_xname, arm_picache_size / 1024,
    583 		    arm_picache_line_size, arm_picache_ways);
    584 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
    585 		    dv->dv_xname, arm_pdcache_size / 1024,
    586 		    arm_pdcache_line_size, arm_pdcache_ways,
    587 		    wtnames[arm_pcache_type]);
    588 	}
    589 
    590  skip_pcache:
    591 
    592 	switch (cpu_class) {
    593 #ifdef CPU_ARM2
    594 	case CPU_CLASS_ARM2:
    595 #endif
    596 #ifdef CPU_ARM250
    597 	case CPU_CLASS_ARM2AS:
    598 #endif
    599 #ifdef CPU_ARM3
    600 	case CPU_CLASS_ARM3:
    601 #endif
    602 #ifdef CPU_ARM6
    603 	case CPU_CLASS_ARM6:
    604 #endif
    605 #ifdef CPU_ARM7
    606 	case CPU_CLASS_ARM7:
    607 #endif
    608 #ifdef CPU_ARM7TDMI
    609 	case CPU_CLASS_ARM7TDMI:
    610 #endif
    611 #ifdef CPU_ARM8
    612 	case CPU_CLASS_ARM8:
    613 #endif
    614 #ifdef CPU_ARM9
    615 	case CPU_CLASS_ARM9TDMI:
    616 #endif
    617 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
    618 	case CPU_CLASS_ARM9ES:
    619 	case CPU_CLASS_ARM9EJS:
    620 #endif
    621 #ifdef CPU_ARM10
    622 	case CPU_CLASS_ARM10E:
    623 	case CPU_CLASS_ARM10EJ:
    624 #endif
    625 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    626     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    627 	case CPU_CLASS_SA1:
    628 #endif
    629 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    630     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
    631 	case CPU_CLASS_XSCALE:
    632 #endif
    633 #if defined(CPU_ARM11)
    634 	case CPU_CLASS_ARM11J:
    635 #endif
    636 #if defined(CPU_CORTEX)
    637 	case CPU_CLASS_CORTEX:
    638 #endif
    639 #if defined(CPU_FA526)
    640 	case CPU_CLASS_ARMV4:
    641 #endif
    642 		break;
    643 	default:
    644 		if (cpu_classes[cpu_class].class_option == NULL)
    645 			aprint_error("%s: %s does not fully support this CPU."
    646 			       "\n", dv->dv_xname, ostype);
    647 		else {
    648 			aprint_error("%s: This kernel does not fully support "
    649 			       "this CPU.\n", dv->dv_xname);
    650 			aprint_normal("%s: Recompile with \"options %s\" to "
    651 			       "correct this.\n", dv->dv_xname,
    652 			       cpu_classes[cpu_class].class_option);
    653 		}
    654 		break;
    655 	}
    656 
    657 }
    658 
    659 /* End of cpu.c */
    660