Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.81
      1 /*	$NetBSD: cpu.c,v 1.81 2012/05/20 18:08:05 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master CPU
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_multiprocessor.h"
     46 
     47 #include <sys/param.h>
     48 
     49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.81 2012/05/20 18:08:05 skrll Exp $");
     50 
     51 #include <sys/systm.h>
     52 #include <sys/malloc.h>
     53 #include <sys/device.h>
     54 #include <sys/proc.h>
     55 #include <sys/conf.h>
     56 #include <uvm/uvm_extern.h>
     57 #include <machine/cpu.h>
     58 
     59 #include <arm/cpuconf.h>
     60 #include <arm/undefined.h>
     61 
     62 #ifdef ARMFPE
     63 #include <machine/bootconfig.h> /* For boot args */
     64 #include <arm/fpe-arm/armfpe.h>
     65 #endif
     66 
     67 #ifdef FPU_VFP
     68 #include <arm/vfpvar.h>
     69 #endif
     70 
     71 char cpu_model[256];
     72 
     73 /* Prototypes */
     74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     75 
     76 /*
     77  * Identify the master (boot) CPU
     78  */
     79 
     80 void
     81 cpu_attach(struct device *dv)
     82 {
     83 	int usearmfpe;
     84 
     85 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     86 
     87 	curcpu()->ci_dev = dv;
     88 
     89 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     90 	    NULL, dv->dv_xname, "arm700swibug");
     91 
     92 	/* Get the CPU ID from coprocessor 15 */
     93 
     94 	curcpu()->ci_arm_cpuid = cpu_id();
     95 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     96 	curcpu()->ci_arm_cpurev =
     97 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     98 
     99 	identify_arm_cpu(dv, curcpu());
    100 
    101 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
    102 	    curcpu()->ci_arm_cpurev < 3) {
    103 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
    104 		       dv->dv_xname);
    105 	}
    106 
    107 #ifdef CPU_ARM8
    108 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    109 		int clock = arm8_clock_config(0, 0);
    110 		char *fclk;
    111 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    112 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    113 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    114 		switch ((clock >> 2) & 3) {
    115 		case 0:
    116 			fclk = "bus clock";
    117 			break;
    118 		case 1:
    119 			fclk = "ref clock";
    120 			break;
    121 		case 3:
    122 			fclk = "pll";
    123 			break;
    124 		default:
    125 			fclk = "illegal";
    126 			break;
    127 		}
    128 		aprint_normal(" fclk source=%s\n", fclk);
    129  	}
    130 #endif
    131 
    132 #ifdef ARMFPE
    133 	/*
    134 	 * Ok now we test for an FPA
    135 	 * At this point no floating point emulator has been installed.
    136 	 * This means any FP instruction will cause undefined exception.
    137 	 * We install a temporay coproc 1 handler which will modify
    138 	 * undefined_test if it is called.
    139 	 * We then try to read the FP status register. If undefined_test
    140 	 * has been decremented then the instruction was not handled by
    141 	 * an FPA so we know the FPA is missing. If undefined_test is
    142 	 * still 1 then we know the instruction was handled by an FPA.
    143 	 * We then remove our test handler and look at the
    144 	 * FP status register for identification.
    145 	 */
    146 
    147 	/*
    148 	 * Ok if ARMFPE is defined and the boot options request the
    149 	 * ARM FPE then it will be installed as the FPE.
    150 	 * This is just while I work on integrating the new FPE.
    151 	 * It means the new FPE gets installed if compiled int (ARMFPE
    152 	 * defined) and also gives me a on/off option when I boot in
    153 	 * case the new FPE is causing panics.
    154 	 */
    155 
    156 
    157 	if (boot_args)
    158 		get_bootconf_option(boot_args, "armfpe",
    159 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    160 	if (usearmfpe)
    161 		initialise_arm_fpe();
    162 #endif
    163 
    164 #ifdef FPU_VFP
    165 	vfp_attach();
    166 #endif
    167 }
    168 
    169 enum cpu_class {
    170 	CPU_CLASS_NONE,
    171 	CPU_CLASS_ARM2,
    172 	CPU_CLASS_ARM2AS,
    173 	CPU_CLASS_ARM3,
    174 	CPU_CLASS_ARM6,
    175 	CPU_CLASS_ARM7,
    176 	CPU_CLASS_ARM7TDMI,
    177 	CPU_CLASS_ARM8,
    178 	CPU_CLASS_ARM9TDMI,
    179 	CPU_CLASS_ARM9ES,
    180 	CPU_CLASS_ARM9EJS,
    181 	CPU_CLASS_ARM10E,
    182 	CPU_CLASS_ARM10EJ,
    183 	CPU_CLASS_SA1,
    184 	CPU_CLASS_XSCALE,
    185 	CPU_CLASS_ARM11J,
    186 	CPU_CLASS_ARMV4,
    187 	CPU_CLASS_CORTEX,
    188 };
    189 
    190 static const char * const generic_steppings[16] = {
    191 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    192 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    193 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    194 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    195 };
    196 
    197 static const char * const pN_steppings[16] = {
    198 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
    199 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
    200 };
    201 
    202 static const char * const sa110_steppings[16] = {
    203 	"rev 0",	"step J",	"step K",	"step S",
    204 	"step T",	"rev 5",	"rev 6",	"rev 7",
    205 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    206 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    207 };
    208 
    209 static const char * const sa1100_steppings[16] = {
    210 	"rev 0",	"step B",	"step C",	"rev 3",
    211 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    212 	"step D",	"step E",	"rev 10"	"step G",
    213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    214 };
    215 
    216 static const char * const sa1110_steppings[16] = {
    217 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    218 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    219 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    220 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    221 };
    222 
    223 static const char * const ixp12x0_steppings[16] = {
    224 	"(IXP1200 step A)",		"(IXP1200 step B)",
    225 	"rev 2",			"(IXP1200 step C)",
    226 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    227 	"(IXP1240 step B)",		"(IXP1250 step B)",
    228 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    229 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    230 };
    231 
    232 static const char * const xscale_steppings[16] = {
    233 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    234 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    235 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    236 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    237 };
    238 
    239 static const char * const i80321_steppings[16] = {
    240 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    241 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    242 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    243 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    244 };
    245 
    246 static const char * const i80219_steppings[16] = {
    247 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    248 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    249 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    250 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    251 };
    252 
    253 /* Steppings for PXA2[15]0 */
    254 static const char * const pxa2x0_steppings[16] = {
    255 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    256 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    257 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    258 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    259 };
    260 
    261 /* Steppings for PXA255/26x.
    262  * rev 5: PXA26x B0, rev 6: PXA255 A0
    263  */
    264 static const char * const pxa255_steppings[16] = {
    265 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
    266 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
    267 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    268 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    269 };
    270 
    271 /* Stepping for PXA27x */
    272 static const char * const pxa27x_steppings[16] = {
    273 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    274 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
    275 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    276 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    277 };
    278 
    279 static const char * const ixp425_steppings[16] = {
    280 	"step 0",	"rev 1",	"rev 2",	"rev 3",
    281 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    282 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    283 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    284 };
    285 
    286 struct cpuidtab {
    287 	u_int32_t	cpuid;
    288 	enum		cpu_class cpu_class;
    289 	const char	*cpu_classname;
    290 	const char * const *cpu_steppings;
    291 };
    292 
    293 const struct cpuidtab cpuids[] = {
    294 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    295 	  generic_steppings },
    296 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    297 	  generic_steppings },
    298 
    299 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    300 	  generic_steppings },
    301 
    302 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    303 	  generic_steppings },
    304 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    305 	  generic_steppings },
    306 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    307 	  generic_steppings },
    308 
    309 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    310 	  generic_steppings },
    311 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    312 	  generic_steppings },
    313 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    314 	  generic_steppings },
    315 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    316 	  generic_steppings },
    317 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    318 	  generic_steppings },
    319 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    320 	  generic_steppings },
    321 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    322 	  generic_steppings },
    323 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    324 	  generic_steppings },
    325 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    326 	  generic_steppings },
    327 
    328 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    329 	  generic_steppings },
    330 
    331 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    332 	  generic_steppings },
    333 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    334 	  generic_steppings },
    335 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
    336 	  generic_steppings },
    337 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    338 	  generic_steppings },
    339 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    340 	  generic_steppings },
    341 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    342 	  generic_steppings },
    343 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    344 	  generic_steppings },
    345 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
    346 	  generic_steppings },
    347 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
    348 	  generic_steppings },
    349 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
    350 	  generic_steppings },
    351 
    352 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
    353 	  generic_steppings },
    354 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
    355 	  generic_steppings },
    356 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
    357 	  generic_steppings },
    358 
    359 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    360 	  sa110_steppings },
    361 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    362 	  sa1100_steppings },
    363 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    364 	  sa1110_steppings },
    365 
    366 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    367 	  ixp12x0_steppings },
    368 
    369 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    370 	  xscale_steppings },
    371 
    372 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    373 	  i80321_steppings },
    374 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    375 	  i80321_steppings },
    376 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    377 	  i80321_steppings },
    378 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    379 	  i80321_steppings },
    380 
    381 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
    382 	  i80219_steppings },
    383 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
    384 	  i80219_steppings },
    385 
    386 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
    387 	  pxa27x_steppings },
    388 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    389 	  pxa2x0_steppings },
    390 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    391 	  pxa2x0_steppings },
    392 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    393 	  pxa2x0_steppings },
    394 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    395 	  pxa2x0_steppings },
    396 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
    397 	  pxa255_steppings },
    398 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    399 	  pxa2x0_steppings },
    400 
    401 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
    402 	  ixp425_steppings },
    403 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
    404 	  ixp425_steppings },
    405 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
    406 	  ixp425_steppings },
    407 
    408 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
    409 	  pN_steppings },
    410 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
    411 	  pN_steppings },
    412 #if 0
    413 	/* The ARM1156T2-S only has a memory protection unit */
    414 	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
    415 	  pN_steppings },
    416 #endif
    417 	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
    418 	  pN_steppings },
    419 
    420 	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
    421 	  generic_steppings },
    422 
    423 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
    424 	  pN_steppings },
    425 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
    426 	  pN_steppings },
    427 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
    428 	  pN_steppings },
    429 	{ CPU_ID_CORTEXA9R1,	CPU_CLASS_CORTEX,	"Cortex-A9 r1",
    430 	  pN_steppings },
    431 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_ARM11J,	"Cortex-A8 r3",
    432 	  pN_steppings },
    433 
    434 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
    435 	  generic_steppings },
    436 
    437 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    438 };
    439 
    440 struct cpu_classtab {
    441 	const char	*class_name;
    442 	const char	*class_option;
    443 };
    444 
    445 const struct cpu_classtab cpu_classes[] = {
    446 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
    447 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
    448 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
    449 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
    450 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
    451 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
    452 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
    453 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
    454 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
    455 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
    456 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
    457 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
    458 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
    459 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
    460 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
    461 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
    462 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
    463 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
    464 };
    465 
    466 /*
    467  * Report the type of the specified arm processor. This uses the generic and
    468  * arm specific information in the CPU structure to identify the processor.
    469  * The remaining fields in the CPU structure are filled in appropriately.
    470  */
    471 
    472 static const char * const wtnames[] = {
    473 	"write-through",
    474 	"write-back",
    475 	"write-back",
    476 	"**unknown 3**",
    477 	"**unknown 4**",
    478 	"write-back-locking",		/* XXX XScale-specific? */
    479 	"write-back-locking-A",
    480 	"write-back-locking-B",
    481 	"**unknown 8**",
    482 	"**unknown 9**",
    483 	"**unknown 10**",
    484 	"**unknown 11**",
    485 	"**unknown 12**",
    486 	"**unknown 13**",
    487 	"write-back-locking-C",
    488 	"**unknown 15**",
    489 };
    490 
    491 void
    492 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    493 {
    494 	u_int cpuid;
    495 	enum cpu_class cpu_class = CPU_CLASS_NONE;
    496 	int i;
    497 	const char *steppingstr;
    498 
    499 	cpuid = ci->ci_arm_cpuid;
    500 
    501 	if (cpuid == 0) {
    502 		aprint_error("Processor failed probe - no CPU ID\n");
    503 		return;
    504 	}
    505 
    506 	for (i = 0; cpuids[i].cpuid != 0; i++)
    507 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    508 			cpu_class = cpuids[i].cpu_class;
    509 			steppingstr = cpuids[i].cpu_steppings[cpuid &
    510 			    CPU_ID_REVISION_MASK],
    511 			sprintf(cpu_model, "%s%s%s (%s core)",
    512 			    cpuids[i].cpu_classname,
    513 			    steppingstr[0] == '*' ? "" : " ",
    514 			    &steppingstr[steppingstr[0] == '*'],
    515 			    cpu_classes[cpu_class].class_name);
    516 			break;
    517 		}
    518 
    519 	if (cpuids[i].cpuid == 0)
    520 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    521 
    522 	aprint_naive(": %s\n", cpu_model);
    523 	aprint_normal(": %s\n", cpu_model);
    524 
    525 	aprint_normal("%s:", dv->dv_xname);
    526 
    527 	switch (cpu_class) {
    528 	case CPU_CLASS_ARM6:
    529 	case CPU_CLASS_ARM7:
    530 	case CPU_CLASS_ARM7TDMI:
    531 	case CPU_CLASS_ARM8:
    532 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    533 			aprint_normal(" IDC disabled");
    534 		else
    535 			aprint_normal(" IDC enabled");
    536 		break;
    537 	case CPU_CLASS_ARM9TDMI:
    538 	case CPU_CLASS_ARM9ES:
    539 	case CPU_CLASS_ARM9EJS:
    540 	case CPU_CLASS_ARM10E:
    541 	case CPU_CLASS_ARM10EJ:
    542 	case CPU_CLASS_SA1:
    543 	case CPU_CLASS_XSCALE:
    544 	case CPU_CLASS_ARM11J:
    545 	case CPU_CLASS_ARMV4:
    546 	case CPU_CLASS_CORTEX:
    547 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    548 			aprint_normal(" DC disabled");
    549 		else
    550 			aprint_normal(" DC enabled");
    551 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    552 			aprint_normal(" IC disabled");
    553 		else
    554 			aprint_normal(" IC enabled");
    555 		break;
    556 	default:
    557 		break;
    558 	}
    559 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    560 		aprint_normal(" WB disabled");
    561 	else
    562 		aprint_normal(" WB enabled");
    563 
    564 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    565 		aprint_normal(" LABT");
    566 	else
    567 		aprint_normal(" EABT");
    568 
    569 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    570 		aprint_normal(" branch prediction enabled");
    571 
    572 	aprint_normal("\n");
    573 
    574 	/* Print cache info. */
    575 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    576 		goto skip_pcache;
    577 
    578 	if (arm_pcache_unified) {
    579 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
    580 		    dv->dv_xname, arm_pdcache_size / 1024,
    581 		    arm_pdcache_line_size, arm_pdcache_ways,
    582 		    wtnames[arm_pcache_type]);
    583 	} else {
    584 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
    585 		    dv->dv_xname, arm_picache_size / 1024,
    586 		    arm_picache_line_size, arm_picache_ways);
    587 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
    588 		    dv->dv_xname, arm_pdcache_size / 1024,
    589 		    arm_pdcache_line_size, arm_pdcache_ways,
    590 		    wtnames[arm_pcache_type]);
    591 	}
    592 
    593  skip_pcache:
    594 
    595 	switch (cpu_class) {
    596 #ifdef CPU_ARM2
    597 	case CPU_CLASS_ARM2:
    598 #endif
    599 #ifdef CPU_ARM250
    600 	case CPU_CLASS_ARM2AS:
    601 #endif
    602 #ifdef CPU_ARM3
    603 	case CPU_CLASS_ARM3:
    604 #endif
    605 #ifdef CPU_ARM6
    606 	case CPU_CLASS_ARM6:
    607 #endif
    608 #ifdef CPU_ARM7
    609 	case CPU_CLASS_ARM7:
    610 #endif
    611 #ifdef CPU_ARM7TDMI
    612 	case CPU_CLASS_ARM7TDMI:
    613 #endif
    614 #ifdef CPU_ARM8
    615 	case CPU_CLASS_ARM8:
    616 #endif
    617 #ifdef CPU_ARM9
    618 	case CPU_CLASS_ARM9TDMI:
    619 #endif
    620 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
    621 	case CPU_CLASS_ARM9ES:
    622 	case CPU_CLASS_ARM9EJS:
    623 #endif
    624 #ifdef CPU_ARM10
    625 	case CPU_CLASS_ARM10E:
    626 	case CPU_CLASS_ARM10EJ:
    627 #endif
    628 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    629     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    630 	case CPU_CLASS_SA1:
    631 #endif
    632 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    633     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
    634 	case CPU_CLASS_XSCALE:
    635 #endif
    636 #if defined(CPU_ARM11)
    637 	case CPU_CLASS_ARM11J:
    638 #endif
    639 #if defined(CPU_CORTEX)
    640 	case CPU_CLASS_CORTEX:
    641 #endif
    642 #if defined(CPU_FA526)
    643 	case CPU_CLASS_ARMV4:
    644 #endif
    645 		break;
    646 	default:
    647 		if (cpu_classes[cpu_class].class_option == NULL)
    648 			aprint_error("%s: %s does not fully support this CPU."
    649 			       "\n", dv->dv_xname, ostype);
    650 		else {
    651 			aprint_error("%s: This kernel does not fully support "
    652 			       "this CPU.\n", dv->dv_xname);
    653 			aprint_normal("%s: Recompile with \"options %s\" to "
    654 			       "correct this.\n", dv->dv_xname,
    655 			       cpu_classes[cpu_class].class_option);
    656 		}
    657 		break;
    658 	}
    659 
    660 }
    661 
    662 /* End of cpu.c */
    663