cpu.c revision 1.84 1 /* $NetBSD: cpu.c,v 1.84 2012/08/14 20:39:49 matt Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.84 2012/08/14 20:39:49 matt Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 char cpu_model[256];
68
69 /* Prototypes */
70 void identify_arm_cpu(device_t dv, struct cpu_info *);
71
72 /*
73 * Identify the master (boot) CPU
74 */
75
76 void
77 cpu_attach(device_t dv)
78 {
79 int usearmfpe;
80
81 usearmfpe = 1; /* when compiled in, its enabled by default */
82
83 curcpu()->ci_dev = dv;
84
85 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
86 NULL, dv->dv_xname, "arm700swibug");
87
88 /* Get the CPU ID from coprocessor 15 */
89
90 curcpu()->ci_arm_cpuid = cpu_id();
91 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
92 curcpu()->ci_arm_cpurev =
93 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
94
95 identify_arm_cpu(dv, curcpu());
96
97 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
98 curcpu()->ci_arm_cpurev < 3) {
99 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
100 dv->dv_xname);
101 }
102
103 #ifdef CPU_ARM8
104 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
105 int clock = arm8_clock_config(0, 0);
106 char *fclk;
107 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
108 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
109 aprint_normal("%s", (clock & 2) ? " sync" : "");
110 switch ((clock >> 2) & 3) {
111 case 0:
112 fclk = "bus clock";
113 break;
114 case 1:
115 fclk = "ref clock";
116 break;
117 case 3:
118 fclk = "pll";
119 break;
120 default:
121 fclk = "illegal";
122 break;
123 }
124 aprint_normal(" fclk source=%s\n", fclk);
125 }
126 #endif
127
128 #ifdef ARMFPE
129 /*
130 * Ok now we test for an FPA
131 * At this point no floating point emulator has been installed.
132 * This means any FP instruction will cause undefined exception.
133 * We install a temporay coproc 1 handler which will modify
134 * undefined_test if it is called.
135 * We then try to read the FP status register. If undefined_test
136 * has been decremented then the instruction was not handled by
137 * an FPA so we know the FPA is missing. If undefined_test is
138 * still 1 then we know the instruction was handled by an FPA.
139 * We then remove our test handler and look at the
140 * FP status register for identification.
141 */
142
143 /*
144 * Ok if ARMFPE is defined and the boot options request the
145 * ARM FPE then it will be installed as the FPE.
146 * This is just while I work on integrating the new FPE.
147 * It means the new FPE gets installed if compiled int (ARMFPE
148 * defined) and also gives me a on/off option when I boot in
149 * case the new FPE is causing panics.
150 */
151
152
153 if (boot_args)
154 get_bootconf_option(boot_args, "armfpe",
155 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
156 if (usearmfpe)
157 initialise_arm_fpe();
158 #endif
159
160 vfp_attach(); /* XXX SMP */
161 }
162
163 enum cpu_class {
164 CPU_CLASS_NONE,
165 CPU_CLASS_ARM2,
166 CPU_CLASS_ARM2AS,
167 CPU_CLASS_ARM3,
168 CPU_CLASS_ARM6,
169 CPU_CLASS_ARM7,
170 CPU_CLASS_ARM7TDMI,
171 CPU_CLASS_ARM8,
172 CPU_CLASS_ARM9TDMI,
173 CPU_CLASS_ARM9ES,
174 CPU_CLASS_ARM9EJS,
175 CPU_CLASS_ARM10E,
176 CPU_CLASS_ARM10EJ,
177 CPU_CLASS_SA1,
178 CPU_CLASS_XSCALE,
179 CPU_CLASS_ARM11J,
180 CPU_CLASS_ARMV4,
181 CPU_CLASS_CORTEX,
182 };
183
184 static const char * const generic_steppings[16] = {
185 "rev 0", "rev 1", "rev 2", "rev 3",
186 "rev 4", "rev 5", "rev 6", "rev 7",
187 "rev 8", "rev 9", "rev 10", "rev 11",
188 "rev 12", "rev 13", "rev 14", "rev 15",
189 };
190
191 static const char * const pN_steppings[16] = {
192 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
193 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
194 };
195
196 static const char * const sa110_steppings[16] = {
197 "rev 0", "step J", "step K", "step S",
198 "step T", "rev 5", "rev 6", "rev 7",
199 "rev 8", "rev 9", "rev 10", "rev 11",
200 "rev 12", "rev 13", "rev 14", "rev 15",
201 };
202
203 static const char * const sa1100_steppings[16] = {
204 "rev 0", "step B", "step C", "rev 3",
205 "rev 4", "rev 5", "rev 6", "rev 7",
206 "step D", "step E", "rev 10" "step G",
207 "rev 12", "rev 13", "rev 14", "rev 15",
208 };
209
210 static const char * const sa1110_steppings[16] = {
211 "step A-0", "rev 1", "rev 2", "rev 3",
212 "step B-0", "step B-1", "step B-2", "step B-3",
213 "step B-4", "step B-5", "rev 10", "rev 11",
214 "rev 12", "rev 13", "rev 14", "rev 15",
215 };
216
217 static const char * const ixp12x0_steppings[16] = {
218 "(IXP1200 step A)", "(IXP1200 step B)",
219 "rev 2", "(IXP1200 step C)",
220 "(IXP1200 step D)", "(IXP1240/1250 step A)",
221 "(IXP1240 step B)", "(IXP1250 step B)",
222 "rev 8", "rev 9", "rev 10", "rev 11",
223 "rev 12", "rev 13", "rev 14", "rev 15",
224 };
225
226 static const char * const xscale_steppings[16] = {
227 "step A-0", "step A-1", "step B-0", "step C-0",
228 "step D-0", "rev 5", "rev 6", "rev 7",
229 "rev 8", "rev 9", "rev 10", "rev 11",
230 "rev 12", "rev 13", "rev 14", "rev 15",
231 };
232
233 static const char * const i80321_steppings[16] = {
234 "step A-0", "step B-0", "rev 2", "rev 3",
235 "rev 4", "rev 5", "rev 6", "rev 7",
236 "rev 8", "rev 9", "rev 10", "rev 11",
237 "rev 12", "rev 13", "rev 14", "rev 15",
238 };
239
240 static const char * const i80219_steppings[16] = {
241 "step A-0", "rev 1", "rev 2", "rev 3",
242 "rev 4", "rev 5", "rev 6", "rev 7",
243 "rev 8", "rev 9", "rev 10", "rev 11",
244 "rev 12", "rev 13", "rev 14", "rev 15",
245 };
246
247 /* Steppings for PXA2[15]0 */
248 static const char * const pxa2x0_steppings[16] = {
249 "step A-0", "step A-1", "step B-0", "step B-1",
250 "step B-2", "step C-0", "rev 6", "rev 7",
251 "rev 8", "rev 9", "rev 10", "rev 11",
252 "rev 12", "rev 13", "rev 14", "rev 15",
253 };
254
255 /* Steppings for PXA255/26x.
256 * rev 5: PXA26x B0, rev 6: PXA255 A0
257 */
258 static const char * const pxa255_steppings[16] = {
259 "rev 0", "rev 1", "rev 2", "step A-0",
260 "rev 4", "step B-0", "step A-0", "rev 7",
261 "rev 8", "rev 9", "rev 10", "rev 11",
262 "rev 12", "rev 13", "rev 14", "rev 15",
263 };
264
265 /* Stepping for PXA27x */
266 static const char * const pxa27x_steppings[16] = {
267 "step A-0", "step A-1", "step B-0", "step B-1",
268 "step C-0", "rev 5", "rev 6", "rev 7",
269 "rev 8", "rev 9", "rev 10", "rev 11",
270 "rev 12", "rev 13", "rev 14", "rev 15",
271 };
272
273 static const char * const ixp425_steppings[16] = {
274 "step 0", "rev 1", "rev 2", "rev 3",
275 "rev 4", "rev 5", "rev 6", "rev 7",
276 "rev 8", "rev 9", "rev 10", "rev 11",
277 "rev 12", "rev 13", "rev 14", "rev 15",
278 };
279
280 struct cpuidtab {
281 u_int32_t cpuid;
282 enum cpu_class cpu_class;
283 const char *cpu_classname;
284 const char * const *cpu_steppings;
285 };
286
287 const struct cpuidtab cpuids[] = {
288 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
289 generic_steppings },
290 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
291 generic_steppings },
292
293 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
294 generic_steppings },
295
296 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
297 generic_steppings },
298 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
299 generic_steppings },
300 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
301 generic_steppings },
302
303 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
304 generic_steppings },
305 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
306 generic_steppings },
307 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
308 generic_steppings },
309 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
310 generic_steppings },
311 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
312 generic_steppings },
313 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
314 generic_steppings },
315 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
316 generic_steppings },
317 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
318 generic_steppings },
319 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
320 generic_steppings },
321
322 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
323 generic_steppings },
324
325 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
326 generic_steppings },
327 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
328 generic_steppings },
329 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
330 generic_steppings },
331 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
332 generic_steppings },
333 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
334 generic_steppings },
335 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
336 generic_steppings },
337 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
338 generic_steppings },
339 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
340 generic_steppings },
341 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
342 generic_steppings },
343 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
344 generic_steppings },
345
346 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
347 generic_steppings },
348 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
349 generic_steppings },
350 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
351 generic_steppings },
352
353 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
354 sa110_steppings },
355 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
356 sa1100_steppings },
357 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
358 sa1110_steppings },
359
360 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
361 ixp12x0_steppings },
362
363 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
364 xscale_steppings },
365
366 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
367 i80321_steppings },
368 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
369 i80321_steppings },
370 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
371 i80321_steppings },
372 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
373 i80321_steppings },
374
375 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
376 i80219_steppings },
377 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
378 i80219_steppings },
379
380 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
381 pxa27x_steppings },
382 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
383 pxa2x0_steppings },
384 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
385 pxa2x0_steppings },
386 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
387 pxa2x0_steppings },
388 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
389 pxa2x0_steppings },
390 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
391 pxa255_steppings },
392 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
393 pxa2x0_steppings },
394
395 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
396 ixp425_steppings },
397 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
398 ixp425_steppings },
399 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
400 ixp425_steppings },
401
402 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
403 pN_steppings },
404 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
405 pN_steppings },
406 #if 0
407 /* The ARM1156T2-S only has a memory protection unit */
408 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
409 pN_steppings },
410 #endif
411 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
412 pN_steppings },
413
414 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
415 generic_steppings },
416
417 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
418 pN_steppings },
419 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
420 pN_steppings },
421 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
422 pN_steppings },
423 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
424 pN_steppings },
425 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
426 pN_steppings },
427 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
428 pN_steppings },
429 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
430 pN_steppings },
431 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
432 pN_steppings },
433 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
434 pN_steppings },
435
436 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
437 generic_steppings },
438
439 { 0, CPU_CLASS_NONE, NULL, NULL }
440 };
441
442 struct cpu_classtab {
443 const char *class_name;
444 const char *class_option;
445 };
446
447 const struct cpu_classtab cpu_classes[] = {
448 [CPU_CLASS_NONE] = { "unknown", NULL },
449 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
450 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
451 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
452 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
453 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
454 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
455 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
456 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
457 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
458 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
459 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
460 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
461 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
462 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
463 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
464 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
465 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
466 };
467
468 /*
469 * Report the type of the specified arm processor. This uses the generic and
470 * arm specific information in the CPU structure to identify the processor.
471 * The remaining fields in the CPU structure are filled in appropriately.
472 */
473
474 static const char * const wtnames[] = {
475 "write-through",
476 "write-back",
477 "write-back",
478 "**unknown 3**",
479 "**unknown 4**",
480 "write-back-locking", /* XXX XScale-specific? */
481 "write-back-locking-A",
482 "write-back-locking-B",
483 "**unknown 8**",
484 "**unknown 9**",
485 "**unknown 10**",
486 "**unknown 11**",
487 "**unknown 12**",
488 "**unknown 13**",
489 "write-back-locking-C",
490 "**unknown 15**",
491 };
492
493 void
494 identify_arm_cpu(device_t dv, struct cpu_info *ci)
495 {
496 u_int cpuid;
497 enum cpu_class cpu_class = CPU_CLASS_NONE;
498 int i;
499 const char *steppingstr;
500
501 cpuid = ci->ci_arm_cpuid;
502
503 if (cpuid == 0) {
504 aprint_error("Processor failed probe - no CPU ID\n");
505 return;
506 }
507
508 for (i = 0; cpuids[i].cpuid != 0; i++)
509 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
510 cpu_class = cpuids[i].cpu_class;
511 steppingstr = cpuids[i].cpu_steppings[cpuid &
512 CPU_ID_REVISION_MASK],
513 sprintf(cpu_model, "%s%s%s (%s core)",
514 cpuids[i].cpu_classname,
515 steppingstr[0] == '*' ? "" : " ",
516 &steppingstr[steppingstr[0] == '*'],
517 cpu_classes[cpu_class].class_name);
518 break;
519 }
520
521 if (cpuids[i].cpuid == 0)
522 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
523
524 aprint_naive(": %s\n", cpu_model);
525 aprint_normal(": %s\n", cpu_model);
526
527 aprint_normal("%s:", dv->dv_xname);
528
529 switch (cpu_class) {
530 case CPU_CLASS_ARM6:
531 case CPU_CLASS_ARM7:
532 case CPU_CLASS_ARM7TDMI:
533 case CPU_CLASS_ARM8:
534 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
535 aprint_normal(" IDC disabled");
536 else
537 aprint_normal(" IDC enabled");
538 break;
539 case CPU_CLASS_ARM9TDMI:
540 case CPU_CLASS_ARM9ES:
541 case CPU_CLASS_ARM9EJS:
542 case CPU_CLASS_ARM10E:
543 case CPU_CLASS_ARM10EJ:
544 case CPU_CLASS_SA1:
545 case CPU_CLASS_XSCALE:
546 case CPU_CLASS_ARM11J:
547 case CPU_CLASS_ARMV4:
548 case CPU_CLASS_CORTEX:
549 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
550 aprint_normal(" DC disabled");
551 else
552 aprint_normal(" DC enabled");
553 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
554 aprint_normal(" IC disabled");
555 else
556 aprint_normal(" IC enabled");
557 break;
558 default:
559 break;
560 }
561 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
562 aprint_normal(" WB disabled");
563 else
564 aprint_normal(" WB enabled");
565
566 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
567 aprint_normal(" LABT");
568 else
569 aprint_normal(" EABT");
570
571 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
572 aprint_normal(" branch prediction enabled");
573
574 aprint_normal("\n");
575
576 /* Print cache info. */
577 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
578 goto skip_pcache;
579
580 if (arm_pcache_unified) {
581 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
582 dv->dv_xname, arm_pdcache_size / 1024,
583 arm_pdcache_line_size, arm_pdcache_ways,
584 wtnames[arm_pcache_type]);
585 } else {
586 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
587 dv->dv_xname, arm_picache_size / 1024,
588 arm_picache_line_size, arm_picache_ways);
589 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
590 dv->dv_xname, arm_pdcache_size / 1024,
591 arm_pdcache_line_size, arm_pdcache_ways,
592 wtnames[arm_pcache_type]);
593 }
594
595 skip_pcache:
596
597 switch (cpu_class) {
598 #ifdef CPU_ARM2
599 case CPU_CLASS_ARM2:
600 #endif
601 #ifdef CPU_ARM250
602 case CPU_CLASS_ARM2AS:
603 #endif
604 #ifdef CPU_ARM3
605 case CPU_CLASS_ARM3:
606 #endif
607 #ifdef CPU_ARM6
608 case CPU_CLASS_ARM6:
609 #endif
610 #ifdef CPU_ARM7
611 case CPU_CLASS_ARM7:
612 #endif
613 #ifdef CPU_ARM7TDMI
614 case CPU_CLASS_ARM7TDMI:
615 #endif
616 #ifdef CPU_ARM8
617 case CPU_CLASS_ARM8:
618 #endif
619 #ifdef CPU_ARM9
620 case CPU_CLASS_ARM9TDMI:
621 #endif
622 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
623 case CPU_CLASS_ARM9ES:
624 case CPU_CLASS_ARM9EJS:
625 #endif
626 #ifdef CPU_ARM10
627 case CPU_CLASS_ARM10E:
628 case CPU_CLASS_ARM10EJ:
629 #endif
630 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
631 defined(CPU_SA1110) || defined(CPU_IXP12X0)
632 case CPU_CLASS_SA1:
633 #endif
634 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
635 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
636 case CPU_CLASS_XSCALE:
637 #endif
638 #if defined(CPU_ARM11)
639 case CPU_CLASS_ARM11J:
640 #endif
641 #if defined(CPU_CORTEX)
642 case CPU_CLASS_CORTEX:
643 #endif
644 #if defined(CPU_FA526)
645 case CPU_CLASS_ARMV4:
646 #endif
647 break;
648 default:
649 if (cpu_classes[cpu_class].class_option == NULL)
650 aprint_error("%s: %s does not fully support this CPU."
651 "\n", dv->dv_xname, ostype);
652 else {
653 aprint_error("%s: This kernel does not fully support "
654 "this CPU.\n", dv->dv_xname);
655 aprint_normal("%s: Recompile with \"options %s\" to "
656 "correct this.\n", dv->dv_xname,
657 cpu_classes[cpu_class].class_option);
658 }
659 break;
660 }
661
662 }
663
664 /* End of cpu.c */
665