cpu.c revision 1.86.2.2 1 /* $NetBSD: cpu.c,v 1.86.2.2 2013/02/25 00:28:24 tls Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.86.2.2 2013/02/25 00:28:24 tls Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57
58 #include <uvm/uvm_extern.h>
59
60 #include <arm/cpuconf.h>
61 #include <arm/undefined.h>
62
63 char cpu_model[256];
64 extern const char *cpu_arch;
65
66 #ifdef MULTIPROCESSOR
67 volatile u_int arm_cpu_hatched = 0;
68 u_int arm_cpu_max = 0;
69 uint32_t arm_cpu_mbox __cacheline_aligned = 0;
70 uint32_t arm_cpu_marker __cacheline_aligned = 1;
71 #endif
72
73 /* Prototypes */
74 void identify_arm_cpu(device_t dv, struct cpu_info *);
75 void identify_cortex_caches(device_t dv);
76 void identify_features(device_t dv);
77
78 /*
79 * Identify the master (boot) CPU
80 */
81
82 void
83 cpu_attach(device_t dv, cpuid_t id)
84 {
85 const char * const xname = device_xname(dv);
86 struct cpu_info *ci;
87
88 if (id == 0) {
89 ci = curcpu();
90
91 /* Get the CPU ID from coprocessor 15 */
92
93 ci->ci_arm_cpuid = cpu_id();
94 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
95 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
96 } else {
97 #ifdef MULTIPROCESSOR
98 KASSERT(cpu_info[id] == NULL);
99 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
100 KASSERT(ci != NULL);
101 ci->ci_cpl = IPL_HIGH;
102 ci->ci_cpuid = id;
103 ci->ci_data.cpu_core_id = id;
104 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
105 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
106 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
107 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
108 cpu_info[ci->ci_cpuid] = ci;
109 if ((arm_cpu_hatched & (1 << id)) == 0) {
110 ci->ci_dev = dv;
111 dv->dv_private = ci;
112 aprint_naive(": disabled\n");
113 aprint_normal(": disabled (unresponsive)\n");
114 return;
115 }
116 #else
117 aprint_naive(": disabled\n");
118 aprint_normal(": disabled (uniprocessor kernel)\n");
119 return;
120 #endif
121 }
122
123 ci->ci_dev = dv;
124 dv->dv_private = ci;
125
126 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
127 NULL, xname, "arm700swibug");
128
129 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
130 NULL, xname, "vector abort");
131 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
132 NULL, xname, "terminal abort");
133 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
134 NULL, xname, "external linefetch abort (S)");
135 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
136 NULL, xname, "external linefetch abort (P)");
137 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
138 NULL, xname, "external non-linefetch abort (S)");
139 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
140 NULL, xname, "external non-linefetch abort (P)");
141 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
142 NULL, xname, "external translation abort (L1)");
143 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
144 NULL, xname, "external translation abort (L2)");
145 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
146 NULL, xname, "alignment abort (0)");
147 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
148 NULL, xname, "alignment abort (1)");
149 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
150 NULL, xname, "translation abort (S)");
151 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
152 NULL, xname, "translation abort (P)");
153 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
154 NULL, xname, "domain abort (S)");
155 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
156 NULL, xname, "domain abort (P)");
157 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
158 NULL, xname, "permission abort (S)");
159 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
160 NULL, xname, "permission abort (P)");
161
162 #ifdef MULTIPROCESSOR
163 /*
164 * and we are done if this is a secondary processor.
165 */
166 if (!CPU_IS_PRIMARY(ci)) {
167 aprint_naive(": %s\n", cpu_model);
168 aprint_normal(": %s\n", cpu_model);
169 mi_cpu_attach(ci);
170 return;
171 }
172 #endif
173
174 identify_arm_cpu(dv, ci);
175
176 #ifdef CPU_STRONGARM
177 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
178 ci->ci_arm_cpurev < 3) {
179 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
180 }
181 #endif
182
183 #ifdef CPU_ARM8
184 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
185 int clock = arm8_clock_config(0, 0);
186 char *fclk;
187 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
188 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
189 aprint_normal("%s", (clock & 2) ? " sync" : "");
190 switch ((clock >> 2) & 3) {
191 case 0:
192 fclk = "bus clock";
193 break;
194 case 1:
195 fclk = "ref clock";
196 break;
197 case 3:
198 fclk = "pll";
199 break;
200 default:
201 fclk = "illegal";
202 break;
203 }
204 aprint_normal(" fclk source=%s\n", fclk);
205 }
206 #endif
207
208 vfp_attach(); /* XXX SMP */
209 }
210
211 enum cpu_class {
212 CPU_CLASS_NONE,
213 CPU_CLASS_ARM2,
214 CPU_CLASS_ARM2AS,
215 CPU_CLASS_ARM3,
216 CPU_CLASS_ARM6,
217 CPU_CLASS_ARM7,
218 CPU_CLASS_ARM7TDMI,
219 CPU_CLASS_ARM8,
220 CPU_CLASS_ARM9TDMI,
221 CPU_CLASS_ARM9ES,
222 CPU_CLASS_ARM9EJS,
223 CPU_CLASS_ARM10E,
224 CPU_CLASS_ARM10EJ,
225 CPU_CLASS_SA1,
226 CPU_CLASS_XSCALE,
227 CPU_CLASS_ARM11J,
228 CPU_CLASS_ARMV4,
229 CPU_CLASS_CORTEX,
230 };
231
232 static const char * const generic_steppings[16] = {
233 "rev 0", "rev 1", "rev 2", "rev 3",
234 "rev 4", "rev 5", "rev 6", "rev 7",
235 "rev 8", "rev 9", "rev 10", "rev 11",
236 "rev 12", "rev 13", "rev 14", "rev 15",
237 };
238
239 static const char * const pN_steppings[16] = {
240 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
241 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
242 };
243
244 static const char * const sa110_steppings[16] = {
245 "rev 0", "step J", "step K", "step S",
246 "step T", "rev 5", "rev 6", "rev 7",
247 "rev 8", "rev 9", "rev 10", "rev 11",
248 "rev 12", "rev 13", "rev 14", "rev 15",
249 };
250
251 static const char * const sa1100_steppings[16] = {
252 "rev 0", "step B", "step C", "rev 3",
253 "rev 4", "rev 5", "rev 6", "rev 7",
254 "step D", "step E", "rev 10" "step G",
255 "rev 12", "rev 13", "rev 14", "rev 15",
256 };
257
258 static const char * const sa1110_steppings[16] = {
259 "step A-0", "rev 1", "rev 2", "rev 3",
260 "step B-0", "step B-1", "step B-2", "step B-3",
261 "step B-4", "step B-5", "rev 10", "rev 11",
262 "rev 12", "rev 13", "rev 14", "rev 15",
263 };
264
265 static const char * const ixp12x0_steppings[16] = {
266 "(IXP1200 step A)", "(IXP1200 step B)",
267 "rev 2", "(IXP1200 step C)",
268 "(IXP1200 step D)", "(IXP1240/1250 step A)",
269 "(IXP1240 step B)", "(IXP1250 step B)",
270 "rev 8", "rev 9", "rev 10", "rev 11",
271 "rev 12", "rev 13", "rev 14", "rev 15",
272 };
273
274 static const char * const xscale_steppings[16] = {
275 "step A-0", "step A-1", "step B-0", "step C-0",
276 "step D-0", "rev 5", "rev 6", "rev 7",
277 "rev 8", "rev 9", "rev 10", "rev 11",
278 "rev 12", "rev 13", "rev 14", "rev 15",
279 };
280
281 static const char * const i80321_steppings[16] = {
282 "step A-0", "step B-0", "rev 2", "rev 3",
283 "rev 4", "rev 5", "rev 6", "rev 7",
284 "rev 8", "rev 9", "rev 10", "rev 11",
285 "rev 12", "rev 13", "rev 14", "rev 15",
286 };
287
288 static const char * const i80219_steppings[16] = {
289 "step A-0", "rev 1", "rev 2", "rev 3",
290 "rev 4", "rev 5", "rev 6", "rev 7",
291 "rev 8", "rev 9", "rev 10", "rev 11",
292 "rev 12", "rev 13", "rev 14", "rev 15",
293 };
294
295 /* Steppings for PXA2[15]0 */
296 static const char * const pxa2x0_steppings[16] = {
297 "step A-0", "step A-1", "step B-0", "step B-1",
298 "step B-2", "step C-0", "rev 6", "rev 7",
299 "rev 8", "rev 9", "rev 10", "rev 11",
300 "rev 12", "rev 13", "rev 14", "rev 15",
301 };
302
303 /* Steppings for PXA255/26x.
304 * rev 5: PXA26x B0, rev 6: PXA255 A0
305 */
306 static const char * const pxa255_steppings[16] = {
307 "rev 0", "rev 1", "rev 2", "step A-0",
308 "rev 4", "step B-0", "step A-0", "rev 7",
309 "rev 8", "rev 9", "rev 10", "rev 11",
310 "rev 12", "rev 13", "rev 14", "rev 15",
311 };
312
313 /* Stepping for PXA27x */
314 static const char * const pxa27x_steppings[16] = {
315 "step A-0", "step A-1", "step B-0", "step B-1",
316 "step C-0", "rev 5", "rev 6", "rev 7",
317 "rev 8", "rev 9", "rev 10", "rev 11",
318 "rev 12", "rev 13", "rev 14", "rev 15",
319 };
320
321 static const char * const ixp425_steppings[16] = {
322 "step 0", "rev 1", "rev 2", "rev 3",
323 "rev 4", "rev 5", "rev 6", "rev 7",
324 "rev 8", "rev 9", "rev 10", "rev 11",
325 "rev 12", "rev 13", "rev 14", "rev 15",
326 };
327
328 struct cpuidtab {
329 uint32_t cpuid;
330 enum cpu_class cpu_class;
331 const char *cpu_classname;
332 const char * const *cpu_steppings;
333 char cpu_arch[8];
334 };
335
336 const struct cpuidtab cpuids[] = {
337 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
338 generic_steppings, "2" },
339 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
340 generic_steppings, "2" },
341
342 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
343 generic_steppings, "2A" },
344
345 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
346 generic_steppings, "3" },
347 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
348 generic_steppings, "3" },
349 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
350 generic_steppings, "3" },
351
352 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
353 generic_steppings, "3" },
354 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
355 generic_steppings, "3" },
356 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
357 generic_steppings, "3" },
358 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
359 generic_steppings, "3" },
360 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
361 generic_steppings, "3" },
362
363 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
364 generic_steppings, "4" },
365
366 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
367 sa110_steppings, "4" },
368 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
369 sa1100_steppings, "4" },
370 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
371 sa1110_steppings, "4" },
372
373 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
374 generic_steppings, "4" },
375
376 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
377 ixp12x0_steppings, "4" },
378
379 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
380 generic_steppings, "4T" },
381 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
382 generic_steppings, "4T" },
383 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
384 generic_steppings, "4T" },
385 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
386 generic_steppings, "4T" },
387 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
388 generic_steppings, "4T" },
389 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
390 generic_steppings, "4T" },
391 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
392 generic_steppings, "4T" },
393 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
394 generic_steppings, "4T" },
395
396 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
397 generic_steppings, "5TE" },
398 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
399 generic_steppings, "5TE" },
400 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
401 generic_steppings, "5TE" },
402 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
403 generic_steppings, "5TE" },
404 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
405 generic_steppings, "5TE" },
406
407 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
408 xscale_steppings, "5TE" },
409
410 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
411 i80321_steppings, "5TE" },
412 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
413 i80321_steppings, "5TE" },
414 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
415 i80321_steppings, "5TE" },
416 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
417 i80321_steppings, "5TE" },
418
419 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
420 i80219_steppings, "5TE" },
421 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
422 i80219_steppings, "5TE" },
423
424 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
425 pxa27x_steppings, "5TE" },
426 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
427 pxa2x0_steppings, "5TE" },
428 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
429 pxa2x0_steppings, "5TE" },
430 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
431 pxa2x0_steppings, "5TE" },
432 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
433 pxa2x0_steppings, "5TE" },
434 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
435 pxa255_steppings, "5TE" },
436 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
437 pxa2x0_steppings, "5TE" },
438
439 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
440 ixp425_steppings, "5TE" },
441 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
442 ixp425_steppings, "5TE" },
443 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
444 ixp425_steppings, "5TE" },
445
446 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
447 generic_steppings, "5TE" },
448 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
449 generic_steppings, "5TE" },
450
451 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
452 generic_steppings, "5TEJ" },
453 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
454 generic_steppings, "5TEJ" },
455
456 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
457 pN_steppings, "6J" },
458 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
459 pN_steppings, "6J" },
460 #if 0
461 /* The ARM1156T2-S only has a memory protection unit */
462 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
463 pN_steppings, "6T2" },
464 #endif
465 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
466 pN_steppings, "6ZK" },
467
468 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
469 generic_steppings, "6K" },
470
471 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
472 pN_steppings, "7A" },
473 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
474 pN_steppings, "7A" },
475 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
476 pN_steppings, "7A" },
477 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
478 pN_steppings, "7A" },
479 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
480 pN_steppings, "7A" },
481 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
482 pN_steppings, "7A" },
483 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
484 pN_steppings, "7A" },
485 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
486 pN_steppings, "7A" },
487 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
488 pN_steppings, "7A" },
489
490 { 0, CPU_CLASS_NONE, NULL, NULL, "" }
491 };
492
493 struct cpu_classtab {
494 const char *class_name;
495 const char *class_option;
496 };
497
498 const struct cpu_classtab cpu_classes[] = {
499 [CPU_CLASS_NONE] = { "unknown", NULL },
500 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
501 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
502 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
503 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
504 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
505 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
506 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
507 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
508 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
509 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
510 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
511 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
512 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
513 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
514 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
515 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
516 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
517 };
518
519 /*
520 * Report the type of the specified arm processor. This uses the generic and
521 * arm specific information in the CPU structure to identify the processor.
522 * The remaining fields in the CPU structure are filled in appropriately.
523 */
524
525 static const char * const wtnames[] = {
526 "write-through",
527 "write-back",
528 "write-back",
529 "**unknown 3**",
530 "**unknown 4**",
531 "write-back-locking", /* XXX XScale-specific? */
532 "write-back-locking-A",
533 "write-back-locking-B",
534 "**unknown 8**",
535 "**unknown 9**",
536 "**unknown 10**",
537 "**unknown 11**",
538 "**unknown 12**",
539 "**unknown 13**",
540 "write-back-locking-C",
541 "write-back-locking-D",
542 };
543
544 static void
545 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
546 {
547 if (info->cache_unified) {
548 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Unified cache\n",
549 info->dcache_size / 1024,
550 info->dcache_line_size, info->dcache_ways,
551 wtnames[info->cache_type], level + 1);
552 } else {
553 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u Instruction cache\n",
554 info->icache_size / 1024,
555 info->icache_line_size, info->icache_ways, level + 1);
556 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Data cache\n",
557 info->dcache_size / 1024,
558 info->dcache_line_size, info->dcache_ways,
559 wtnames[info->cache_type], level + 1);
560 }
561 }
562
563 void
564 identify_arm_cpu(device_t dv, struct cpu_info *ci)
565 {
566 enum cpu_class cpu_class = CPU_CLASS_NONE;
567 const u_int cpuid = ci->ci_arm_cpuid;
568 const char * const xname = device_xname(dv);
569 const char *steppingstr;
570 int i;
571
572 if (cpuid == 0) {
573 aprint_error("Processor failed probe - no CPU ID\n");
574 return;
575 }
576
577 for (i = 0; cpuids[i].cpuid != 0; i++)
578 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
579 cpu_class = cpuids[i].cpu_class;
580 cpu_arch = cpuids[i].cpu_arch;
581 steppingstr = cpuids[i].cpu_steppings[cpuid &
582 CPU_ID_REVISION_MASK];
583 snprintf(cpu_model, sizeof(cpu_model),
584 "%s%s%s (%s V%s core)", cpuids[i].cpu_classname,
585 steppingstr[0] == '*' ? "" : " ",
586 &steppingstr[steppingstr[0] == '*'],
587 cpu_classes[cpu_class].class_name,
588 cpu_arch);
589 break;
590 }
591
592 if (cpuids[i].cpuid == 0)
593 snprintf(cpu_model, sizeof(cpu_model),
594 "unknown CPU (ID = 0x%x)", cpuid);
595
596 if (ci->ci_data.cpu_cc_freq != 0) {
597 char freqbuf[8];
598 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
599 "Hz", 1000);
600
601 aprint_naive(": %s %s\n", freqbuf, cpu_model);
602 aprint_normal(": %s %s\n", freqbuf, cpu_model);
603 } else {
604 aprint_naive(": %s\n", cpu_model);
605 aprint_normal(": %s\n", cpu_model);
606 }
607
608 aprint_normal("%s:", xname);
609
610 switch (cpu_class) {
611 case CPU_CLASS_ARM6:
612 case CPU_CLASS_ARM7:
613 case CPU_CLASS_ARM7TDMI:
614 case CPU_CLASS_ARM8:
615 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
616 aprint_normal(" IDC disabled");
617 else
618 aprint_normal(" IDC enabled");
619 break;
620 case CPU_CLASS_ARM9TDMI:
621 case CPU_CLASS_ARM9ES:
622 case CPU_CLASS_ARM9EJS:
623 case CPU_CLASS_ARM10E:
624 case CPU_CLASS_ARM10EJ:
625 case CPU_CLASS_SA1:
626 case CPU_CLASS_XSCALE:
627 case CPU_CLASS_ARM11J:
628 case CPU_CLASS_ARMV4:
629 case CPU_CLASS_CORTEX:
630 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
631 aprint_normal(" DC disabled");
632 else
633 aprint_normal(" DC enabled");
634 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
635 aprint_normal(" IC disabled");
636 else
637 aprint_normal(" IC enabled");
638 break;
639 default:
640 break;
641 }
642 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
643 aprint_normal(" WB disabled");
644 else
645 aprint_normal(" WB enabled");
646
647 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
648 aprint_normal(" LABT");
649 else
650 aprint_normal(" EABT");
651
652 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
653 aprint_normal(" branch prediction enabled");
654
655 aprint_normal("\n");
656
657 if (CPU_ID_CORTEX_P(cpuid) || CPU_ID_ARM11_P(cpuid)) {
658 identify_features(dv);
659 }
660
661 /* Print cache info. */
662 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
663 print_cache_info(dv, &arm_pcache, 0);
664 }
665 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
666 print_cache_info(dv, &arm_scache, 1);
667 }
668
669
670 switch (cpu_class) {
671 #ifdef CPU_ARM2
672 case CPU_CLASS_ARM2:
673 #endif
674 #ifdef CPU_ARM250
675 case CPU_CLASS_ARM2AS:
676 #endif
677 #ifdef CPU_ARM3
678 case CPU_CLASS_ARM3:
679 #endif
680 #ifdef CPU_ARM6
681 case CPU_CLASS_ARM6:
682 #endif
683 #ifdef CPU_ARM7
684 case CPU_CLASS_ARM7:
685 #endif
686 #ifdef CPU_ARM7TDMI
687 case CPU_CLASS_ARM7TDMI:
688 #endif
689 #ifdef CPU_ARM8
690 case CPU_CLASS_ARM8:
691 #endif
692 #ifdef CPU_ARM9
693 case CPU_CLASS_ARM9TDMI:
694 #endif
695 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
696 case CPU_CLASS_ARM9ES:
697 case CPU_CLASS_ARM9EJS:
698 #endif
699 #ifdef CPU_ARM10
700 case CPU_CLASS_ARM10E:
701 case CPU_CLASS_ARM10EJ:
702 #endif
703 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
704 defined(CPU_SA1110) || defined(CPU_IXP12X0)
705 case CPU_CLASS_SA1:
706 #endif
707 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
708 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
709 case CPU_CLASS_XSCALE:
710 #endif
711 #if defined(CPU_ARM11)
712 case CPU_CLASS_ARM11J:
713 #endif
714 #if defined(CPU_CORTEX)
715 case CPU_CLASS_CORTEX:
716 #endif
717 #if defined(CPU_FA526)
718 case CPU_CLASS_ARMV4:
719 #endif
720 break;
721 default:
722 if (cpu_classes[cpu_class].class_option == NULL) {
723 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
724 ostype);
725 } else {
726 aprint_error_dev(dv, "This kernel does not fully support "
727 "this CPU.\n");
728 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
729 "correct this.\n", cpu_classes[cpu_class].class_option);
730 }
731 break;
732 }
733 }
734
735 extern int cpu_instruction_set_attributes[6];
736 extern int cpu_memory_model_features[4];
737 extern int cpu_processor_features[2];
738 extern int cpu_simd_present;
739 extern int cpu_simdex_present;
740
741 void
742 identify_features(device_t dv)
743 {
744 cpu_instruction_set_attributes[0] = armreg_isar0_read();
745 cpu_instruction_set_attributes[1] = armreg_isar1_read();
746 cpu_instruction_set_attributes[2] = armreg_isar2_read();
747 cpu_instruction_set_attributes[3] = armreg_isar3_read();
748 cpu_instruction_set_attributes[4] = armreg_isar4_read();
749 cpu_instruction_set_attributes[5] = armreg_isar5_read();
750
751 cpu_simd_present =
752 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
753 cpu_simdex_present = cpu_simd_present
754 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
755
756 cpu_memory_model_features[0] = armreg_mmfr0_read();
757 cpu_memory_model_features[1] = armreg_mmfr1_read();
758 cpu_memory_model_features[2] = armreg_mmfr2_read();
759 cpu_memory_model_features[3] = armreg_mmfr3_read();
760
761 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
762 /*
763 * Updates to the translation tables do not require a clean
764 * to the point of unification to ensure visibility by
765 * subsequent translation table walks.
766 */
767 pmap_needs_pte_sync = 0;
768 }
769
770 cpu_processor_features[0] = armreg_pfr0_read();
771 cpu_processor_features[1] = armreg_pfr1_read();
772
773 aprint_verbose_dev(dv,
774 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
775 cpu_instruction_set_attributes[0],
776 cpu_instruction_set_attributes[1],
777 cpu_instruction_set_attributes[2],
778 cpu_instruction_set_attributes[3],
779 cpu_instruction_set_attributes[4],
780 cpu_instruction_set_attributes[5]);
781 aprint_verbose_dev(dv,
782 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
783 cpu_memory_model_features[0], cpu_memory_model_features[1],
784 cpu_memory_model_features[2], cpu_memory_model_features[3]);
785 aprint_verbose_dev(dv,
786 "pfr: [0]=%#x [1]=%#x\n",
787 cpu_processor_features[0], cpu_processor_features[1]);
788 }
789