cpu.c revision 1.9.2.4 1 /* $NetBSD: cpu.c,v 1.9.2.4 2002/04/01 07:39:07 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.9.2.4 2002/04/01 07:39:07 nathanw Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <uvm/uvm_extern.h>
56 #include <machine/conf.h>
57 #include <machine/cpu.h>
58 #include <arm/undefined.h>
59
60 #ifdef ARMFPE
61 #include <machine/bootconfig.h> /* For boot args */
62 #include <arm/fpe-arm/armfpe.h>
63 #endif
64
65 char cpu_model[256];
66
67 /* Prototypes */
68 void identify_arm_cpu(struct device *dv, struct cpu_info *);
69
70 /*
71 * Identify the master (boot) CPU
72 */
73
74 void
75 cpu_attach(struct device *dv)
76 {
77 int usearmfpe;
78
79 usearmfpe = 1; /* when compiled in, its enabled by default */
80
81 curcpu()->ci_dev = dv;
82
83 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
84 NULL, dv->dv_xname, "arm700swibug");
85
86 /* Get the cpu ID from coprocessor 15 */
87
88 curcpu()->ci_cpuid = cpu_id();
89 curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
90 curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
91
92 identify_arm_cpu(dv, curcpu());
93
94 if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
95 printf("%s: SA-110 with bugged STM^ instruction\n",
96 dv->dv_xname);
97 }
98
99 #ifdef CPU_ARM8
100 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
101 int clock = arm8_clock_config(0, 0);
102 char *fclk;
103 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
104 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
105 printf("%s", (clock & 2) ? " sync" : "");
106 switch ((clock >> 2) & 3) {
107 case 0:
108 fclk = "bus clock";
109 break;
110 case 1:
111 fclk = "ref clock";
112 break;
113 case 3:
114 fclk = "pll";
115 break;
116 default:
117 fclk = "illegal";
118 break;
119 }
120 printf(" fclk source=%s\n", fclk);
121 }
122 #endif
123
124 #ifdef ARMFPE
125 /*
126 * Ok now we test for an FPA
127 * At this point no floating point emulator has been installed.
128 * This means any FP instruction will cause undefined exception.
129 * We install a temporay coproc 1 handler which will modify
130 * undefined_test if it is called.
131 * We then try to read the FP status register. If undefined_test
132 * has been decremented then the instruction was not handled by
133 * an FPA so we know the FPA is missing. If undefined_test is
134 * still 1 then we know the instruction was handled by an FPA.
135 * We then remove our test handler and look at the
136 * FP status register for identification.
137 */
138
139 /*
140 * Ok if ARMFPE is defined and the boot options request the
141 * ARM FPE then it will be installed as the FPE.
142 * This is just while I work on integrating the new FPE.
143 * It means the new FPE gets installed if compiled int (ARMFPE
144 * defined) and also gives me a on/off option when I boot in
145 * case the new FPE is causing panics.
146 */
147
148
149 if (boot_args)
150 get_bootconf_option(boot_args, "armfpe",
151 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
152 if (usearmfpe)
153 initialise_arm_fpe();
154 #endif
155 }
156
157 enum cpu_class {
158 CPU_CLASS_NONE,
159 CPU_CLASS_ARM2,
160 CPU_CLASS_ARM2AS,
161 CPU_CLASS_ARM3,
162 CPU_CLASS_ARM6,
163 CPU_CLASS_ARM7,
164 CPU_CLASS_ARM7TDMI,
165 CPU_CLASS_ARM8,
166 CPU_CLASS_ARM9TDMI,
167 CPU_CLASS_ARM9ES,
168 CPU_CLASS_SA1,
169 CPU_CLASS_XSCALE,
170 CPU_CLASS_ARM10E
171 };
172
173 static const char *generic_steppings[16] = {
174 "rev 0", "rev 1", "rev 2", "rev 3",
175 "rev 4", "rev 5", "rev 6", "rev 7",
176 "rev 8", "rev 9", "rev 10", "rev 11",
177 "rev 12", "rev 13", "rev 14", "rev 15",
178 };
179
180 static const char *sa110_steppings[16] = {
181 "rev 0", "step J", "step K", "step S",
182 "step T", "rev 5", "rev 6", "rev 7",
183 "rev 8", "rev 9", "rev 10", "rev 11",
184 "rev 12", "rev 13", "rev 14", "rev 15",
185 };
186
187 static const char *sa1100_steppings[16] = {
188 "rev 0", "step B", "step C", "rev 3",
189 "rev 4", "rev 5", "rev 6", "rev 7",
190 "step D", "step E", "rev 10" "step G",
191 "rev 12", "rev 13", "rev 14", "rev 15",
192 };
193
194 static const char *sa1110_steppings[16] = {
195 "step A-0", "rev 1", "rev 2", "rev 3",
196 "step B-0", "step B-1", "step B-2", "step B-3",
197 "step B-4", "step B-5", "rev 10", "rev 11",
198 "rev 12", "rev 13", "rev 14", "rev 15",
199 };
200
201 static const char *xscale_steppings[16] = {
202 "step A-0", "step A-1", "step B-0", "step C-0",
203 "rev 4", "rev 5", "rev 6", "rev 7",
204 "rev 8", "rev 9", "rev 10", "rev 11",
205 "rev 12", "rev 13", "rev 14", "rev 15",
206 };
207
208 struct cpuidtab {
209 u_int32_t cpuid;
210 enum cpu_class cpu_class;
211 const char *cpu_name;
212 const char **cpu_steppings;
213 };
214
215 const struct cpuidtab cpuids[] = {
216 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
217 generic_steppings },
218 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
219 generic_steppings },
220
221 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
222 generic_steppings },
223
224 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
225 generic_steppings },
226 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
227 generic_steppings },
228 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
229 generic_steppings },
230
231 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
232 generic_steppings },
233 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
234 generic_steppings },
235 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
236 generic_steppings },
237 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
238 generic_steppings },
239 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
240 generic_steppings },
241 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
242 generic_steppings },
243 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
244 generic_steppings },
245 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
246 generic_steppings },
247 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
248 generic_steppings },
249
250 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
251 generic_steppings },
252
253 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
254 generic_steppings },
255 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
256 generic_steppings },
257 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
258 generic_steppings },
259 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
260 generic_steppings },
261 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
262 generic_steppings },
263 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
264 generic_steppings },
265
266 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
267 sa110_steppings },
268 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
269 sa1100_steppings },
270 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
271 sa1110_steppings },
272
273 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
274 xscale_steppings },
275
276 { CPU_ID_80321, CPU_CLASS_XSCALE, "i80321",
277 xscale_steppings },
278
279 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
280 generic_steppings },
281
282 { 0, CPU_CLASS_NONE, NULL, NULL }
283 };
284
285 struct cpu_classtab {
286 const char *class_name;
287 const char *class_option;
288 };
289
290 const struct cpu_classtab cpu_classes[] = {
291 { "unknown", NULL }, /* CPU_CLASS_NONE */
292 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
293 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
294 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
295 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
296 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
297 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
298 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
299 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
300 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
301 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
302 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
303 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
304 };
305
306 /*
307 * Report the type of the specifed arm processor. This uses the generic and
308 * arm specific information in the cpu structure to identify the processor.
309 * The remaining fields in the cpu structure are filled in appropriately.
310 */
311
312 static const char *wtnames[] = {
313 "write-through",
314 "write-back",
315 "write-back",
316 "**unknown 3**",
317 "**unknown 4**",
318 "write-back-locking", /* XXX XScale-specific? */
319 "write-back-locking-A",
320 "write-back-locking-B",
321 "**unknown 8**",
322 "**unknown 9**",
323 "**unknown 10**",
324 "**unknown 11**",
325 "**unknown 12**",
326 "**unknown 13**",
327 "**unknown 14**",
328 "**unknown 15**",
329 };
330
331 void
332 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
333 {
334 u_int cpuid;
335 enum cpu_class cpu_class;
336 int i;
337
338 cpuid = ci->ci_cpuid;
339
340 if (cpuid == 0) {
341 printf("Processor failed probe - no CPU ID\n");
342 return;
343 }
344
345 for (i = 0; cpuids[i].cpuid != 0; i++)
346 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
347 cpu_class = cpuids[i].cpu_class;
348 sprintf(cpu_model, "%s %s (%s core)",
349 cpuids[i].cpu_name,
350 cpuids[i].cpu_steppings[cpuid &
351 CPU_ID_REVISION_MASK],
352 cpu_classes[cpu_class].class_name);
353 break;
354 }
355
356 if (cpuids[i].cpuid == 0)
357 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
358
359 printf(": %s\n", cpu_model);
360
361 printf("%s:", dv->dv_xname);
362
363 switch (cpu_class) {
364 case CPU_CLASS_ARM6:
365 case CPU_CLASS_ARM7:
366 case CPU_CLASS_ARM7TDMI:
367 case CPU_CLASS_ARM8:
368 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
369 printf(" IDC disabled");
370 else
371 printf(" IDC enabled");
372 break;
373 case CPU_CLASS_ARM9TDMI:
374 case CPU_CLASS_SA1:
375 case CPU_CLASS_XSCALE:
376 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
377 printf(" DC disabled");
378 else
379 printf(" DC enabled");
380 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
381 printf(" IC disabled");
382 else
383 printf(" IC enabled");
384 break;
385 default:
386 break;
387 }
388 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
389 printf(" WB disabled");
390 else
391 printf(" WB enabled");
392
393 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
394 printf(" LABT");
395 else
396 printf(" EABT");
397
398 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
399 printf(" branch prediction enabled");
400
401 printf("\n");
402
403 /* Print cache info. */
404 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
405 goto skip_pcache;
406
407 if (arm_pcache_unified) {
408 printf("%s: %dKB/%dB %d-way %s unified cache\n",
409 dv->dv_xname, arm_pdcache_size / 1024,
410 arm_pdcache_line_size, arm_pdcache_ways,
411 wtnames[arm_pcache_type]);
412 } else {
413 printf("%s: %dKB/%dB %d-way Instruction cache\n",
414 dv->dv_xname, arm_picache_size / 1024,
415 arm_picache_line_size, arm_picache_ways);
416 printf("%s: %dKB/%dB %d-way %s Data cache\n",
417 dv->dv_xname, arm_pdcache_size / 1024,
418 arm_pdcache_line_size, arm_pdcache_ways,
419 wtnames[arm_pcache_type]);
420 }
421
422 skip_pcache:
423
424 switch (cpu_class) {
425 #ifdef CPU_ARM2
426 case CPU_CLASS_ARM2:
427 #endif
428 #ifdef CPU_ARM250
429 case CPU_CLASS_ARM2AS:
430 #endif
431 #ifdef CPU_ARM3
432 case CPU_CLASS_ARM3:
433 #endif
434 #ifdef CPU_ARM6
435 case CPU_CLASS_ARM6:
436 #endif
437 #ifdef CPU_ARM7
438 case CPU_CLASS_ARM7:
439 #endif
440 #ifdef CPU_ARM7TDMI
441 case CPU_CLASS_ARM7TDMI:
442 #endif
443 #ifdef CPU_ARM8
444 case CPU_CLASS_ARM8:
445 #endif
446 #ifdef CPU_ARM9
447 case CPU_CLASS_ARM9TDMI:
448 #endif
449 #ifdef CPU_SA110
450 case CPU_CLASS_SA1:
451 #endif
452 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321)
453 case CPU_CLASS_XSCALE:
454 #endif
455 break;
456 default:
457 if (cpu_classes[cpu_class].class_option != NULL)
458 printf("%s: %s does not fully support this CPU."
459 "\n", dv->dv_xname, ostype);
460 else {
461 printf("%s: This kernel does not fully support "
462 "this CPU.\n", dv->dv_xname);
463 printf("%s: Recompile with \"options %s\" to "
464 "correct this.\n", dv->dv_xname,
465 cpu_classes[cpu_class].class_option);
466 }
467 break;
468 }
469
470 }
471
472 /* End of cpu.c */
473