cpu.c revision 1.90 1 /* $NetBSD: cpu.c,v 1.90 2012/11/30 08:15:45 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.90 2012/11/30 08:15:45 msaitoh Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57
58 #include <uvm/uvm_extern.h>
59
60 #include <arm/cpuconf.h>
61 #include <arm/undefined.h>
62
63 #ifdef ARMFPE
64 #include <machine/bootconfig.h> /* For boot args */
65 #include <arm/fpe-arm/armfpe.h>
66 #endif
67
68 char cpu_model[256];
69
70 #ifdef MULTIPROCESSOR
71 volatile u_int arm_cpu_hatched = 0;
72 u_int arm_cpu_max = 0;
73 uint32_t arm_cpu_mbox __cacheline_aligned = 0;
74 uint32_t arm_cpu_marker __cacheline_aligned = 1;
75 #endif
76
77 /* Prototypes */
78 void identify_arm_cpu(device_t dv, struct cpu_info *);
79 void identify_cortex_caches(device_t dv);
80 void identify_features(device_t dv);
81
82 /*
83 * Identify the master (boot) CPU
84 */
85
86 void
87 cpu_attach(device_t dv, cpuid_t id)
88 {
89 const char * const xname = device_xname(dv);
90 struct cpu_info *ci;
91
92 if (id == 0) {
93 ci = curcpu();
94
95 /* Get the CPU ID from coprocessor 15 */
96
97 ci->ci_arm_cpuid = cpu_id();
98 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
99 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
100 } else {
101 #ifdef MULTIPROCESSOR
102 KASSERT(cpu_info[id] == NULL);
103 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
104 KASSERT(ci != NULL);
105 ci->ci_cpl = IPL_HIGH;
106 ci->ci_cpuid = id;
107 ci->ci_data.cpu_core_id = id;
108 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
109 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
110 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
111 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
112 cpu_info[ci->ci_cpuid] = ci;
113 if ((arm_cpu_hatched & (1 << id)) == 0) {
114 ci->ci_dev = dv;
115 dv->dv_private = ci;
116 aprint_naive(": disabled\n");
117 aprint_normal(": disabled (unresponsive)\n");
118 return;
119 }
120 #else
121 aprint_naive(": disabled\n");
122 aprint_normal(": disabled (uniprocessor kernel)\n");
123 return;
124 #endif
125 }
126
127 ci->ci_dev = dv;
128 dv->dv_private = ci;
129
130 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
131 NULL, xname, "arm700swibug");
132
133 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
134 NULL, xname, "vector abort");
135 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
136 NULL, xname, "terminal abort");
137 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
138 NULL, xname, "external linefetch abort (S)");
139 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
140 NULL, xname, "external linefetch abort (P)");
141 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
142 NULL, xname, "external non-linefetch abort (S)");
143 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
144 NULL, xname, "external non-linefetch abort (P)");
145 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
146 NULL, xname, "external translation abort (L1)");
147 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
148 NULL, xname, "external translation abort (L2)");
149 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
150 NULL, xname, "alignment abort (0)");
151 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
152 NULL, xname, "alignment abort (1)");
153 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
154 NULL, xname, "translation abort (S)");
155 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
156 NULL, xname, "translation abort (P)");
157 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
158 NULL, xname, "domain abort (S)");
159 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
160 NULL, xname, "domain abort (P)");
161 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
162 NULL, xname, "permission abort (S)");
163 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
164 NULL, xname, "permission abort (P)");
165
166 #ifdef MULTIPROCESSOR
167 /*
168 * and we are done if this is a secondary processor.
169 */
170 if (!CPU_IS_PRIMARY(ci)) {
171 aprint_naive(": %s\n", cpu_model);
172 aprint_normal(": %s\n", cpu_model);
173 mi_cpu_attach(ci);
174 return;
175 }
176 #endif
177
178 identify_arm_cpu(dv, ci);
179
180 #ifdef CPU_STRONGARM
181 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
182 ci->ci_arm_cpurev < 3) {
183 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
184 }
185 #endif
186
187 #ifdef CPU_ARM8
188 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
189 int clock = arm8_clock_config(0, 0);
190 char *fclk;
191 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
192 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
193 aprint_normal("%s", (clock & 2) ? " sync" : "");
194 switch ((clock >> 2) & 3) {
195 case 0:
196 fclk = "bus clock";
197 break;
198 case 1:
199 fclk = "ref clock";
200 break;
201 case 3:
202 fclk = "pll";
203 break;
204 default:
205 fclk = "illegal";
206 break;
207 }
208 aprint_normal(" fclk source=%s\n", fclk);
209 }
210 #endif
211
212 #ifdef ARMFPE
213 /*
214 * Ok now we test for an FPA
215 * At this point no floating point emulator has been installed.
216 * This means any FP instruction will cause undefined exception.
217 * We install a temporay coproc 1 handler which will modify
218 * undefined_test if it is called.
219 * We then try to read the FP status register. If undefined_test
220 * has been decremented then the instruction was not handled by
221 * an FPA so we know the FPA is missing. If undefined_test is
222 * still 1 then we know the instruction was handled by an FPA.
223 * We then remove our test handler and look at the
224 * FP status register for identification.
225 */
226
227 /*
228 * Ok if ARMFPE is defined and the boot options request the
229 * ARM FPE then it will be installed as the FPE.
230 * This is just while I work on integrating the new FPE.
231 * It means the new FPE gets installed if compiled int (ARMFPE
232 * defined) and also gives me a on/off option when I boot in
233 * case the new FPE is causing panics.
234 */
235
236
237 int usearmfpe = 1;
238 if (boot_args)
239 get_bootconf_option(boot_args, "armfpe",
240 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
241 if (usearmfpe)
242 initialise_arm_fpe();
243 #endif
244
245 vfp_attach(); /* XXX SMP */
246 }
247
248 enum cpu_class {
249 CPU_CLASS_NONE,
250 CPU_CLASS_ARM2,
251 CPU_CLASS_ARM2AS,
252 CPU_CLASS_ARM3,
253 CPU_CLASS_ARM6,
254 CPU_CLASS_ARM7,
255 CPU_CLASS_ARM7TDMI,
256 CPU_CLASS_ARM8,
257 CPU_CLASS_ARM9TDMI,
258 CPU_CLASS_ARM9ES,
259 CPU_CLASS_ARM9EJS,
260 CPU_CLASS_ARM10E,
261 CPU_CLASS_ARM10EJ,
262 CPU_CLASS_SA1,
263 CPU_CLASS_XSCALE,
264 CPU_CLASS_ARM11J,
265 CPU_CLASS_ARMV4,
266 CPU_CLASS_CORTEX,
267 };
268
269 static const char * const generic_steppings[16] = {
270 "rev 0", "rev 1", "rev 2", "rev 3",
271 "rev 4", "rev 5", "rev 6", "rev 7",
272 "rev 8", "rev 9", "rev 10", "rev 11",
273 "rev 12", "rev 13", "rev 14", "rev 15",
274 };
275
276 static const char * const pN_steppings[16] = {
277 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
278 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
279 };
280
281 static const char * const sa110_steppings[16] = {
282 "rev 0", "step J", "step K", "step S",
283 "step T", "rev 5", "rev 6", "rev 7",
284 "rev 8", "rev 9", "rev 10", "rev 11",
285 "rev 12", "rev 13", "rev 14", "rev 15",
286 };
287
288 static const char * const sa1100_steppings[16] = {
289 "rev 0", "step B", "step C", "rev 3",
290 "rev 4", "rev 5", "rev 6", "rev 7",
291 "step D", "step E", "rev 10" "step G",
292 "rev 12", "rev 13", "rev 14", "rev 15",
293 };
294
295 static const char * const sa1110_steppings[16] = {
296 "step A-0", "rev 1", "rev 2", "rev 3",
297 "step B-0", "step B-1", "step B-2", "step B-3",
298 "step B-4", "step B-5", "rev 10", "rev 11",
299 "rev 12", "rev 13", "rev 14", "rev 15",
300 };
301
302 static const char * const ixp12x0_steppings[16] = {
303 "(IXP1200 step A)", "(IXP1200 step B)",
304 "rev 2", "(IXP1200 step C)",
305 "(IXP1200 step D)", "(IXP1240/1250 step A)",
306 "(IXP1240 step B)", "(IXP1250 step B)",
307 "rev 8", "rev 9", "rev 10", "rev 11",
308 "rev 12", "rev 13", "rev 14", "rev 15",
309 };
310
311 static const char * const xscale_steppings[16] = {
312 "step A-0", "step A-1", "step B-0", "step C-0",
313 "step D-0", "rev 5", "rev 6", "rev 7",
314 "rev 8", "rev 9", "rev 10", "rev 11",
315 "rev 12", "rev 13", "rev 14", "rev 15",
316 };
317
318 static const char * const i80321_steppings[16] = {
319 "step A-0", "step B-0", "rev 2", "rev 3",
320 "rev 4", "rev 5", "rev 6", "rev 7",
321 "rev 8", "rev 9", "rev 10", "rev 11",
322 "rev 12", "rev 13", "rev 14", "rev 15",
323 };
324
325 static const char * const i80219_steppings[16] = {
326 "step A-0", "rev 1", "rev 2", "rev 3",
327 "rev 4", "rev 5", "rev 6", "rev 7",
328 "rev 8", "rev 9", "rev 10", "rev 11",
329 "rev 12", "rev 13", "rev 14", "rev 15",
330 };
331
332 /* Steppings for PXA2[15]0 */
333 static const char * const pxa2x0_steppings[16] = {
334 "step A-0", "step A-1", "step B-0", "step B-1",
335 "step B-2", "step C-0", "rev 6", "rev 7",
336 "rev 8", "rev 9", "rev 10", "rev 11",
337 "rev 12", "rev 13", "rev 14", "rev 15",
338 };
339
340 /* Steppings for PXA255/26x.
341 * rev 5: PXA26x B0, rev 6: PXA255 A0
342 */
343 static const char * const pxa255_steppings[16] = {
344 "rev 0", "rev 1", "rev 2", "step A-0",
345 "rev 4", "step B-0", "step A-0", "rev 7",
346 "rev 8", "rev 9", "rev 10", "rev 11",
347 "rev 12", "rev 13", "rev 14", "rev 15",
348 };
349
350 /* Stepping for PXA27x */
351 static const char * const pxa27x_steppings[16] = {
352 "step A-0", "step A-1", "step B-0", "step B-1",
353 "step C-0", "rev 5", "rev 6", "rev 7",
354 "rev 8", "rev 9", "rev 10", "rev 11",
355 "rev 12", "rev 13", "rev 14", "rev 15",
356 };
357
358 static const char * const ixp425_steppings[16] = {
359 "step 0", "rev 1", "rev 2", "rev 3",
360 "rev 4", "rev 5", "rev 6", "rev 7",
361 "rev 8", "rev 9", "rev 10", "rev 11",
362 "rev 12", "rev 13", "rev 14", "rev 15",
363 };
364
365 struct cpuidtab {
366 uint32_t cpuid;
367 enum cpu_class cpu_class;
368 const char *cpu_classname;
369 const char * const *cpu_steppings;
370 };
371
372 const struct cpuidtab cpuids[] = {
373 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
374 generic_steppings },
375 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
376 generic_steppings },
377
378 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
379 generic_steppings },
380
381 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
382 generic_steppings },
383 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
384 generic_steppings },
385 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
386 generic_steppings },
387
388 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
389 generic_steppings },
390 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
391 generic_steppings },
392 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
393 generic_steppings },
394 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
395 generic_steppings },
396 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
397 generic_steppings },
398 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
399 generic_steppings },
400 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
401 generic_steppings },
402 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
403 generic_steppings },
404 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
405 generic_steppings },
406
407 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
408 generic_steppings },
409
410 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
411 generic_steppings },
412 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
413 generic_steppings },
414 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
415 generic_steppings },
416 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
417 generic_steppings },
418 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
419 generic_steppings },
420 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
421 generic_steppings },
422 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
423 generic_steppings },
424 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
425 generic_steppings },
426 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
427 generic_steppings },
428 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
429 generic_steppings },
430
431 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
432 generic_steppings },
433 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
434 generic_steppings },
435 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
436 generic_steppings },
437
438 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
439 sa110_steppings },
440 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
441 sa1100_steppings },
442 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
443 sa1110_steppings },
444
445 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
446 ixp12x0_steppings },
447
448 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
449 xscale_steppings },
450
451 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
452 i80321_steppings },
453 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
454 i80321_steppings },
455 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
456 i80321_steppings },
457 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
458 i80321_steppings },
459
460 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
461 i80219_steppings },
462 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
463 i80219_steppings },
464
465 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
466 pxa27x_steppings },
467 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
468 pxa2x0_steppings },
469 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
470 pxa2x0_steppings },
471 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
472 pxa2x0_steppings },
473 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
474 pxa2x0_steppings },
475 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
476 pxa255_steppings },
477 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
478 pxa2x0_steppings },
479
480 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
481 ixp425_steppings },
482 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
483 ixp425_steppings },
484 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
485 ixp425_steppings },
486
487 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
488 pN_steppings },
489 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
490 pN_steppings },
491 #if 0
492 /* The ARM1156T2-S only has a memory protection unit */
493 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
494 pN_steppings },
495 #endif
496 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
497 pN_steppings },
498
499 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
500 generic_steppings },
501
502 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
503 pN_steppings },
504 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
505 pN_steppings },
506 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
507 pN_steppings },
508 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
509 pN_steppings },
510 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
511 pN_steppings },
512 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
513 pN_steppings },
514 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
515 pN_steppings },
516 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
517 pN_steppings },
518 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
519 pN_steppings },
520
521 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
522 generic_steppings },
523
524 { 0, CPU_CLASS_NONE, NULL, NULL }
525 };
526
527 struct cpu_classtab {
528 const char *class_name;
529 const char *class_option;
530 };
531
532 const struct cpu_classtab cpu_classes[] = {
533 [CPU_CLASS_NONE] = { "unknown", NULL },
534 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
535 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
536 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
537 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
538 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
539 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
540 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
541 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
542 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
543 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
544 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
545 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
546 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
547 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
548 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
549 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
550 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
551 };
552
553 /*
554 * Report the type of the specified arm processor. This uses the generic and
555 * arm specific information in the CPU structure to identify the processor.
556 * The remaining fields in the CPU structure are filled in appropriately.
557 */
558
559 static const char * const wtnames[] = {
560 "write-through",
561 "write-back",
562 "write-back",
563 "**unknown 3**",
564 "**unknown 4**",
565 "write-back-locking", /* XXX XScale-specific? */
566 "write-back-locking-A",
567 "write-back-locking-B",
568 "**unknown 8**",
569 "**unknown 9**",
570 "**unknown 10**",
571 "**unknown 11**",
572 "**unknown 12**",
573 "**unknown 13**",
574 "write-back-locking-C",
575 "write-back-locking-D",
576 };
577
578 static void
579 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
580 {
581 if (info->cache_unified) {
582 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Unified cache\n",
583 info->dcache_size / 1024,
584 info->dcache_line_size, info->dcache_ways,
585 wtnames[info->cache_type], level + 1);
586 } else {
587 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u Instruction cache\n",
588 info->icache_size / 1024,
589 info->icache_line_size, info->icache_ways, level + 1);
590 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Data cache\n",
591 info->dcache_size / 1024,
592 info->dcache_line_size, info->dcache_ways,
593 wtnames[info->cache_type], level + 1);
594 }
595 }
596
597 void
598 identify_arm_cpu(device_t dv, struct cpu_info *ci)
599 {
600 enum cpu_class cpu_class = CPU_CLASS_NONE;
601 const u_int cpuid = ci->ci_arm_cpuid;
602 const char * const xname = device_xname(dv);
603 const char *steppingstr;
604 int i;
605
606 if (cpuid == 0) {
607 aprint_error("Processor failed probe - no CPU ID\n");
608 return;
609 }
610
611 for (i = 0; cpuids[i].cpuid != 0; i++)
612 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
613 cpu_class = cpuids[i].cpu_class;
614 steppingstr = cpuids[i].cpu_steppings[cpuid &
615 CPU_ID_REVISION_MASK];
616 snprintf(cpu_model, sizeof(cpu_model),
617 "%s%s%s (%s core)", cpuids[i].cpu_classname,
618 steppingstr[0] == '*' ? "" : " ",
619 &steppingstr[steppingstr[0] == '*'],
620 cpu_classes[cpu_class].class_name);
621 break;
622 }
623
624 if (cpuids[i].cpuid == 0)
625 snprintf(cpu_model, sizeof(cpu_model),
626 "unknown CPU (ID = 0x%x)", cpuid);
627
628 if (ci->ci_data.cpu_cc_freq != 0) {
629 char freqbuf[8];
630 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
631 "Hz", 1000);
632
633 aprint_naive(": %s %s\n", freqbuf, cpu_model);
634 aprint_normal(": %s %s\n", freqbuf, cpu_model);
635 } else {
636 aprint_naive(": %s\n", cpu_model);
637 aprint_normal(": %s\n", cpu_model);
638 }
639
640 aprint_normal("%s:", xname);
641
642 switch (cpu_class) {
643 case CPU_CLASS_ARM6:
644 case CPU_CLASS_ARM7:
645 case CPU_CLASS_ARM7TDMI:
646 case CPU_CLASS_ARM8:
647 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
648 aprint_normal(" IDC disabled");
649 else
650 aprint_normal(" IDC enabled");
651 break;
652 case CPU_CLASS_ARM9TDMI:
653 case CPU_CLASS_ARM9ES:
654 case CPU_CLASS_ARM9EJS:
655 case CPU_CLASS_ARM10E:
656 case CPU_CLASS_ARM10EJ:
657 case CPU_CLASS_SA1:
658 case CPU_CLASS_XSCALE:
659 case CPU_CLASS_ARM11J:
660 case CPU_CLASS_ARMV4:
661 case CPU_CLASS_CORTEX:
662 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
663 aprint_normal(" DC disabled");
664 else
665 aprint_normal(" DC enabled");
666 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
667 aprint_normal(" IC disabled");
668 else
669 aprint_normal(" IC enabled");
670 break;
671 default:
672 break;
673 }
674 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
675 aprint_normal(" WB disabled");
676 else
677 aprint_normal(" WB enabled");
678
679 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
680 aprint_normal(" LABT");
681 else
682 aprint_normal(" EABT");
683
684 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
685 aprint_normal(" branch prediction enabled");
686
687 aprint_normal("\n");
688
689 #if defined(CPU_CORTEX)
690 if (CPU_ID_CORTEX_P(cpuid)) {
691 identify_features(dv);
692 }
693 #endif
694 /* Print cache info. */
695 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
696 print_cache_info(dv, &arm_pcache, 0);
697 }
698 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
699 print_cache_info(dv, &arm_scache, 1);
700 }
701
702
703 switch (cpu_class) {
704 #ifdef CPU_ARM2
705 case CPU_CLASS_ARM2:
706 #endif
707 #ifdef CPU_ARM250
708 case CPU_CLASS_ARM2AS:
709 #endif
710 #ifdef CPU_ARM3
711 case CPU_CLASS_ARM3:
712 #endif
713 #ifdef CPU_ARM6
714 case CPU_CLASS_ARM6:
715 #endif
716 #ifdef CPU_ARM7
717 case CPU_CLASS_ARM7:
718 #endif
719 #ifdef CPU_ARM7TDMI
720 case CPU_CLASS_ARM7TDMI:
721 #endif
722 #ifdef CPU_ARM8
723 case CPU_CLASS_ARM8:
724 #endif
725 #ifdef CPU_ARM9
726 case CPU_CLASS_ARM9TDMI:
727 #endif
728 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
729 case CPU_CLASS_ARM9ES:
730 case CPU_CLASS_ARM9EJS:
731 #endif
732 #ifdef CPU_ARM10
733 case CPU_CLASS_ARM10E:
734 case CPU_CLASS_ARM10EJ:
735 #endif
736 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
737 defined(CPU_SA1110) || defined(CPU_IXP12X0)
738 case CPU_CLASS_SA1:
739 #endif
740 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
741 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
742 case CPU_CLASS_XSCALE:
743 #endif
744 #if defined(CPU_ARM11)
745 case CPU_CLASS_ARM11J:
746 #endif
747 #if defined(CPU_CORTEX)
748 case CPU_CLASS_CORTEX:
749 #endif
750 #if defined(CPU_FA526)
751 case CPU_CLASS_ARMV4:
752 #endif
753 break;
754 default:
755 if (cpu_classes[cpu_class].class_option == NULL) {
756 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
757 ostype);
758 } else {
759 aprint_error_dev(dv, "This kernel does not fully support "
760 "this CPU.\n");
761 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
762 "correct this.\n", cpu_classes[cpu_class].class_option);
763 }
764 break;
765 }
766 }
767
768 #if defined(CPU_CORTEX)
769 void
770 identify_features(device_t dv)
771 {
772 uint32_t isar0 = armreg_isar0_read();
773 uint32_t isar1 = armreg_isar1_read();
774 uint32_t isar2 = armreg_isar2_read();
775 uint32_t isar3 = armreg_isar3_read();
776 uint32_t isar4 = armreg_isar4_read();
777 uint32_t isar5 = armreg_isar5_read();
778
779 uint32_t mmfr0 = armreg_mmfr0_read();
780 uint32_t mmfr1 = armreg_mmfr1_read();
781 uint32_t mmfr2 = armreg_mmfr2_read();
782 uint32_t mmfr3 = armreg_mmfr3_read();
783
784 if (__SHIFTOUT(mmfr3, __BITS(23,20))) {
785 /*
786 * Updates to the translation tables do not require a clean
787 * to the point of unification to ensure visibility by subsequent
788 * translation table walks.
789 */
790 pmap_needs_pte_sync = 0;
791 }
792
793 uint32_t pfr0 = armreg_pfr0_read();
794 uint32_t pfr1 = armreg_pfr1_read();
795
796 aprint_verbose_dev(dv,
797 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
798 isar0, isar1, isar2, isar3, isar4, isar5);
799 aprint_verbose_dev(dv,
800 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
801 mmfr0, mmfr1, mmfr2, mmfr3);
802 aprint_verbose_dev(dv,
803 "pfr: [0]=%#x [1]=%#x\n",
804 pfr0, pfr1);
805 }
806 #endif /* CPU_CORTEX */
807