1 1.22 riastrad /* $NetBSD: a9tmr.c,v 1.22 2022/03/03 06:26:28 riastradh Exp $ */ 2 1.1 matt 3 1.1 matt /*- 4 1.1 matt * Copyright (c) 2012 The NetBSD Foundation, Inc. 5 1.1 matt * All rights reserved. 6 1.1 matt * 7 1.1 matt * This code is derived from software contributed to The NetBSD Foundation 8 1.1 matt * by Matt Thomas 9 1.1 matt * 10 1.1 matt * Redistribution and use in source and binary forms, with or without 11 1.1 matt * modification, are permitted provided that the following conditions 12 1.1 matt * are met: 13 1.1 matt * 1. Redistributions of source code must retain the above copyright 14 1.1 matt * notice, this list of conditions and the following disclaimer. 15 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 matt * notice, this list of conditions and the following disclaimer in the 17 1.1 matt * documentation and/or other materials provided with the distribution. 18 1.1 matt * 19 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 matt * POSSIBILITY OF SUCH DAMAGE. 30 1.1 matt */ 31 1.1 matt 32 1.1 matt #include <sys/cdefs.h> 33 1.22 riastrad __KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.22 2022/03/03 06:26:28 riastradh Exp $"); 34 1.1 matt 35 1.1 matt #include <sys/param.h> 36 1.1 matt #include <sys/bus.h> 37 1.1 matt #include <sys/device.h> 38 1.1 matt #include <sys/intr.h> 39 1.1 matt #include <sys/kernel.h> 40 1.1 matt #include <sys/proc.h> 41 1.1 matt #include <sys/systm.h> 42 1.1 matt #include <sys/timetc.h> 43 1.9 jmcneill #include <sys/xcall.h> 44 1.1 matt 45 1.1 matt #include <prop/proplib.h> 46 1.1 matt 47 1.1 matt #include <arm/cortex/a9tmr_reg.h> 48 1.1 matt #include <arm/cortex/a9tmr_var.h> 49 1.1 matt 50 1.1 matt #include <arm/cortex/mpcore_var.h> 51 1.1 matt 52 1.1 matt static int a9tmr_match(device_t, cfdata_t, void *); 53 1.1 matt static void a9tmr_attach(device_t, device_t, void *); 54 1.1 matt 55 1.1 matt static u_int a9tmr_get_timecount(struct timecounter *); 56 1.1 matt 57 1.1 matt static struct a9tmr_softc a9tmr_sc; 58 1.1 matt 59 1.1 matt static struct timecounter a9tmr_timecounter = { 60 1.1 matt .tc_get_timecount = a9tmr_get_timecount, 61 1.1 matt .tc_poll_pps = 0, 62 1.1 matt .tc_counter_mask = ~0u, 63 1.1 matt .tc_frequency = 0, /* set by cpu_initclocks() */ 64 1.1 matt .tc_name = NULL, /* set by attach */ 65 1.1 matt .tc_quality = 500, 66 1.1 matt .tc_priv = &a9tmr_sc, 67 1.1 matt .tc_next = NULL, 68 1.1 matt }; 69 1.1 matt 70 1.15 hkenken CFATTACH_DECL_NEW(arma9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL); 71 1.1 matt 72 1.1 matt static inline uint32_t 73 1.1 matt a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o) 74 1.1 matt { 75 1.1 matt return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o); 76 1.1 matt } 77 1.1 matt 78 1.1 matt static inline void 79 1.1 matt a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v) 80 1.1 matt { 81 1.1 matt bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v); 82 1.1 matt } 83 1.1 matt 84 1.1 matt 85 1.1 matt /* ARGSUSED */ 86 1.1 matt static int 87 1.1 matt a9tmr_match(device_t parent, cfdata_t cf, void *aux) 88 1.1 matt { 89 1.1 matt struct mpcore_attach_args * const mpcaa = aux; 90 1.1 matt 91 1.1 matt if (a9tmr_sc.sc_dev != NULL) 92 1.1 matt return 0; 93 1.1 matt 94 1.5 matt if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0) 95 1.5 matt return 0; 96 1.5 matt 97 1.11 jmcneill if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) && 98 1.11 jmcneill !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) 99 1.1 matt return 0; 100 1.1 matt 101 1.1 matt if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0) 102 1.1 matt return 0; 103 1.1 matt 104 1.1 matt /* 105 1.1 matt * This isn't present on UP A9s (since CBAR isn't present). 106 1.1 matt */ 107 1.1 matt uint32_t mpidr = armreg_mpidr_read(); 108 1.1 matt if (mpidr == 0 || (mpidr & MPIDR_U)) 109 1.1 matt return 0; 110 1.1 matt 111 1.1 matt return 1; 112 1.1 matt } 113 1.1 matt 114 1.1 matt static void 115 1.1 matt a9tmr_attach(device_t parent, device_t self, void *aux) 116 1.1 matt { 117 1.14 ryo struct a9tmr_softc *sc = &a9tmr_sc; 118 1.1 matt struct mpcore_attach_args * const mpcaa = aux; 119 1.1 matt prop_dictionary_t dict = device_properties(self); 120 1.1 matt char freqbuf[sizeof("XXX SHz")]; 121 1.12 jmcneill const char *cpu_type; 122 1.1 matt 123 1.1 matt /* 124 1.17 aymeric * This runs at the ARM PERIPHCLOCK. 125 1.1 matt * The MD code should have setup our frequency for us. 126 1.1 matt */ 127 1.15 hkenken if (!prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq)) { 128 1.15 hkenken dict = device_properties(parent); 129 1.15 hkenken prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq); 130 1.15 hkenken } 131 1.1 matt 132 1.1 matt humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000); 133 1.1 matt 134 1.1 matt aprint_naive("\n"); 135 1.12 jmcneill if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) { 136 1.12 jmcneill cpu_type = "A5"; 137 1.12 jmcneill } else { 138 1.12 jmcneill cpu_type = "A9"; 139 1.12 jmcneill } 140 1.12 jmcneill aprint_normal(": %s Global 64-bit Timer (%s)\n", cpu_type, freqbuf); 141 1.1 matt 142 1.22 riastrad device_set_private(self, sc); 143 1.1 matt sc->sc_dev = self; 144 1.1 matt sc->sc_memt = mpcaa->mpcaa_memt; 145 1.1 matt sc->sc_memh = mpcaa->mpcaa_memh; 146 1.1 matt 147 1.3 matt evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL, 148 1.3 matt device_xname(self), "missing interrupts"); 149 1.3 matt 150 1.16 hkenken bus_space_subregion(sc->sc_memt, sc->sc_memh, 151 1.16 hkenken mpcaa->mpcaa_off1, TMR_GLOBAL_SIZE, &sc->sc_global_memh); 152 1.1 matt 153 1.18 aymeric /* Enable the timer early for delay(), disable all other features */ 154 1.18 aymeric a9tmr_global_write(sc, TMR_GBL_CTL, TMR_CTL_ENABLE); 155 1.18 aymeric 156 1.15 hkenken if (mpcaa->mpcaa_irq != -1) { 157 1.15 hkenken sc->sc_global_ih = intr_establish(mpcaa->mpcaa_irq, IPL_CLOCK, 158 1.15 hkenken IST_EDGE | IST_MPSAFE, a9tmr_intr, NULL); 159 1.15 hkenken if (sc->sc_global_ih == NULL) 160 1.15 hkenken panic("%s: unable to register timer interrupt", __func__); 161 1.15 hkenken aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n", 162 1.15 hkenken mpcaa->mpcaa_irq); 163 1.15 hkenken } 164 1.1 matt } 165 1.1 matt 166 1.1 matt static inline uint64_t 167 1.1 matt a9tmr_gettime(struct a9tmr_softc *sc) 168 1.1 matt { 169 1.1 matt uint32_t lo, hi; 170 1.1 matt 171 1.1 matt do { 172 1.1 matt hi = a9tmr_global_read(sc, TMR_GBL_CTR_U); 173 1.1 matt lo = a9tmr_global_read(sc, TMR_GBL_CTR_L); 174 1.1 matt } while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U)); 175 1.1 matt 176 1.1 matt return ((uint64_t)hi << 32) | lo; 177 1.1 matt } 178 1.1 matt 179 1.1 matt void 180 1.1 matt a9tmr_init_cpu_clock(struct cpu_info *ci) 181 1.1 matt { 182 1.1 matt struct a9tmr_softc * const sc = &a9tmr_sc; 183 1.1 matt uint64_t now = a9tmr_gettime(sc); 184 1.1 matt 185 1.1 matt KASSERT(ci == curcpu()); 186 1.1 matt 187 1.1 matt ci->ci_lastintr = now; 188 1.1 matt 189 1.1 matt a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc); 190 1.1 matt 191 1.1 matt /* 192 1.21 wiz * To update the compare register we have to disable comparisons first. 193 1.1 matt */ 194 1.1 matt uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL); 195 1.1 matt if (ctl & TMR_GBL_CTL_CMP_ENABLE) { 196 1.14 ryo a9tmr_global_write(sc, TMR_GBL_CTL, 197 1.14 ryo ctl & ~TMR_GBL_CTL_CMP_ENABLE); 198 1.1 matt } 199 1.1 matt 200 1.1 matt /* 201 1.1 matt * Schedule the next interrupt. 202 1.1 matt */ 203 1.1 matt now += sc->sc_autoinc; 204 1.1 matt a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now); 205 1.1 matt a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32)); 206 1.1 matt 207 1.1 matt /* 208 1.1 matt * Re-enable the comparator and now enable interrupts. 209 1.1 matt */ 210 1.1 matt a9tmr_global_write(sc, TMR_GBL_INT, 1); /* clear interrupt pending */ 211 1.14 ryo ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | 212 1.14 ryo TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE; 213 1.1 matt a9tmr_global_write(sc, TMR_GBL_CTL, ctl); 214 1.1 matt #if 0 215 1.1 matt printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n", 216 1.1 matt __func__, ci->ci_data.cpu_name, 217 1.1 matt a9tmr_global_read(sc, TMR_GBL_CTL), 218 1.1 matt a9tmr_global_read(sc, TMR_GBL_AUTOINC), 219 1.1 matt a9tmr_global_read(sc, TMR_GBL_CMP_H), 220 1.1 matt a9tmr_global_read(sc, TMR_GBL_CMP_L), 221 1.1 matt a9tmr_gettime(sc)); 222 1.1 matt 223 1.1 matt int s = splsched(); 224 1.1 matt uint64_t when = now; 225 1.1 matt u_int n = 0; 226 1.1 matt while ((now = a9tmr_gettime(sc)) < when) { 227 1.1 matt /* spin */ 228 1.1 matt n++; 229 1.1 matt KASSERTMSG(n <= sc->sc_autoinc, 230 1.1 matt "spun %u times but only %"PRIu64" has passed", 231 1.1 matt n, when - now); 232 1.1 matt } 233 1.1 matt printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n", 234 1.1 matt __func__, ci->ci_data.cpu_name, 235 1.1 matt a9tmr_global_read(sc, TMR_GBL_INT), 236 1.1 matt a9tmr_global_read(sc, TMR_GBL_CMP_H), 237 1.1 matt a9tmr_global_read(sc, TMR_GBL_CMP_L), 238 1.1 matt a9tmr_gettime(sc)); 239 1.1 matt splx(s); 240 1.1 matt #elif 0 241 1.20 skrll delay(1000000 / hz + 1000); 242 1.1 matt #endif 243 1.1 matt } 244 1.1 matt 245 1.1 matt void 246 1.15 hkenken a9tmr_cpu_initclocks(void) 247 1.1 matt { 248 1.1 matt struct a9tmr_softc * const sc = &a9tmr_sc; 249 1.14 ryo 250 1.1 matt KASSERT(sc->sc_dev != NULL); 251 1.1 matt KASSERT(sc->sc_freq != 0); 252 1.1 matt 253 1.1 matt sc->sc_autoinc = sc->sc_freq / hz; 254 1.1 matt 255 1.1 matt a9tmr_init_cpu_clock(curcpu()); 256 1.1 matt 257 1.1 matt a9tmr_timecounter.tc_name = device_xname(sc->sc_dev); 258 1.1 matt a9tmr_timecounter.tc_frequency = sc->sc_freq; 259 1.1 matt 260 1.1 matt tc_init(&a9tmr_timecounter); 261 1.1 matt } 262 1.1 matt 263 1.9 jmcneill static void 264 1.9 jmcneill a9tmr_update_freq_cb(void *arg1, void *arg2) 265 1.9 jmcneill { 266 1.9 jmcneill a9tmr_init_cpu_clock(curcpu()); 267 1.9 jmcneill } 268 1.9 jmcneill 269 1.1 matt void 270 1.8 jmcneill a9tmr_update_freq(uint32_t freq) 271 1.8 jmcneill { 272 1.8 jmcneill struct a9tmr_softc * const sc = &a9tmr_sc; 273 1.9 jmcneill uint64_t xc; 274 1.8 jmcneill 275 1.8 jmcneill KASSERT(sc->sc_dev != NULL); 276 1.8 jmcneill KASSERT(freq != 0); 277 1.8 jmcneill 278 1.9 jmcneill tc_detach(&a9tmr_timecounter); 279 1.9 jmcneill 280 1.8 jmcneill sc->sc_freq = freq; 281 1.8 jmcneill sc->sc_autoinc = sc->sc_freq / hz; 282 1.9 jmcneill 283 1.9 jmcneill xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL); 284 1.9 jmcneill xc_wait(xc); 285 1.9 jmcneill 286 1.8 jmcneill a9tmr_timecounter.tc_frequency = sc->sc_freq; 287 1.9 jmcneill tc_init(&a9tmr_timecounter); 288 1.8 jmcneill } 289 1.8 jmcneill 290 1.8 jmcneill void 291 1.1 matt a9tmr_delay(unsigned int n) 292 1.1 matt { 293 1.1 matt struct a9tmr_softc * const sc = &a9tmr_sc; 294 1.1 matt 295 1.1 matt KASSERT(sc != NULL); 296 1.1 matt 297 1.14 ryo uint32_t freq = sc->sc_freq ? sc->sc_freq : 298 1.14 ryo curcpu()->ci_data.cpu_cc_freq / 2; 299 1.1 matt KASSERT(freq != 0); 300 1.1 matt 301 1.1 matt /* 302 1.1 matt * not quite divide by 1000000 but close enough 303 1.1 matt * (higher by 1.3% which means we wait 1.3% longer). 304 1.1 matt */ 305 1.1 matt const uint64_t incr_per_us = (freq >> 20) + (freq >> 24); 306 1.1 matt 307 1.1 matt const uint64_t delta = n * incr_per_us; 308 1.1 matt const uint64_t base = a9tmr_gettime(sc); 309 1.1 matt const uint64_t finish = base + delta; 310 1.1 matt 311 1.1 matt while (a9tmr_gettime(sc) < finish) { 312 1.1 matt /* spin */ 313 1.1 matt } 314 1.1 matt } 315 1.1 matt 316 1.1 matt /* 317 1.15 hkenken * a9tmr_intr: 318 1.1 matt * 319 1.1 matt * Handle the hardclock interrupt. 320 1.1 matt */ 321 1.15 hkenken int 322 1.15 hkenken a9tmr_intr(void *arg) 323 1.1 matt { 324 1.1 matt struct clockframe * const cf = arg; 325 1.1 matt struct a9tmr_softc * const sc = &a9tmr_sc; 326 1.1 matt struct cpu_info * const ci = curcpu(); 327 1.14 ryo 328 1.1 matt const uint64_t now = a9tmr_gettime(sc); 329 1.1 matt uint64_t delta = now - ci->ci_lastintr; 330 1.1 matt 331 1.14 ryo a9tmr_global_write(sc, TMR_GBL_INT, 1); /* Ack the interrupt */ 332 1.1 matt 333 1.1 matt #if 0 334 1.20 skrll printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n", 335 1.1 matt __func__, cf, ci->ci_data.cpu_name, now, delta); 336 1.1 matt #endif 337 1.13 ryo KASSERTMSG(delta > sc->sc_autoinc / 64, 338 1.1 matt "%s: interrupting too quickly (delta=%"PRIu64")", 339 1.1 matt ci->ci_data.cpu_name, delta); 340 1.1 matt 341 1.1 matt ci->ci_lastintr = now; 342 1.1 matt 343 1.1 matt hardclock(cf); 344 1.1 matt 345 1.13 ryo if (delta > sc->sc_autoinc) { 346 1.13 ryo u_int ticks = hz; 347 1.13 ryo for (delta -= sc->sc_autoinc; 348 1.13 ryo delta >= sc->sc_autoinc && ticks > 0; 349 1.13 ryo delta -= sc->sc_autoinc, ticks--) { 350 1.3 matt #if 0 351 1.13 ryo /* 352 1.13 ryo * Try to make up up to a seconds amount of 353 1.13 ryo * missed clock interrupts 354 1.13 ryo */ 355 1.13 ryo hardclock(cf); 356 1.3 matt #else 357 1.13 ryo sc->sc_ev_missing_ticks.ev_count++; 358 1.3 matt #endif 359 1.13 ryo } 360 1.13 ryo } 361 1.1 matt 362 1.1 matt return 1; 363 1.1 matt } 364 1.1 matt 365 1.19 aymeric /* XXX This conflicts with gtmr, hence the temporary weak alias kludge */ 366 1.19 aymeric #if 1 367 1.19 aymeric void a9tmr_setstatclockrate(int); 368 1.1 matt void 369 1.19 aymeric a9tmr_setstatclockrate(int newhz) 370 1.1 matt { 371 1.1 matt } 372 1.19 aymeric __weak_alias(setstatclockrate, a9tmr_setstatclockrate); 373 1.19 aymeric #endif 374 1.1 matt 375 1.1 matt static u_int 376 1.1 matt a9tmr_get_timecount(struct timecounter *tc) 377 1.1 matt { 378 1.1 matt struct a9tmr_softc * const sc = tc->tc_priv; 379 1.1 matt 380 1.2 matt return (u_int) (a9tmr_gettime(sc)); 381 1.1 matt } 382