Home | History | Annotate | Line # | Download | only in cortex
a9tmr.c revision 1.11
      1  1.11  jmcneill /*	$NetBSD: a9tmr.c,v 1.11 2015/02/27 18:26:49 jmcneill Exp $	*/
      2   1.1      matt 
      3   1.1      matt /*-
      4   1.1      matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      5   1.1      matt  * All rights reserved.
      6   1.1      matt  *
      7   1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1      matt  * by Matt Thomas
      9   1.1      matt  *
     10   1.1      matt  * Redistribution and use in source and binary forms, with or without
     11   1.1      matt  * modification, are permitted provided that the following conditions
     12   1.1      matt  * are met:
     13   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     14   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     15   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      matt  *    documentation and/or other materials provided with the distribution.
     18   1.1      matt  *
     19   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1      matt  */
     31   1.1      matt 
     32   1.1      matt #include <sys/cdefs.h>
     33  1.11  jmcneill __KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.11 2015/02/27 18:26:49 jmcneill Exp $");
     34   1.1      matt 
     35   1.1      matt #include <sys/param.h>
     36   1.1      matt #include <sys/bus.h>
     37   1.1      matt #include <sys/device.h>
     38   1.1      matt #include <sys/intr.h>
     39   1.1      matt #include <sys/kernel.h>
     40   1.1      matt #include <sys/proc.h>
     41   1.1      matt #include <sys/systm.h>
     42   1.1      matt #include <sys/timetc.h>
     43   1.9  jmcneill #include <sys/xcall.h>
     44   1.1      matt 
     45   1.1      matt #include <prop/proplib.h>
     46   1.1      matt 
     47   1.1      matt #include <arm/cortex/a9tmr_reg.h>
     48   1.1      matt #include <arm/cortex/a9tmr_var.h>
     49   1.1      matt 
     50   1.1      matt #include <arm/cortex/mpcore_var.h>
     51   1.1      matt 
     52   1.1      matt static int a9tmr_match(device_t, cfdata_t, void *);
     53   1.1      matt static void a9tmr_attach(device_t, device_t, void *);
     54   1.1      matt 
     55   1.1      matt static int clockhandler(void *);
     56   1.1      matt 
     57   1.1      matt static u_int a9tmr_get_timecount(struct timecounter *);
     58   1.1      matt 
     59   1.1      matt static struct a9tmr_softc a9tmr_sc;
     60   1.1      matt 
     61   1.1      matt static struct timecounter a9tmr_timecounter = {
     62   1.1      matt 	.tc_get_timecount = a9tmr_get_timecount,
     63   1.1      matt 	.tc_poll_pps = 0,
     64   1.1      matt 	.tc_counter_mask = ~0u,
     65   1.1      matt 	.tc_frequency = 0,			/* set by cpu_initclocks() */
     66   1.1      matt 	.tc_name = NULL,			/* set by attach */
     67   1.1      matt 	.tc_quality = 500,
     68   1.1      matt 	.tc_priv = &a9tmr_sc,
     69   1.1      matt 	.tc_next = NULL,
     70   1.1      matt };
     71   1.1      matt 
     72   1.1      matt CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
     73   1.1      matt 
     74   1.1      matt static inline uint32_t
     75   1.1      matt a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
     76   1.1      matt {
     77   1.1      matt 	return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
     78   1.1      matt }
     79   1.1      matt 
     80   1.1      matt static inline void
     81   1.1      matt a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
     82   1.1      matt {
     83   1.1      matt 	bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
     84   1.1      matt }
     85   1.1      matt 
     86   1.1      matt 
     87   1.1      matt /* ARGSUSED */
     88   1.1      matt static int
     89   1.1      matt a9tmr_match(device_t parent, cfdata_t cf, void *aux)
     90   1.1      matt {
     91   1.1      matt 	struct mpcore_attach_args * const mpcaa = aux;
     92   1.1      matt 
     93   1.1      matt 	if (a9tmr_sc.sc_dev != NULL)
     94   1.1      matt 		return 0;
     95   1.1      matt 
     96   1.5      matt 	if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
     97   1.5      matt 		return 0;
     98   1.5      matt 
     99  1.11  jmcneill 	if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) &&
    100  1.11  jmcneill 	    !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid))
    101   1.1      matt 		return 0;
    102   1.1      matt 
    103   1.1      matt 	if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
    104   1.1      matt 		return 0;
    105   1.1      matt 
    106   1.1      matt 	/*
    107   1.1      matt 	 * This isn't present on UP A9s (since CBAR isn't present).
    108   1.1      matt 	 */
    109   1.1      matt 	uint32_t mpidr = armreg_mpidr_read();
    110   1.1      matt 	if (mpidr == 0 || (mpidr & MPIDR_U))
    111   1.1      matt 		return 0;
    112   1.1      matt 
    113   1.1      matt 	return 1;
    114   1.1      matt }
    115   1.1      matt 
    116   1.1      matt static void
    117   1.1      matt a9tmr_attach(device_t parent, device_t self, void *aux)
    118   1.1      matt {
    119   1.1      matt         struct a9tmr_softc *sc = &a9tmr_sc;
    120   1.1      matt 	struct mpcore_attach_args * const mpcaa = aux;
    121   1.1      matt 	prop_dictionary_t dict = device_properties(self);
    122   1.1      matt 	char freqbuf[sizeof("XXX SHz")];
    123   1.1      matt 
    124   1.1      matt 	/*
    125   1.1      matt 	 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock.
    126   1.1      matt 	 * The MD code should have setup our frequency for us.
    127   1.1      matt 	 */
    128   1.6      matt 	prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
    129   1.1      matt 
    130   1.1      matt 	humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
    131   1.1      matt 
    132   1.1      matt 	aprint_naive("\n");
    133   1.1      matt 	aprint_normal(": A9 Global 64-bit Timer (%s)\n", freqbuf);
    134   1.1      matt 
    135   1.2      matt 	self->dv_private = sc;
    136   1.1      matt 	sc->sc_dev = self;
    137   1.1      matt 	sc->sc_memt = mpcaa->mpcaa_memt;
    138   1.1      matt 	sc->sc_memh = mpcaa->mpcaa_memh;
    139   1.1      matt 
    140   1.3      matt 	evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
    141   1.3      matt 	    device_xname(self), "missing interrupts");
    142   1.3      matt 
    143   1.1      matt 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    144  1.10   hkenken 	    TMR_GLOBAL_BASE, TMR_GLOBAL_SIZE, &sc->sc_global_memh);
    145   1.1      matt 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    146   1.1      matt 	    TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh);
    147   1.1      matt 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    148   1.1      matt 	    TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh);
    149   1.1      matt 
    150   1.1      matt 	sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK,
    151   1.7      matt 	    IST_EDGE | IST_MPSAFE, clockhandler, NULL);
    152   1.1      matt 	if (sc->sc_global_ih == NULL)
    153   1.1      matt 		panic("%s: unable to register timer interrupt", __func__);
    154   1.1      matt 	aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
    155   1.1      matt 	    IRQ_A9TMR_PPI_GTIMER);
    156   1.1      matt }
    157   1.1      matt 
    158   1.1      matt static inline uint64_t
    159   1.1      matt a9tmr_gettime(struct a9tmr_softc *sc)
    160   1.1      matt {
    161   1.1      matt 	uint32_t lo, hi;
    162   1.1      matt 
    163   1.1      matt 	do {
    164   1.1      matt 		hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
    165   1.1      matt 		lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
    166   1.1      matt 	} while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
    167   1.1      matt 
    168   1.1      matt 	return ((uint64_t)hi << 32) | lo;
    169   1.1      matt }
    170   1.1      matt 
    171   1.1      matt void
    172   1.1      matt a9tmr_init_cpu_clock(struct cpu_info *ci)
    173   1.1      matt {
    174   1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    175   1.1      matt 	uint64_t now = a9tmr_gettime(sc);
    176   1.1      matt 
    177   1.1      matt 	KASSERT(ci == curcpu());
    178   1.1      matt 
    179   1.1      matt 	ci->ci_lastintr = now;
    180   1.1      matt 
    181   1.1      matt 	a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
    182   1.1      matt 
    183   1.1      matt 	/*
    184   1.1      matt 	 * To update the compare register we have to disable comparisions first.
    185   1.1      matt 	 */
    186   1.1      matt 	uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
    187   1.1      matt 	if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
    188   1.1      matt 		a9tmr_global_write(sc, TMR_GBL_CTL, ctl & ~TMR_GBL_CTL_CMP_ENABLE);
    189   1.1      matt 	}
    190   1.1      matt 
    191   1.1      matt 	/*
    192   1.1      matt 	 * Schedule the next interrupt.
    193   1.1      matt 	 */
    194   1.1      matt 	now += sc->sc_autoinc;
    195   1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
    196   1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
    197   1.1      matt 
    198   1.1      matt 	/*
    199   1.1      matt 	 * Re-enable the comparator and now enable interrupts.
    200   1.1      matt 	 */
    201   1.1      matt 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* clear interrupt pending */
    202   1.4      matt 	ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
    203   1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
    204   1.1      matt #if 0
    205   1.1      matt 	printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
    206   1.1      matt 	    __func__, ci->ci_data.cpu_name,
    207   1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CTL),
    208   1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_AUTOINC),
    209   1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    210   1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    211   1.1      matt 	    a9tmr_gettime(sc));
    212   1.1      matt 
    213   1.1      matt 	int s = splsched();
    214   1.1      matt 	uint64_t when = now;
    215   1.1      matt 	u_int n = 0;
    216   1.1      matt 	while ((now = a9tmr_gettime(sc)) < when) {
    217   1.1      matt 		/* spin */
    218   1.1      matt 		n++;
    219   1.1      matt 		KASSERTMSG(n <= sc->sc_autoinc,
    220   1.1      matt 		    "spun %u times but only %"PRIu64" has passed",
    221   1.1      matt 		    n, when - now);
    222   1.1      matt 	}
    223   1.1      matt 	printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
    224   1.1      matt 	    __func__, ci->ci_data.cpu_name,
    225   1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_INT),
    226   1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    227   1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    228   1.1      matt 	    a9tmr_gettime(sc));
    229   1.1      matt 	splx(s);
    230   1.1      matt #elif 0
    231   1.1      matt 	delay(1000000 / hz + 1000);
    232   1.1      matt #endif
    233   1.1      matt }
    234   1.1      matt 
    235   1.1      matt void
    236   1.1      matt cpu_initclocks(void)
    237   1.1      matt {
    238   1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    239   1.1      matt 
    240   1.1      matt 	KASSERT(sc->sc_dev != NULL);
    241   1.1      matt 	KASSERT(sc->sc_freq != 0);
    242   1.1      matt 
    243   1.1      matt 	sc->sc_autoinc = sc->sc_freq / hz;
    244   1.1      matt 
    245   1.1      matt 	a9tmr_init_cpu_clock(curcpu());
    246   1.1      matt 
    247   1.1      matt 	a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
    248   1.1      matt 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    249   1.1      matt 
    250   1.1      matt 	tc_init(&a9tmr_timecounter);
    251   1.1      matt }
    252   1.1      matt 
    253   1.9  jmcneill static void
    254   1.9  jmcneill a9tmr_update_freq_cb(void *arg1, void *arg2)
    255   1.9  jmcneill {
    256   1.9  jmcneill 	a9tmr_init_cpu_clock(curcpu());
    257   1.9  jmcneill }
    258   1.9  jmcneill 
    259   1.1      matt void
    260   1.8  jmcneill a9tmr_update_freq(uint32_t freq)
    261   1.8  jmcneill {
    262   1.8  jmcneill 	struct a9tmr_softc * const sc = &a9tmr_sc;
    263   1.9  jmcneill 	uint64_t xc;
    264   1.8  jmcneill 
    265   1.8  jmcneill 	KASSERT(sc->sc_dev != NULL);
    266   1.8  jmcneill 	KASSERT(freq != 0);
    267   1.8  jmcneill 
    268   1.9  jmcneill 	tc_detach(&a9tmr_timecounter);
    269   1.9  jmcneill 
    270   1.8  jmcneill 	sc->sc_freq = freq;
    271   1.8  jmcneill 	sc->sc_autoinc = sc->sc_freq / hz;
    272   1.9  jmcneill 
    273   1.9  jmcneill 	xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL);
    274   1.9  jmcneill 	xc_wait(xc);
    275   1.9  jmcneill 
    276   1.8  jmcneill 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    277   1.9  jmcneill 	tc_init(&a9tmr_timecounter);
    278   1.8  jmcneill }
    279   1.8  jmcneill 
    280   1.8  jmcneill void
    281   1.1      matt a9tmr_delay(unsigned int n)
    282   1.1      matt {
    283   1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    284   1.1      matt 
    285   1.1      matt 	KASSERT(sc != NULL);
    286   1.1      matt 
    287   1.1      matt 	uint32_t freq = sc->sc_freq ? sc->sc_freq : curcpu()->ci_data.cpu_cc_freq / 2;
    288   1.1      matt 	KASSERT(freq != 0);
    289   1.1      matt 
    290   1.1      matt 	/*
    291   1.1      matt 	 * not quite divide by 1000000 but close enough
    292   1.1      matt 	 * (higher by 1.3% which means we wait 1.3% longer).
    293   1.1      matt 	 */
    294   1.1      matt 	const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
    295   1.1      matt 
    296   1.1      matt 	const uint64_t delta = n * incr_per_us;
    297   1.1      matt 	const uint64_t base = a9tmr_gettime(sc);
    298   1.1      matt 	const uint64_t finish = base + delta;
    299   1.1      matt 
    300   1.1      matt 	while (a9tmr_gettime(sc) < finish) {
    301   1.1      matt 		/* spin */
    302   1.1      matt 	}
    303   1.1      matt }
    304   1.1      matt 
    305   1.1      matt /*
    306   1.1      matt  * clockhandler:
    307   1.1      matt  *
    308   1.1      matt  *	Handle the hardclock interrupt.
    309   1.1      matt  */
    310   1.1      matt static int
    311   1.1      matt clockhandler(void *arg)
    312   1.1      matt {
    313   1.1      matt 	struct clockframe * const cf = arg;
    314   1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    315   1.1      matt 	struct cpu_info * const ci = curcpu();
    316   1.1      matt 
    317   1.1      matt 	const uint64_t now = a9tmr_gettime(sc);
    318   1.1      matt 	uint64_t delta = now - ci->ci_lastintr;
    319   1.1      matt 
    320   1.1      matt 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	// Ack the interrupt
    321   1.1      matt 
    322   1.1      matt #if 0
    323   1.1      matt 	printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
    324   1.1      matt 	     __func__, cf, ci->ci_data.cpu_name, now, delta);
    325   1.1      matt #endif
    326   1.1      matt 	KASSERTMSG(delta > sc->sc_autoinc / 100,
    327   1.1      matt 	    "%s: interrupting too quickly (delta=%"PRIu64")",
    328   1.1      matt 	    ci->ci_data.cpu_name, delta);
    329   1.1      matt 
    330   1.1      matt 	ci->ci_lastintr = now;
    331   1.1      matt 
    332   1.1      matt 	hardclock(cf);
    333   1.1      matt 
    334   1.3      matt #if 0
    335   1.1      matt 	/*
    336   1.1      matt 	 * Try to make up up to a seconds amount of missed clock interrupts
    337   1.1      matt 	 */
    338   1.1      matt 	u_int ticks = hz;
    339   1.1      matt 	for (delta -= sc->sc_autoinc;
    340   1.1      matt 	     ticks > 0 && delta >= sc->sc_autoinc;
    341   1.1      matt 	     delta -= sc->sc_autoinc, ticks--) {
    342   1.1      matt 		hardclock(cf);
    343   1.1      matt 	}
    344   1.3      matt #else
    345   1.3      matt 	if (delta > sc->sc_autoinc)
    346   1.3      matt 		sc->sc_ev_missing_ticks.ev_count += delta / sc->sc_autoinc;
    347   1.3      matt #endif
    348   1.1      matt 
    349   1.1      matt 	return 1;
    350   1.1      matt }
    351   1.1      matt 
    352   1.1      matt void
    353   1.1      matt setstatclockrate(int newhz)
    354   1.1      matt {
    355   1.1      matt }
    356   1.1      matt 
    357   1.1      matt static u_int
    358   1.1      matt a9tmr_get_timecount(struct timecounter *tc)
    359   1.1      matt {
    360   1.1      matt 	struct a9tmr_softc * const sc = tc->tc_priv;
    361   1.1      matt 
    362   1.2      matt 	return (u_int) (a9tmr_gettime(sc));
    363   1.1      matt }
    364