Home | History | Annotate | Line # | Download | only in cortex
a9tmr.c revision 1.16.2.2
      1  1.16.2.2    martin /*	$NetBSD: a9tmr.c,v 1.16.2.2 2020/04/13 08:03:33 martin Exp $	*/
      2       1.1      matt 
      3       1.1      matt /*-
      4       1.1      matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      5       1.1      matt  * All rights reserved.
      6       1.1      matt  *
      7       1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1      matt  * by Matt Thomas
      9       1.1      matt  *
     10       1.1      matt  * Redistribution and use in source and binary forms, with or without
     11       1.1      matt  * modification, are permitted provided that the following conditions
     12       1.1      matt  * are met:
     13       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     14       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     15       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     17       1.1      matt  *    documentation and/or other materials provided with the distribution.
     18       1.1      matt  *
     19       1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1      matt  */
     31       1.1      matt 
     32       1.1      matt #include <sys/cdefs.h>
     33  1.16.2.2    martin __KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.16.2.2 2020/04/13 08:03:33 martin Exp $");
     34       1.1      matt 
     35       1.1      matt #include <sys/param.h>
     36       1.1      matt #include <sys/bus.h>
     37       1.1      matt #include <sys/device.h>
     38       1.1      matt #include <sys/intr.h>
     39       1.1      matt #include <sys/kernel.h>
     40       1.1      matt #include <sys/proc.h>
     41       1.1      matt #include <sys/systm.h>
     42       1.1      matt #include <sys/timetc.h>
     43       1.9  jmcneill #include <sys/xcall.h>
     44       1.1      matt 
     45       1.1      matt #include <prop/proplib.h>
     46       1.1      matt 
     47       1.1      matt #include <arm/cortex/a9tmr_reg.h>
     48       1.1      matt #include <arm/cortex/a9tmr_var.h>
     49       1.1      matt 
     50       1.1      matt #include <arm/cortex/mpcore_var.h>
     51       1.1      matt 
     52       1.1      matt static int a9tmr_match(device_t, cfdata_t, void *);
     53       1.1      matt static void a9tmr_attach(device_t, device_t, void *);
     54       1.1      matt 
     55       1.1      matt static u_int a9tmr_get_timecount(struct timecounter *);
     56       1.1      matt 
     57       1.1      matt static struct a9tmr_softc a9tmr_sc;
     58       1.1      matt 
     59       1.1      matt static struct timecounter a9tmr_timecounter = {
     60       1.1      matt 	.tc_get_timecount = a9tmr_get_timecount,
     61       1.1      matt 	.tc_poll_pps = 0,
     62       1.1      matt 	.tc_counter_mask = ~0u,
     63       1.1      matt 	.tc_frequency = 0,			/* set by cpu_initclocks() */
     64       1.1      matt 	.tc_name = NULL,			/* set by attach */
     65       1.1      matt 	.tc_quality = 500,
     66       1.1      matt 	.tc_priv = &a9tmr_sc,
     67       1.1      matt 	.tc_next = NULL,
     68       1.1      matt };
     69       1.1      matt 
     70      1.15   hkenken CFATTACH_DECL_NEW(arma9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
     71       1.1      matt 
     72       1.1      matt static inline uint32_t
     73       1.1      matt a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
     74       1.1      matt {
     75       1.1      matt 	return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
     76       1.1      matt }
     77       1.1      matt 
     78       1.1      matt static inline void
     79       1.1      matt a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
     80       1.1      matt {
     81       1.1      matt 	bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
     82       1.1      matt }
     83       1.1      matt 
     84       1.1      matt 
     85       1.1      matt /* ARGSUSED */
     86       1.1      matt static int
     87       1.1      matt a9tmr_match(device_t parent, cfdata_t cf, void *aux)
     88       1.1      matt {
     89       1.1      matt 	struct mpcore_attach_args * const mpcaa = aux;
     90       1.1      matt 
     91       1.1      matt 	if (a9tmr_sc.sc_dev != NULL)
     92       1.1      matt 		return 0;
     93       1.1      matt 
     94       1.5      matt 	if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
     95       1.5      matt 		return 0;
     96       1.5      matt 
     97      1.11  jmcneill 	if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) &&
     98      1.11  jmcneill 	    !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid))
     99       1.1      matt 		return 0;
    100       1.1      matt 
    101       1.1      matt 	if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
    102       1.1      matt 		return 0;
    103       1.1      matt 
    104       1.1      matt 	/*
    105       1.1      matt 	 * This isn't present on UP A9s (since CBAR isn't present).
    106       1.1      matt 	 */
    107       1.1      matt 	uint32_t mpidr = armreg_mpidr_read();
    108       1.1      matt 	if (mpidr == 0 || (mpidr & MPIDR_U))
    109       1.1      matt 		return 0;
    110       1.1      matt 
    111       1.1      matt 	return 1;
    112       1.1      matt }
    113       1.1      matt 
    114       1.1      matt static void
    115       1.1      matt a9tmr_attach(device_t parent, device_t self, void *aux)
    116       1.1      matt {
    117      1.14       ryo 	struct a9tmr_softc *sc = &a9tmr_sc;
    118       1.1      matt 	struct mpcore_attach_args * const mpcaa = aux;
    119       1.1      matt 	prop_dictionary_t dict = device_properties(self);
    120       1.1      matt 	char freqbuf[sizeof("XXX SHz")];
    121      1.12  jmcneill 	const char *cpu_type;
    122       1.1      matt 
    123       1.1      matt 	/*
    124  1.16.2.1  christos 	 * This runs at the ARM PERIPHCLOCK.
    125       1.1      matt 	 * The MD code should have setup our frequency for us.
    126       1.1      matt 	 */
    127      1.15   hkenken 	if (!prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq)) {
    128      1.15   hkenken 		dict = device_properties(parent);
    129      1.15   hkenken 		prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
    130      1.15   hkenken 	}
    131       1.1      matt 
    132       1.1      matt 	humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
    133       1.1      matt 
    134       1.1      matt 	aprint_naive("\n");
    135      1.12  jmcneill 	if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) {
    136      1.12  jmcneill 		cpu_type = "A5";
    137      1.12  jmcneill 	} else {
    138      1.12  jmcneill 		cpu_type = "A9";
    139      1.12  jmcneill 	}
    140      1.12  jmcneill 	aprint_normal(": %s Global 64-bit Timer (%s)\n", cpu_type, freqbuf);
    141       1.1      matt 
    142       1.2      matt 	self->dv_private = sc;
    143       1.1      matt 	sc->sc_dev = self;
    144       1.1      matt 	sc->sc_memt = mpcaa->mpcaa_memt;
    145       1.1      matt 	sc->sc_memh = mpcaa->mpcaa_memh;
    146       1.1      matt 
    147       1.3      matt 	evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
    148       1.3      matt 	    device_xname(self), "missing interrupts");
    149       1.3      matt 
    150      1.16   hkenken 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    151      1.16   hkenken 	    mpcaa->mpcaa_off1, TMR_GLOBAL_SIZE, &sc->sc_global_memh);
    152       1.1      matt 
    153  1.16.2.1  christos 	/* Enable the timer early for delay(), disable all other features */
    154  1.16.2.1  christos 	a9tmr_global_write(sc, TMR_GBL_CTL, TMR_CTL_ENABLE);
    155  1.16.2.1  christos 
    156      1.15   hkenken 	if (mpcaa->mpcaa_irq != -1) {
    157      1.15   hkenken 		sc->sc_global_ih = intr_establish(mpcaa->mpcaa_irq, IPL_CLOCK,
    158      1.15   hkenken 		    IST_EDGE | IST_MPSAFE, a9tmr_intr, NULL);
    159      1.15   hkenken 		if (sc->sc_global_ih == NULL)
    160      1.15   hkenken 			panic("%s: unable to register timer interrupt", __func__);
    161      1.15   hkenken 		aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
    162      1.15   hkenken 		    mpcaa->mpcaa_irq);
    163      1.15   hkenken 	}
    164       1.1      matt }
    165       1.1      matt 
    166       1.1      matt static inline uint64_t
    167       1.1      matt a9tmr_gettime(struct a9tmr_softc *sc)
    168       1.1      matt {
    169       1.1      matt 	uint32_t lo, hi;
    170       1.1      matt 
    171       1.1      matt 	do {
    172       1.1      matt 		hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
    173       1.1      matt 		lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
    174       1.1      matt 	} while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
    175       1.1      matt 
    176       1.1      matt 	return ((uint64_t)hi << 32) | lo;
    177       1.1      matt }
    178       1.1      matt 
    179       1.1      matt void
    180       1.1      matt a9tmr_init_cpu_clock(struct cpu_info *ci)
    181       1.1      matt {
    182       1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    183       1.1      matt 	uint64_t now = a9tmr_gettime(sc);
    184       1.1      matt 
    185       1.1      matt 	KASSERT(ci == curcpu());
    186       1.1      matt 
    187       1.1      matt 	ci->ci_lastintr = now;
    188       1.1      matt 
    189       1.1      matt 	a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
    190       1.1      matt 
    191       1.1      matt 	/*
    192       1.1      matt 	 * To update the compare register we have to disable comparisions first.
    193       1.1      matt 	 */
    194       1.1      matt 	uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
    195       1.1      matt 	if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
    196      1.14       ryo 		a9tmr_global_write(sc, TMR_GBL_CTL,
    197      1.14       ryo 		    ctl & ~TMR_GBL_CTL_CMP_ENABLE);
    198       1.1      matt 	}
    199       1.1      matt 
    200       1.1      matt 	/*
    201       1.1      matt 	 * Schedule the next interrupt.
    202       1.1      matt 	 */
    203       1.1      matt 	now += sc->sc_autoinc;
    204       1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
    205       1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
    206       1.1      matt 
    207       1.1      matt 	/*
    208       1.1      matt 	 * Re-enable the comparator and now enable interrupts.
    209       1.1      matt 	 */
    210       1.1      matt 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* clear interrupt pending */
    211      1.14       ryo 	ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE |
    212      1.14       ryo 	    TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
    213       1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
    214       1.1      matt #if 0
    215       1.1      matt 	printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
    216       1.1      matt 	    __func__, ci->ci_data.cpu_name,
    217       1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CTL),
    218       1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_AUTOINC),
    219       1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    220       1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    221       1.1      matt 	    a9tmr_gettime(sc));
    222       1.1      matt 
    223       1.1      matt 	int s = splsched();
    224       1.1      matt 	uint64_t when = now;
    225       1.1      matt 	u_int n = 0;
    226       1.1      matt 	while ((now = a9tmr_gettime(sc)) < when) {
    227       1.1      matt 		/* spin */
    228       1.1      matt 		n++;
    229       1.1      matt 		KASSERTMSG(n <= sc->sc_autoinc,
    230       1.1      matt 		    "spun %u times but only %"PRIu64" has passed",
    231       1.1      matt 		    n, when - now);
    232       1.1      matt 	}
    233       1.1      matt 	printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
    234       1.1      matt 	    __func__, ci->ci_data.cpu_name,
    235       1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_INT),
    236       1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    237       1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    238       1.1      matt 	    a9tmr_gettime(sc));
    239       1.1      matt 	splx(s);
    240       1.1      matt #elif 0
    241  1.16.2.2    martin 	delay(1000000 / hz + 1000);
    242       1.1      matt #endif
    243       1.1      matt }
    244       1.1      matt 
    245       1.1      matt void
    246      1.15   hkenken a9tmr_cpu_initclocks(void)
    247       1.1      matt {
    248       1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    249      1.14       ryo 
    250       1.1      matt 	KASSERT(sc->sc_dev != NULL);
    251       1.1      matt 	KASSERT(sc->sc_freq != 0);
    252       1.1      matt 
    253       1.1      matt 	sc->sc_autoinc = sc->sc_freq / hz;
    254       1.1      matt 
    255       1.1      matt 	a9tmr_init_cpu_clock(curcpu());
    256       1.1      matt 
    257       1.1      matt 	a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
    258       1.1      matt 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    259       1.1      matt 
    260       1.1      matt 	tc_init(&a9tmr_timecounter);
    261       1.1      matt }
    262       1.1      matt 
    263       1.9  jmcneill static void
    264       1.9  jmcneill a9tmr_update_freq_cb(void *arg1, void *arg2)
    265       1.9  jmcneill {
    266       1.9  jmcneill 	a9tmr_init_cpu_clock(curcpu());
    267       1.9  jmcneill }
    268       1.9  jmcneill 
    269       1.1      matt void
    270       1.8  jmcneill a9tmr_update_freq(uint32_t freq)
    271       1.8  jmcneill {
    272       1.8  jmcneill 	struct a9tmr_softc * const sc = &a9tmr_sc;
    273       1.9  jmcneill 	uint64_t xc;
    274       1.8  jmcneill 
    275       1.8  jmcneill 	KASSERT(sc->sc_dev != NULL);
    276       1.8  jmcneill 	KASSERT(freq != 0);
    277       1.8  jmcneill 
    278       1.9  jmcneill 	tc_detach(&a9tmr_timecounter);
    279       1.9  jmcneill 
    280       1.8  jmcneill 	sc->sc_freq = freq;
    281       1.8  jmcneill 	sc->sc_autoinc = sc->sc_freq / hz;
    282       1.9  jmcneill 
    283       1.9  jmcneill 	xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL);
    284       1.9  jmcneill 	xc_wait(xc);
    285       1.9  jmcneill 
    286       1.8  jmcneill 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    287       1.9  jmcneill 	tc_init(&a9tmr_timecounter);
    288       1.8  jmcneill }
    289       1.8  jmcneill 
    290       1.8  jmcneill void
    291       1.1      matt a9tmr_delay(unsigned int n)
    292       1.1      matt {
    293       1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    294       1.1      matt 
    295       1.1      matt 	KASSERT(sc != NULL);
    296       1.1      matt 
    297      1.14       ryo 	uint32_t freq = sc->sc_freq ? sc->sc_freq :
    298      1.14       ryo 	    curcpu()->ci_data.cpu_cc_freq / 2;
    299       1.1      matt 	KASSERT(freq != 0);
    300       1.1      matt 
    301       1.1      matt 	/*
    302       1.1      matt 	 * not quite divide by 1000000 but close enough
    303       1.1      matt 	 * (higher by 1.3% which means we wait 1.3% longer).
    304       1.1      matt 	 */
    305       1.1      matt 	const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
    306       1.1      matt 
    307       1.1      matt 	const uint64_t delta = n * incr_per_us;
    308       1.1      matt 	const uint64_t base = a9tmr_gettime(sc);
    309       1.1      matt 	const uint64_t finish = base + delta;
    310       1.1      matt 
    311       1.1      matt 	while (a9tmr_gettime(sc) < finish) {
    312       1.1      matt 		/* spin */
    313       1.1      matt 	}
    314       1.1      matt }
    315       1.1      matt 
    316       1.1      matt /*
    317      1.15   hkenken  * a9tmr_intr:
    318       1.1      matt  *
    319       1.1      matt  *	Handle the hardclock interrupt.
    320       1.1      matt  */
    321      1.15   hkenken int
    322      1.15   hkenken a9tmr_intr(void *arg)
    323       1.1      matt {
    324       1.1      matt 	struct clockframe * const cf = arg;
    325       1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    326       1.1      matt 	struct cpu_info * const ci = curcpu();
    327      1.14       ryo 
    328       1.1      matt 	const uint64_t now = a9tmr_gettime(sc);
    329       1.1      matt 	uint64_t delta = now - ci->ci_lastintr;
    330       1.1      matt 
    331      1.14       ryo 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* Ack the interrupt */
    332       1.1      matt 
    333       1.1      matt #if 0
    334  1.16.2.2    martin 	printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
    335       1.1      matt 	     __func__, cf, ci->ci_data.cpu_name, now, delta);
    336       1.1      matt #endif
    337      1.13       ryo 	KASSERTMSG(delta > sc->sc_autoinc / 64,
    338       1.1      matt 	    "%s: interrupting too quickly (delta=%"PRIu64")",
    339       1.1      matt 	    ci->ci_data.cpu_name, delta);
    340       1.1      matt 
    341       1.1      matt 	ci->ci_lastintr = now;
    342       1.1      matt 
    343       1.1      matt 	hardclock(cf);
    344       1.1      matt 
    345      1.13       ryo 	if (delta > sc->sc_autoinc) {
    346      1.13       ryo 		u_int ticks = hz;
    347      1.13       ryo 		for (delta -= sc->sc_autoinc;
    348      1.13       ryo 		     delta >= sc->sc_autoinc && ticks > 0;
    349      1.13       ryo 		     delta -= sc->sc_autoinc, ticks--) {
    350       1.3      matt #if 0
    351      1.13       ryo 			/*
    352      1.13       ryo 			 * Try to make up up to a seconds amount of
    353      1.13       ryo 			 * missed clock interrupts
    354      1.13       ryo 			 */
    355      1.13       ryo 			hardclock(cf);
    356       1.3      matt #else
    357      1.13       ryo 			sc->sc_ev_missing_ticks.ev_count++;
    358       1.3      matt #endif
    359      1.13       ryo 		}
    360      1.13       ryo 	}
    361       1.1      matt 
    362       1.1      matt 	return 1;
    363       1.1      matt }
    364       1.1      matt 
    365  1.16.2.1  christos /* XXX This conflicts with gtmr, hence the temporary weak alias kludge */
    366  1.16.2.1  christos #if 1
    367  1.16.2.1  christos void a9tmr_setstatclockrate(int);
    368       1.1      matt void
    369  1.16.2.1  christos a9tmr_setstatclockrate(int newhz)
    370       1.1      matt {
    371       1.1      matt }
    372  1.16.2.1  christos __weak_alias(setstatclockrate, a9tmr_setstatclockrate);
    373  1.16.2.1  christos #endif
    374       1.1      matt 
    375       1.1      matt static u_int
    376       1.1      matt a9tmr_get_timecount(struct timecounter *tc)
    377       1.1      matt {
    378       1.1      matt 	struct a9tmr_softc * const sc = tc->tc_priv;
    379       1.1      matt 
    380       1.2      matt 	return (u_int) (a9tmr_gettime(sc));
    381       1.1      matt }
    382