Home | History | Annotate | Line # | Download | only in cortex
a9tmr.c revision 1.20.10.1
      1  1.20.10.1   thorpej /*	$NetBSD: a9tmr.c,v 1.20.10.1 2020/12/14 14:37:48 thorpej Exp $	*/
      2        1.1      matt 
      3        1.1      matt /*-
      4        1.1      matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      5        1.1      matt  * All rights reserved.
      6        1.1      matt  *
      7        1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
      8        1.1      matt  * by Matt Thomas
      9        1.1      matt  *
     10        1.1      matt  * Redistribution and use in source and binary forms, with or without
     11        1.1      matt  * modification, are permitted provided that the following conditions
     12        1.1      matt  * are met:
     13        1.1      matt  * 1. Redistributions of source code must retain the above copyright
     14        1.1      matt  *    notice, this list of conditions and the following disclaimer.
     15        1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     17        1.1      matt  *    documentation and/or other materials provided with the distribution.
     18        1.1      matt  *
     19        1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     30        1.1      matt  */
     31        1.1      matt 
     32        1.1      matt #include <sys/cdefs.h>
     33  1.20.10.1   thorpej __KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.20.10.1 2020/12/14 14:37:48 thorpej Exp $");
     34        1.1      matt 
     35        1.1      matt #include <sys/param.h>
     36        1.1      matt #include <sys/bus.h>
     37        1.1      matt #include <sys/device.h>
     38        1.1      matt #include <sys/intr.h>
     39        1.1      matt #include <sys/kernel.h>
     40        1.1      matt #include <sys/proc.h>
     41        1.1      matt #include <sys/systm.h>
     42        1.1      matt #include <sys/timetc.h>
     43        1.9  jmcneill #include <sys/xcall.h>
     44        1.1      matt 
     45        1.1      matt #include <prop/proplib.h>
     46        1.1      matt 
     47        1.1      matt #include <arm/cortex/a9tmr_reg.h>
     48        1.1      matt #include <arm/cortex/a9tmr_var.h>
     49        1.1      matt 
     50        1.1      matt #include <arm/cortex/mpcore_var.h>
     51        1.1      matt 
     52        1.1      matt static int a9tmr_match(device_t, cfdata_t, void *);
     53        1.1      matt static void a9tmr_attach(device_t, device_t, void *);
     54        1.1      matt 
     55        1.1      matt static u_int a9tmr_get_timecount(struct timecounter *);
     56        1.1      matt 
     57        1.1      matt static struct a9tmr_softc a9tmr_sc;
     58        1.1      matt 
     59        1.1      matt static struct timecounter a9tmr_timecounter = {
     60        1.1      matt 	.tc_get_timecount = a9tmr_get_timecount,
     61        1.1      matt 	.tc_poll_pps = 0,
     62        1.1      matt 	.tc_counter_mask = ~0u,
     63        1.1      matt 	.tc_frequency = 0,			/* set by cpu_initclocks() */
     64        1.1      matt 	.tc_name = NULL,			/* set by attach */
     65        1.1      matt 	.tc_quality = 500,
     66        1.1      matt 	.tc_priv = &a9tmr_sc,
     67        1.1      matt 	.tc_next = NULL,
     68        1.1      matt };
     69        1.1      matt 
     70       1.15   hkenken CFATTACH_DECL_NEW(arma9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
     71        1.1      matt 
     72        1.1      matt static inline uint32_t
     73        1.1      matt a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
     74        1.1      matt {
     75        1.1      matt 	return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
     76        1.1      matt }
     77        1.1      matt 
     78        1.1      matt static inline void
     79        1.1      matt a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
     80        1.1      matt {
     81        1.1      matt 	bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
     82        1.1      matt }
     83        1.1      matt 
     84        1.1      matt 
     85        1.1      matt /* ARGSUSED */
     86        1.1      matt static int
     87        1.1      matt a9tmr_match(device_t parent, cfdata_t cf, void *aux)
     88        1.1      matt {
     89        1.1      matt 	struct mpcore_attach_args * const mpcaa = aux;
     90        1.1      matt 
     91        1.1      matt 	if (a9tmr_sc.sc_dev != NULL)
     92        1.1      matt 		return 0;
     93        1.1      matt 
     94        1.5      matt 	if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
     95        1.5      matt 		return 0;
     96        1.5      matt 
     97       1.11  jmcneill 	if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) &&
     98       1.11  jmcneill 	    !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid))
     99        1.1      matt 		return 0;
    100        1.1      matt 
    101        1.1      matt 	if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
    102        1.1      matt 		return 0;
    103        1.1      matt 
    104        1.1      matt 	/*
    105        1.1      matt 	 * This isn't present on UP A9s (since CBAR isn't present).
    106        1.1      matt 	 */
    107        1.1      matt 	uint32_t mpidr = armreg_mpidr_read();
    108        1.1      matt 	if (mpidr == 0 || (mpidr & MPIDR_U))
    109        1.1      matt 		return 0;
    110        1.1      matt 
    111        1.1      matt 	return 1;
    112        1.1      matt }
    113        1.1      matt 
    114        1.1      matt static void
    115        1.1      matt a9tmr_attach(device_t parent, device_t self, void *aux)
    116        1.1      matt {
    117       1.14       ryo 	struct a9tmr_softc *sc = &a9tmr_sc;
    118        1.1      matt 	struct mpcore_attach_args * const mpcaa = aux;
    119        1.1      matt 	prop_dictionary_t dict = device_properties(self);
    120        1.1      matt 	char freqbuf[sizeof("XXX SHz")];
    121       1.12  jmcneill 	const char *cpu_type;
    122        1.1      matt 
    123        1.1      matt 	/*
    124       1.17   aymeric 	 * This runs at the ARM PERIPHCLOCK.
    125        1.1      matt 	 * The MD code should have setup our frequency for us.
    126        1.1      matt 	 */
    127       1.15   hkenken 	if (!prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq)) {
    128       1.15   hkenken 		dict = device_properties(parent);
    129       1.15   hkenken 		prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
    130       1.15   hkenken 	}
    131        1.1      matt 
    132        1.1      matt 	humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
    133        1.1      matt 
    134        1.1      matt 	aprint_naive("\n");
    135       1.12  jmcneill 	if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) {
    136       1.12  jmcneill 		cpu_type = "A5";
    137       1.12  jmcneill 	} else {
    138       1.12  jmcneill 		cpu_type = "A9";
    139       1.12  jmcneill 	}
    140       1.12  jmcneill 	aprint_normal(": %s Global 64-bit Timer (%s)\n", cpu_type, freqbuf);
    141        1.1      matt 
    142        1.2      matt 	self->dv_private = sc;
    143        1.1      matt 	sc->sc_dev = self;
    144        1.1      matt 	sc->sc_memt = mpcaa->mpcaa_memt;
    145        1.1      matt 	sc->sc_memh = mpcaa->mpcaa_memh;
    146        1.1      matt 
    147        1.3      matt 	evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
    148        1.3      matt 	    device_xname(self), "missing interrupts");
    149        1.3      matt 
    150       1.16   hkenken 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    151       1.16   hkenken 	    mpcaa->mpcaa_off1, TMR_GLOBAL_SIZE, &sc->sc_global_memh);
    152        1.1      matt 
    153       1.18   aymeric 	/* Enable the timer early for delay(), disable all other features */
    154       1.18   aymeric 	a9tmr_global_write(sc, TMR_GBL_CTL, TMR_CTL_ENABLE);
    155       1.18   aymeric 
    156       1.15   hkenken 	if (mpcaa->mpcaa_irq != -1) {
    157       1.15   hkenken 		sc->sc_global_ih = intr_establish(mpcaa->mpcaa_irq, IPL_CLOCK,
    158       1.15   hkenken 		    IST_EDGE | IST_MPSAFE, a9tmr_intr, NULL);
    159       1.15   hkenken 		if (sc->sc_global_ih == NULL)
    160       1.15   hkenken 			panic("%s: unable to register timer interrupt", __func__);
    161       1.15   hkenken 		aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
    162       1.15   hkenken 		    mpcaa->mpcaa_irq);
    163       1.15   hkenken 	}
    164        1.1      matt }
    165        1.1      matt 
    166        1.1      matt static inline uint64_t
    167        1.1      matt a9tmr_gettime(struct a9tmr_softc *sc)
    168        1.1      matt {
    169        1.1      matt 	uint32_t lo, hi;
    170        1.1      matt 
    171        1.1      matt 	do {
    172        1.1      matt 		hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
    173        1.1      matt 		lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
    174        1.1      matt 	} while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
    175        1.1      matt 
    176        1.1      matt 	return ((uint64_t)hi << 32) | lo;
    177        1.1      matt }
    178        1.1      matt 
    179        1.1      matt void
    180        1.1      matt a9tmr_init_cpu_clock(struct cpu_info *ci)
    181        1.1      matt {
    182        1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    183        1.1      matt 	uint64_t now = a9tmr_gettime(sc);
    184        1.1      matt 
    185        1.1      matt 	KASSERT(ci == curcpu());
    186        1.1      matt 
    187        1.1      matt 	ci->ci_lastintr = now;
    188        1.1      matt 
    189        1.1      matt 	a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
    190        1.1      matt 
    191        1.1      matt 	/*
    192  1.20.10.1   thorpej 	 * To update the compare register we have to disable comparisons first.
    193        1.1      matt 	 */
    194        1.1      matt 	uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
    195        1.1      matt 	if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
    196       1.14       ryo 		a9tmr_global_write(sc, TMR_GBL_CTL,
    197       1.14       ryo 		    ctl & ~TMR_GBL_CTL_CMP_ENABLE);
    198        1.1      matt 	}
    199        1.1      matt 
    200        1.1      matt 	/*
    201        1.1      matt 	 * Schedule the next interrupt.
    202        1.1      matt 	 */
    203        1.1      matt 	now += sc->sc_autoinc;
    204        1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
    205        1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
    206        1.1      matt 
    207        1.1      matt 	/*
    208        1.1      matt 	 * Re-enable the comparator and now enable interrupts.
    209        1.1      matt 	 */
    210        1.1      matt 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* clear interrupt pending */
    211       1.14       ryo 	ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE |
    212       1.14       ryo 	    TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
    213        1.1      matt 	a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
    214        1.1      matt #if 0
    215        1.1      matt 	printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
    216        1.1      matt 	    __func__, ci->ci_data.cpu_name,
    217        1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CTL),
    218        1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_AUTOINC),
    219        1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    220        1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    221        1.1      matt 	    a9tmr_gettime(sc));
    222        1.1      matt 
    223        1.1      matt 	int s = splsched();
    224        1.1      matt 	uint64_t when = now;
    225        1.1      matt 	u_int n = 0;
    226        1.1      matt 	while ((now = a9tmr_gettime(sc)) < when) {
    227        1.1      matt 		/* spin */
    228        1.1      matt 		n++;
    229        1.1      matt 		KASSERTMSG(n <= sc->sc_autoinc,
    230        1.1      matt 		    "spun %u times but only %"PRIu64" has passed",
    231        1.1      matt 		    n, when - now);
    232        1.1      matt 	}
    233        1.1      matt 	printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
    234        1.1      matt 	    __func__, ci->ci_data.cpu_name,
    235        1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_INT),
    236        1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    237        1.1      matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    238        1.1      matt 	    a9tmr_gettime(sc));
    239        1.1      matt 	splx(s);
    240        1.1      matt #elif 0
    241       1.20     skrll 	delay(1000000 / hz + 1000);
    242        1.1      matt #endif
    243        1.1      matt }
    244        1.1      matt 
    245        1.1      matt void
    246       1.15   hkenken a9tmr_cpu_initclocks(void)
    247        1.1      matt {
    248        1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    249       1.14       ryo 
    250        1.1      matt 	KASSERT(sc->sc_dev != NULL);
    251        1.1      matt 	KASSERT(sc->sc_freq != 0);
    252        1.1      matt 
    253        1.1      matt 	sc->sc_autoinc = sc->sc_freq / hz;
    254        1.1      matt 
    255        1.1      matt 	a9tmr_init_cpu_clock(curcpu());
    256        1.1      matt 
    257        1.1      matt 	a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
    258        1.1      matt 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    259        1.1      matt 
    260        1.1      matt 	tc_init(&a9tmr_timecounter);
    261        1.1      matt }
    262        1.1      matt 
    263        1.9  jmcneill static void
    264        1.9  jmcneill a9tmr_update_freq_cb(void *arg1, void *arg2)
    265        1.9  jmcneill {
    266        1.9  jmcneill 	a9tmr_init_cpu_clock(curcpu());
    267        1.9  jmcneill }
    268        1.9  jmcneill 
    269        1.1      matt void
    270        1.8  jmcneill a9tmr_update_freq(uint32_t freq)
    271        1.8  jmcneill {
    272        1.8  jmcneill 	struct a9tmr_softc * const sc = &a9tmr_sc;
    273        1.9  jmcneill 	uint64_t xc;
    274        1.8  jmcneill 
    275        1.8  jmcneill 	KASSERT(sc->sc_dev != NULL);
    276        1.8  jmcneill 	KASSERT(freq != 0);
    277        1.8  jmcneill 
    278        1.9  jmcneill 	tc_detach(&a9tmr_timecounter);
    279        1.9  jmcneill 
    280        1.8  jmcneill 	sc->sc_freq = freq;
    281        1.8  jmcneill 	sc->sc_autoinc = sc->sc_freq / hz;
    282        1.9  jmcneill 
    283        1.9  jmcneill 	xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL);
    284        1.9  jmcneill 	xc_wait(xc);
    285        1.9  jmcneill 
    286        1.8  jmcneill 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    287        1.9  jmcneill 	tc_init(&a9tmr_timecounter);
    288        1.8  jmcneill }
    289        1.8  jmcneill 
    290        1.8  jmcneill void
    291        1.1      matt a9tmr_delay(unsigned int n)
    292        1.1      matt {
    293        1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    294        1.1      matt 
    295        1.1      matt 	KASSERT(sc != NULL);
    296        1.1      matt 
    297       1.14       ryo 	uint32_t freq = sc->sc_freq ? sc->sc_freq :
    298       1.14       ryo 	    curcpu()->ci_data.cpu_cc_freq / 2;
    299        1.1      matt 	KASSERT(freq != 0);
    300        1.1      matt 
    301        1.1      matt 	/*
    302        1.1      matt 	 * not quite divide by 1000000 but close enough
    303        1.1      matt 	 * (higher by 1.3% which means we wait 1.3% longer).
    304        1.1      matt 	 */
    305        1.1      matt 	const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
    306        1.1      matt 
    307        1.1      matt 	const uint64_t delta = n * incr_per_us;
    308        1.1      matt 	const uint64_t base = a9tmr_gettime(sc);
    309        1.1      matt 	const uint64_t finish = base + delta;
    310        1.1      matt 
    311        1.1      matt 	while (a9tmr_gettime(sc) < finish) {
    312        1.1      matt 		/* spin */
    313        1.1      matt 	}
    314        1.1      matt }
    315        1.1      matt 
    316        1.1      matt /*
    317       1.15   hkenken  * a9tmr_intr:
    318        1.1      matt  *
    319        1.1      matt  *	Handle the hardclock interrupt.
    320        1.1      matt  */
    321       1.15   hkenken int
    322       1.15   hkenken a9tmr_intr(void *arg)
    323        1.1      matt {
    324        1.1      matt 	struct clockframe * const cf = arg;
    325        1.1      matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    326        1.1      matt 	struct cpu_info * const ci = curcpu();
    327       1.14       ryo 
    328        1.1      matt 	const uint64_t now = a9tmr_gettime(sc);
    329        1.1      matt 	uint64_t delta = now - ci->ci_lastintr;
    330        1.1      matt 
    331       1.14       ryo 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* Ack the interrupt */
    332        1.1      matt 
    333        1.1      matt #if 0
    334       1.20     skrll 	printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
    335        1.1      matt 	     __func__, cf, ci->ci_data.cpu_name, now, delta);
    336        1.1      matt #endif
    337       1.13       ryo 	KASSERTMSG(delta > sc->sc_autoinc / 64,
    338        1.1      matt 	    "%s: interrupting too quickly (delta=%"PRIu64")",
    339        1.1      matt 	    ci->ci_data.cpu_name, delta);
    340        1.1      matt 
    341        1.1      matt 	ci->ci_lastintr = now;
    342        1.1      matt 
    343        1.1      matt 	hardclock(cf);
    344        1.1      matt 
    345       1.13       ryo 	if (delta > sc->sc_autoinc) {
    346       1.13       ryo 		u_int ticks = hz;
    347       1.13       ryo 		for (delta -= sc->sc_autoinc;
    348       1.13       ryo 		     delta >= sc->sc_autoinc && ticks > 0;
    349       1.13       ryo 		     delta -= sc->sc_autoinc, ticks--) {
    350        1.3      matt #if 0
    351       1.13       ryo 			/*
    352       1.13       ryo 			 * Try to make up up to a seconds amount of
    353       1.13       ryo 			 * missed clock interrupts
    354       1.13       ryo 			 */
    355       1.13       ryo 			hardclock(cf);
    356        1.3      matt #else
    357       1.13       ryo 			sc->sc_ev_missing_ticks.ev_count++;
    358        1.3      matt #endif
    359       1.13       ryo 		}
    360       1.13       ryo 	}
    361        1.1      matt 
    362        1.1      matt 	return 1;
    363        1.1      matt }
    364        1.1      matt 
    365       1.19   aymeric /* XXX This conflicts with gtmr, hence the temporary weak alias kludge */
    366       1.19   aymeric #if 1
    367       1.19   aymeric void a9tmr_setstatclockrate(int);
    368        1.1      matt void
    369       1.19   aymeric a9tmr_setstatclockrate(int newhz)
    370        1.1      matt {
    371        1.1      matt }
    372       1.19   aymeric __weak_alias(setstatclockrate, a9tmr_setstatclockrate);
    373       1.19   aymeric #endif
    374        1.1      matt 
    375        1.1      matt static u_int
    376        1.1      matt a9tmr_get_timecount(struct timecounter *tc)
    377        1.1      matt {
    378        1.1      matt 	struct a9tmr_softc * const sc = tc->tc_priv;
    379        1.1      matt 
    380        1.2      matt 	return (u_int) (a9tmr_gettime(sc));
    381        1.1      matt }
    382