Home | History | Annotate | Line # | Download | only in cortex
a9tmr.c revision 1.7.4.1
      1  1.7.4.1   snj /*	$NetBSD: a9tmr.c,v 1.7.4.1 2015/03/21 08:51:18 snj Exp $	*/
      2      1.1  matt 
      3      1.1  matt /*-
      4      1.1  matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      5      1.1  matt  * All rights reserved.
      6      1.1  matt  *
      7      1.1  matt  * This code is derived from software contributed to The NetBSD Foundation
      8      1.1  matt  * by Matt Thomas
      9      1.1  matt  *
     10      1.1  matt  * Redistribution and use in source and binary forms, with or without
     11      1.1  matt  * modification, are permitted provided that the following conditions
     12      1.1  matt  * are met:
     13      1.1  matt  * 1. Redistributions of source code must retain the above copyright
     14      1.1  matt  *    notice, this list of conditions and the following disclaimer.
     15      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     17      1.1  matt  *    documentation and/or other materials provided with the distribution.
     18      1.1  matt  *
     19      1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.1  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     30      1.1  matt  */
     31      1.1  matt 
     32      1.1  matt #include <sys/cdefs.h>
     33  1.7.4.1   snj __KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.7.4.1 2015/03/21 08:51:18 snj Exp $");
     34      1.1  matt 
     35      1.1  matt #include <sys/param.h>
     36      1.1  matt #include <sys/bus.h>
     37      1.1  matt #include <sys/device.h>
     38      1.1  matt #include <sys/intr.h>
     39      1.1  matt #include <sys/kernel.h>
     40      1.1  matt #include <sys/proc.h>
     41      1.1  matt #include <sys/systm.h>
     42      1.1  matt #include <sys/timetc.h>
     43  1.7.4.1   snj #include <sys/xcall.h>
     44      1.1  matt 
     45      1.1  matt #include <prop/proplib.h>
     46      1.1  matt 
     47      1.1  matt #include <arm/cortex/a9tmr_reg.h>
     48      1.1  matt #include <arm/cortex/a9tmr_var.h>
     49      1.1  matt 
     50      1.1  matt #include <arm/cortex/mpcore_var.h>
     51      1.1  matt 
     52      1.1  matt static int a9tmr_match(device_t, cfdata_t, void *);
     53      1.1  matt static void a9tmr_attach(device_t, device_t, void *);
     54      1.1  matt 
     55      1.1  matt static int clockhandler(void *);
     56      1.1  matt 
     57      1.1  matt static u_int a9tmr_get_timecount(struct timecounter *);
     58      1.1  matt 
     59      1.1  matt static struct a9tmr_softc a9tmr_sc;
     60      1.1  matt 
     61      1.1  matt static struct timecounter a9tmr_timecounter = {
     62      1.1  matt 	.tc_get_timecount = a9tmr_get_timecount,
     63      1.1  matt 	.tc_poll_pps = 0,
     64      1.1  matt 	.tc_counter_mask = ~0u,
     65      1.1  matt 	.tc_frequency = 0,			/* set by cpu_initclocks() */
     66      1.1  matt 	.tc_name = NULL,			/* set by attach */
     67      1.1  matt 	.tc_quality = 500,
     68      1.1  matt 	.tc_priv = &a9tmr_sc,
     69      1.1  matt 	.tc_next = NULL,
     70      1.1  matt };
     71      1.1  matt 
     72      1.1  matt CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
     73      1.1  matt 
     74      1.1  matt static inline uint32_t
     75      1.1  matt a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
     76      1.1  matt {
     77      1.1  matt 	return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
     78      1.1  matt }
     79      1.1  matt 
     80      1.1  matt static inline void
     81      1.1  matt a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
     82      1.1  matt {
     83      1.1  matt 	bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
     84      1.1  matt }
     85      1.1  matt 
     86      1.1  matt 
     87      1.1  matt /* ARGSUSED */
     88      1.1  matt static int
     89      1.1  matt a9tmr_match(device_t parent, cfdata_t cf, void *aux)
     90      1.1  matt {
     91      1.1  matt 	struct mpcore_attach_args * const mpcaa = aux;
     92      1.1  matt 
     93      1.1  matt 	if (a9tmr_sc.sc_dev != NULL)
     94      1.1  matt 		return 0;
     95      1.1  matt 
     96      1.5  matt 	if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
     97      1.5  matt 		return 0;
     98      1.5  matt 
     99  1.7.4.1   snj 	if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) &&
    100  1.7.4.1   snj 	    !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid))
    101      1.1  matt 		return 0;
    102      1.1  matt 
    103      1.1  matt 	if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
    104      1.1  matt 		return 0;
    105      1.1  matt 
    106      1.1  matt 	/*
    107      1.1  matt 	 * This isn't present on UP A9s (since CBAR isn't present).
    108      1.1  matt 	 */
    109      1.1  matt 	uint32_t mpidr = armreg_mpidr_read();
    110      1.1  matt 	if (mpidr == 0 || (mpidr & MPIDR_U))
    111      1.1  matt 		return 0;
    112      1.1  matt 
    113      1.1  matt 	return 1;
    114      1.1  matt }
    115      1.1  matt 
    116      1.1  matt static void
    117      1.1  matt a9tmr_attach(device_t parent, device_t self, void *aux)
    118      1.1  matt {
    119      1.1  matt         struct a9tmr_softc *sc = &a9tmr_sc;
    120      1.1  matt 	struct mpcore_attach_args * const mpcaa = aux;
    121      1.1  matt 	prop_dictionary_t dict = device_properties(self);
    122      1.1  matt 	char freqbuf[sizeof("XXX SHz")];
    123  1.7.4.1   snj 	const char *cpu_type;
    124      1.1  matt 
    125      1.1  matt 	/*
    126      1.1  matt 	 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock.
    127      1.1  matt 	 * The MD code should have setup our frequency for us.
    128      1.1  matt 	 */
    129      1.6  matt 	prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
    130      1.1  matt 
    131      1.1  matt 	humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
    132      1.1  matt 
    133      1.1  matt 	aprint_naive("\n");
    134  1.7.4.1   snj 	if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) {
    135  1.7.4.1   snj 		cpu_type = "A5";
    136  1.7.4.1   snj 	} else {
    137  1.7.4.1   snj 		cpu_type = "A9";
    138  1.7.4.1   snj 	}
    139  1.7.4.1   snj 	aprint_normal(": %s Global 64-bit Timer (%s)\n", cpu_type, freqbuf);
    140      1.1  matt 
    141      1.2  matt 	self->dv_private = sc;
    142      1.1  matt 	sc->sc_dev = self;
    143      1.1  matt 	sc->sc_memt = mpcaa->mpcaa_memt;
    144      1.1  matt 	sc->sc_memh = mpcaa->mpcaa_memh;
    145      1.1  matt 
    146      1.3  matt 	evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
    147      1.3  matt 	    device_xname(self), "missing interrupts");
    148      1.3  matt 
    149      1.1  matt 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    150  1.7.4.1   snj 	    TMR_GLOBAL_BASE, TMR_GLOBAL_SIZE, &sc->sc_global_memh);
    151      1.1  matt 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    152      1.1  matt 	    TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh);
    153      1.1  matt 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    154      1.1  matt 	    TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh);
    155      1.1  matt 
    156      1.1  matt 	sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK,
    157      1.7  matt 	    IST_EDGE | IST_MPSAFE, clockhandler, NULL);
    158      1.1  matt 	if (sc->sc_global_ih == NULL)
    159      1.1  matt 		panic("%s: unable to register timer interrupt", __func__);
    160      1.1  matt 	aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
    161      1.1  matt 	    IRQ_A9TMR_PPI_GTIMER);
    162      1.1  matt }
    163      1.1  matt 
    164      1.1  matt static inline uint64_t
    165      1.1  matt a9tmr_gettime(struct a9tmr_softc *sc)
    166      1.1  matt {
    167      1.1  matt 	uint32_t lo, hi;
    168      1.1  matt 
    169      1.1  matt 	do {
    170      1.1  matt 		hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
    171      1.1  matt 		lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
    172      1.1  matt 	} while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
    173      1.1  matt 
    174      1.1  matt 	return ((uint64_t)hi << 32) | lo;
    175      1.1  matt }
    176      1.1  matt 
    177      1.1  matt void
    178      1.1  matt a9tmr_init_cpu_clock(struct cpu_info *ci)
    179      1.1  matt {
    180      1.1  matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    181      1.1  matt 	uint64_t now = a9tmr_gettime(sc);
    182      1.1  matt 
    183      1.1  matt 	KASSERT(ci == curcpu());
    184      1.1  matt 
    185      1.1  matt 	ci->ci_lastintr = now;
    186      1.1  matt 
    187      1.1  matt 	a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
    188      1.1  matt 
    189      1.1  matt 	/*
    190      1.1  matt 	 * To update the compare register we have to disable comparisions first.
    191      1.1  matt 	 */
    192      1.1  matt 	uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
    193      1.1  matt 	if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
    194      1.1  matt 		a9tmr_global_write(sc, TMR_GBL_CTL, ctl & ~TMR_GBL_CTL_CMP_ENABLE);
    195      1.1  matt 	}
    196      1.1  matt 
    197      1.1  matt 	/*
    198      1.1  matt 	 * Schedule the next interrupt.
    199      1.1  matt 	 */
    200      1.1  matt 	now += sc->sc_autoinc;
    201      1.1  matt 	a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
    202      1.1  matt 	a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
    203      1.1  matt 
    204      1.1  matt 	/*
    205      1.1  matt 	 * Re-enable the comparator and now enable interrupts.
    206      1.1  matt 	 */
    207      1.1  matt 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* clear interrupt pending */
    208      1.4  matt 	ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
    209      1.1  matt 	a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
    210      1.1  matt #if 0
    211      1.1  matt 	printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
    212      1.1  matt 	    __func__, ci->ci_data.cpu_name,
    213      1.1  matt 	    a9tmr_global_read(sc, TMR_GBL_CTL),
    214      1.1  matt 	    a9tmr_global_read(sc, TMR_GBL_AUTOINC),
    215      1.1  matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    216      1.1  matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    217      1.1  matt 	    a9tmr_gettime(sc));
    218      1.1  matt 
    219      1.1  matt 	int s = splsched();
    220      1.1  matt 	uint64_t when = now;
    221      1.1  matt 	u_int n = 0;
    222      1.1  matt 	while ((now = a9tmr_gettime(sc)) < when) {
    223      1.1  matt 		/* spin */
    224      1.1  matt 		n++;
    225      1.1  matt 		KASSERTMSG(n <= sc->sc_autoinc,
    226      1.1  matt 		    "spun %u times but only %"PRIu64" has passed",
    227      1.1  matt 		    n, when - now);
    228      1.1  matt 	}
    229      1.1  matt 	printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
    230      1.1  matt 	    __func__, ci->ci_data.cpu_name,
    231      1.1  matt 	    a9tmr_global_read(sc, TMR_GBL_INT),
    232      1.1  matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    233      1.1  matt 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    234      1.1  matt 	    a9tmr_gettime(sc));
    235      1.1  matt 	splx(s);
    236      1.1  matt #elif 0
    237      1.1  matt 	delay(1000000 / hz + 1000);
    238      1.1  matt #endif
    239      1.1  matt }
    240      1.1  matt 
    241      1.1  matt void
    242      1.1  matt cpu_initclocks(void)
    243      1.1  matt {
    244      1.1  matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    245      1.1  matt 
    246      1.1  matt 	KASSERT(sc->sc_dev != NULL);
    247      1.1  matt 	KASSERT(sc->sc_freq != 0);
    248      1.1  matt 
    249      1.1  matt 	sc->sc_autoinc = sc->sc_freq / hz;
    250      1.1  matt 
    251      1.1  matt 	a9tmr_init_cpu_clock(curcpu());
    252      1.1  matt 
    253      1.1  matt 	a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
    254      1.1  matt 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    255      1.1  matt 
    256      1.1  matt 	tc_init(&a9tmr_timecounter);
    257      1.1  matt }
    258      1.1  matt 
    259  1.7.4.1   snj static void
    260  1.7.4.1   snj a9tmr_update_freq_cb(void *arg1, void *arg2)
    261  1.7.4.1   snj {
    262  1.7.4.1   snj 	a9tmr_init_cpu_clock(curcpu());
    263  1.7.4.1   snj }
    264  1.7.4.1   snj 
    265  1.7.4.1   snj void
    266  1.7.4.1   snj a9tmr_update_freq(uint32_t freq)
    267  1.7.4.1   snj {
    268  1.7.4.1   snj 	struct a9tmr_softc * const sc = &a9tmr_sc;
    269  1.7.4.1   snj 	uint64_t xc;
    270  1.7.4.1   snj 
    271  1.7.4.1   snj 	KASSERT(sc->sc_dev != NULL);
    272  1.7.4.1   snj 	KASSERT(freq != 0);
    273  1.7.4.1   snj 
    274  1.7.4.1   snj 	tc_detach(&a9tmr_timecounter);
    275  1.7.4.1   snj 
    276  1.7.4.1   snj 	sc->sc_freq = freq;
    277  1.7.4.1   snj 	sc->sc_autoinc = sc->sc_freq / hz;
    278  1.7.4.1   snj 
    279  1.7.4.1   snj 	xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL);
    280  1.7.4.1   snj 	xc_wait(xc);
    281  1.7.4.1   snj 
    282  1.7.4.1   snj 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    283  1.7.4.1   snj 	tc_init(&a9tmr_timecounter);
    284  1.7.4.1   snj }
    285  1.7.4.1   snj 
    286      1.1  matt void
    287      1.1  matt a9tmr_delay(unsigned int n)
    288      1.1  matt {
    289      1.1  matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    290      1.1  matt 
    291      1.1  matt 	KASSERT(sc != NULL);
    292      1.1  matt 
    293      1.1  matt 	uint32_t freq = sc->sc_freq ? sc->sc_freq : curcpu()->ci_data.cpu_cc_freq / 2;
    294      1.1  matt 	KASSERT(freq != 0);
    295      1.1  matt 
    296      1.1  matt 	/*
    297      1.1  matt 	 * not quite divide by 1000000 but close enough
    298      1.1  matt 	 * (higher by 1.3% which means we wait 1.3% longer).
    299      1.1  matt 	 */
    300      1.1  matt 	const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
    301      1.1  matt 
    302      1.1  matt 	const uint64_t delta = n * incr_per_us;
    303      1.1  matt 	const uint64_t base = a9tmr_gettime(sc);
    304      1.1  matt 	const uint64_t finish = base + delta;
    305      1.1  matt 
    306      1.1  matt 	while (a9tmr_gettime(sc) < finish) {
    307      1.1  matt 		/* spin */
    308      1.1  matt 	}
    309      1.1  matt }
    310      1.1  matt 
    311      1.1  matt /*
    312      1.1  matt  * clockhandler:
    313      1.1  matt  *
    314      1.1  matt  *	Handle the hardclock interrupt.
    315      1.1  matt  */
    316      1.1  matt static int
    317      1.1  matt clockhandler(void *arg)
    318      1.1  matt {
    319      1.1  matt 	struct clockframe * const cf = arg;
    320      1.1  matt 	struct a9tmr_softc * const sc = &a9tmr_sc;
    321      1.1  matt 	struct cpu_info * const ci = curcpu();
    322      1.1  matt 
    323      1.1  matt 	const uint64_t now = a9tmr_gettime(sc);
    324      1.1  matt 	uint64_t delta = now - ci->ci_lastintr;
    325      1.1  matt 
    326      1.1  matt 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	// Ack the interrupt
    327      1.1  matt 
    328      1.1  matt #if 0
    329      1.1  matt 	printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
    330      1.1  matt 	     __func__, cf, ci->ci_data.cpu_name, now, delta);
    331      1.1  matt #endif
    332      1.1  matt 	KASSERTMSG(delta > sc->sc_autoinc / 100,
    333      1.1  matt 	    "%s: interrupting too quickly (delta=%"PRIu64")",
    334      1.1  matt 	    ci->ci_data.cpu_name, delta);
    335      1.1  matt 
    336      1.1  matt 	ci->ci_lastintr = now;
    337      1.1  matt 
    338      1.1  matt 	hardclock(cf);
    339      1.1  matt 
    340      1.3  matt #if 0
    341      1.1  matt 	/*
    342      1.1  matt 	 * Try to make up up to a seconds amount of missed clock interrupts
    343      1.1  matt 	 */
    344      1.1  matt 	u_int ticks = hz;
    345      1.1  matt 	for (delta -= sc->sc_autoinc;
    346      1.1  matt 	     ticks > 0 && delta >= sc->sc_autoinc;
    347      1.1  matt 	     delta -= sc->sc_autoinc, ticks--) {
    348      1.1  matt 		hardclock(cf);
    349      1.1  matt 	}
    350      1.3  matt #else
    351      1.3  matt 	if (delta > sc->sc_autoinc)
    352      1.3  matt 		sc->sc_ev_missing_ticks.ev_count += delta / sc->sc_autoinc;
    353      1.3  matt #endif
    354      1.1  matt 
    355      1.1  matt 	return 1;
    356      1.1  matt }
    357      1.1  matt 
    358      1.1  matt void
    359      1.1  matt setstatclockrate(int newhz)
    360      1.1  matt {
    361      1.1  matt }
    362      1.1  matt 
    363      1.1  matt static u_int
    364      1.1  matt a9tmr_get_timecount(struct timecounter *tc)
    365      1.1  matt {
    366      1.1  matt 	struct a9tmr_softc * const sc = tc->tc_priv;
    367      1.1  matt 
    368      1.2  matt 	return (u_int) (a9tmr_gettime(sc));
    369      1.1  matt }
    370