Home | History | Annotate | Line # | Download | only in cortex
a9tmr.c revision 1.6
      1 /*	$NetBSD: a9tmr.c,v 1.6 2013/06/20 05:30:21 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Matt Thomas
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.6 2013/06/20 05:30:21 matt Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/bus.h>
     37 #include <sys/device.h>
     38 #include <sys/intr.h>
     39 #include <sys/kernel.h>
     40 #include <sys/proc.h>
     41 #include <sys/systm.h>
     42 #include <sys/timetc.h>
     43 
     44 #include <prop/proplib.h>
     45 
     46 #include <arm/cortex/a9tmr_reg.h>
     47 #include <arm/cortex/a9tmr_var.h>
     48 
     49 #include <arm/cortex/mpcore_var.h>
     50 
     51 static int a9tmr_match(device_t, cfdata_t, void *);
     52 static void a9tmr_attach(device_t, device_t, void *);
     53 
     54 static int clockhandler(void *);
     55 
     56 static u_int a9tmr_get_timecount(struct timecounter *);
     57 
     58 static struct a9tmr_softc a9tmr_sc;
     59 
     60 static struct timecounter a9tmr_timecounter = {
     61 	.tc_get_timecount = a9tmr_get_timecount,
     62 	.tc_poll_pps = 0,
     63 	.tc_counter_mask = ~0u,
     64 	.tc_frequency = 0,			/* set by cpu_initclocks() */
     65 	.tc_name = NULL,			/* set by attach */
     66 	.tc_quality = 500,
     67 	.tc_priv = &a9tmr_sc,
     68 	.tc_next = NULL,
     69 };
     70 
     71 CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
     72 
     73 static inline uint32_t
     74 a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
     75 {
     76 	return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
     77 }
     78 
     79 static inline void
     80 a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
     81 {
     82 	bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
     83 }
     84 
     85 
     86 /* ARGSUSED */
     87 static int
     88 a9tmr_match(device_t parent, cfdata_t cf, void *aux)
     89 {
     90 	struct mpcore_attach_args * const mpcaa = aux;
     91 
     92 	if (a9tmr_sc.sc_dev != NULL)
     93 		return 0;
     94 
     95 	if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
     96 		return 0;
     97 
     98 	if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid))
     99 		return 0;
    100 
    101 	if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
    102 		return 0;
    103 
    104 	/*
    105 	 * This isn't present on UP A9s (since CBAR isn't present).
    106 	 */
    107 	uint32_t mpidr = armreg_mpidr_read();
    108 	if (mpidr == 0 || (mpidr & MPIDR_U))
    109 		return 0;
    110 
    111 	return 1;
    112 }
    113 
    114 static void
    115 a9tmr_attach(device_t parent, device_t self, void *aux)
    116 {
    117         struct a9tmr_softc *sc = &a9tmr_sc;
    118 	struct mpcore_attach_args * const mpcaa = aux;
    119 	prop_dictionary_t dict = device_properties(self);
    120 	char freqbuf[sizeof("XXX SHz")];
    121 
    122 	/*
    123 	 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock.
    124 	 * The MD code should have setup our frequency for us.
    125 	 */
    126 	prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
    127 
    128 	humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
    129 
    130 	aprint_naive("\n");
    131 	aprint_normal(": A9 Global 64-bit Timer (%s)\n", freqbuf);
    132 
    133 	self->dv_private = sc;
    134 	sc->sc_dev = self;
    135 	sc->sc_memt = mpcaa->mpcaa_memt;
    136 	sc->sc_memh = mpcaa->mpcaa_memh;
    137 
    138 	evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
    139 	    device_xname(self), "missing interrupts");
    140 
    141 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    142 	    TMR_GLOBAL_BASE, TMR_GLOBAL_BASE, &sc->sc_global_memh);
    143 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    144 	    TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh);
    145 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
    146 	    TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh);
    147 
    148 	sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK,
    149 	    IST_EDGE, clockhandler, NULL);
    150 	if (sc->sc_global_ih == NULL)
    151 		panic("%s: unable to register timer interrupt", __func__);
    152 	aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
    153 	    IRQ_A9TMR_PPI_GTIMER);
    154 }
    155 
    156 static inline uint64_t
    157 a9tmr_gettime(struct a9tmr_softc *sc)
    158 {
    159 	uint32_t lo, hi;
    160 
    161 	do {
    162 		hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
    163 		lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
    164 	} while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
    165 
    166 	return ((uint64_t)hi << 32) | lo;
    167 }
    168 
    169 void
    170 a9tmr_init_cpu_clock(struct cpu_info *ci)
    171 {
    172 	struct a9tmr_softc * const sc = &a9tmr_sc;
    173 	uint64_t now = a9tmr_gettime(sc);
    174 
    175 	KASSERT(ci == curcpu());
    176 
    177 	ci->ci_lastintr = now;
    178 
    179 	a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
    180 
    181 	/*
    182 	 * To update the compare register we have to disable comparisions first.
    183 	 */
    184 	uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
    185 	if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
    186 		a9tmr_global_write(sc, TMR_GBL_CTL, ctl & ~TMR_GBL_CTL_CMP_ENABLE);
    187 	}
    188 
    189 	/*
    190 	 * Schedule the next interrupt.
    191 	 */
    192 	now += sc->sc_autoinc;
    193 	a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
    194 	a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
    195 
    196 	/*
    197 	 * Re-enable the comparator and now enable interrupts.
    198 	 */
    199 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* clear interrupt pending */
    200 	ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
    201 	a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
    202 #if 0
    203 	printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
    204 	    __func__, ci->ci_data.cpu_name,
    205 	    a9tmr_global_read(sc, TMR_GBL_CTL),
    206 	    a9tmr_global_read(sc, TMR_GBL_AUTOINC),
    207 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    208 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    209 	    a9tmr_gettime(sc));
    210 
    211 	int s = splsched();
    212 	uint64_t when = now;
    213 	u_int n = 0;
    214 	while ((now = a9tmr_gettime(sc)) < when) {
    215 		/* spin */
    216 		n++;
    217 		KASSERTMSG(n <= sc->sc_autoinc,
    218 		    "spun %u times but only %"PRIu64" has passed",
    219 		    n, when - now);
    220 	}
    221 	printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
    222 	    __func__, ci->ci_data.cpu_name,
    223 	    a9tmr_global_read(sc, TMR_GBL_INT),
    224 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
    225 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
    226 	    a9tmr_gettime(sc));
    227 	splx(s);
    228 #elif 0
    229 	delay(1000000 / hz + 1000);
    230 #endif
    231 }
    232 
    233 void
    234 cpu_initclocks(void)
    235 {
    236 	struct a9tmr_softc * const sc = &a9tmr_sc;
    237 
    238 	KASSERT(sc->sc_dev != NULL);
    239 	KASSERT(sc->sc_freq != 0);
    240 
    241 	sc->sc_autoinc = sc->sc_freq / hz;
    242 
    243 	a9tmr_init_cpu_clock(curcpu());
    244 
    245 	a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
    246 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
    247 
    248 	tc_init(&a9tmr_timecounter);
    249 }
    250 
    251 void
    252 a9tmr_delay(unsigned int n)
    253 {
    254 	struct a9tmr_softc * const sc = &a9tmr_sc;
    255 
    256 	KASSERT(sc != NULL);
    257 
    258 	uint32_t freq = sc->sc_freq ? sc->sc_freq : curcpu()->ci_data.cpu_cc_freq / 2;
    259 	KASSERT(freq != 0);
    260 
    261 	/*
    262 	 * not quite divide by 1000000 but close enough
    263 	 * (higher by 1.3% which means we wait 1.3% longer).
    264 	 */
    265 	const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
    266 
    267 	const uint64_t delta = n * incr_per_us;
    268 	const uint64_t base = a9tmr_gettime(sc);
    269 	const uint64_t finish = base + delta;
    270 
    271 	while (a9tmr_gettime(sc) < finish) {
    272 		/* spin */
    273 	}
    274 }
    275 
    276 /*
    277  * clockhandler:
    278  *
    279  *	Handle the hardclock interrupt.
    280  */
    281 static int
    282 clockhandler(void *arg)
    283 {
    284 	struct clockframe * const cf = arg;
    285 	struct a9tmr_softc * const sc = &a9tmr_sc;
    286 	struct cpu_info * const ci = curcpu();
    287 
    288 	const uint64_t now = a9tmr_gettime(sc);
    289 	uint64_t delta = now - ci->ci_lastintr;
    290 
    291 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	// Ack the interrupt
    292 
    293 #if 0
    294 	printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
    295 	     __func__, cf, ci->ci_data.cpu_name, now, delta);
    296 #endif
    297 	KASSERTMSG(delta > sc->sc_autoinc / 100,
    298 	    "%s: interrupting too quickly (delta=%"PRIu64")",
    299 	    ci->ci_data.cpu_name, delta);
    300 
    301 	ci->ci_lastintr = now;
    302 
    303 	hardclock(cf);
    304 
    305 #if 0
    306 	/*
    307 	 * Try to make up up to a seconds amount of missed clock interrupts
    308 	 */
    309 	u_int ticks = hz;
    310 	for (delta -= sc->sc_autoinc;
    311 	     ticks > 0 && delta >= sc->sc_autoinc;
    312 	     delta -= sc->sc_autoinc, ticks--) {
    313 		hardclock(cf);
    314 	}
    315 #else
    316 	if (delta > sc->sc_autoinc)
    317 		sc->sc_ev_missing_ticks.ev_count += delta / sc->sc_autoinc;
    318 #endif
    319 
    320 	return 1;
    321 }
    322 
    323 void
    324 setstatclockrate(int newhz)
    325 {
    326 }
    327 
    328 static u_int
    329 a9tmr_get_timecount(struct timecounter *tc)
    330 {
    331 	struct a9tmr_softc * const sc = tc->tc_priv;
    332 
    333 	return (u_int) (a9tmr_gettime(sc));
    334 }
    335