gic.c revision 1.51 1 1.51 skrll /* $NetBSD: gic.c,v 1.51 2021/10/21 04:47:57 skrll Exp $ */
2 1.1 matt /*-
3 1.1 matt * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 1.1 matt * All rights reserved.
5 1.1 matt *
6 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.1 matt * by Matt Thomas of 3am Software Foundry.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt *
18 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
29 1.1 matt */
30 1.1 matt
31 1.7 matt #include "opt_ddb.h"
32 1.11 skrll #include "opt_multiprocessor.h"
33 1.49 jmcneill #include "opt_gic.h"
34 1.7 matt
35 1.1 matt #define _INTR_PRIVATE
36 1.1 matt
37 1.1 matt #include <sys/cdefs.h>
38 1.51 skrll __KERNEL_RCSID(0, "$NetBSD: gic.c,v 1.51 2021/10/21 04:47:57 skrll Exp $");
39 1.1 matt
40 1.1 matt #include <sys/param.h>
41 1.1 matt #include <sys/bus.h>
42 1.31 skrll #include <sys/cpu.h>
43 1.1 matt #include <sys/device.h>
44 1.1 matt #include <sys/evcnt.h>
45 1.1 matt #include <sys/intr.h>
46 1.1 matt #include <sys/proc.h>
47 1.36 jmcneill #include <sys/atomic.h>
48 1.1 matt
49 1.1 matt #include <arm/armreg.h>
50 1.1 matt #include <arm/cpufunc.h>
51 1.33 ryo #include <arm/locore.h>
52 1.1 matt
53 1.1 matt #include <arm/cortex/gic_reg.h>
54 1.49 jmcneill #include <arm/cortex/mpcore_var.h>
55 1.49 jmcneill
56 1.49 jmcneill #ifdef GIC_SPLFUNCS
57 1.48 jmcneill #include <arm/cortex/gic_splfuncs.h>
58 1.49 jmcneill #endif
59 1.1 matt
60 1.21 jmcneill void armgic_irq_handler(void *);
61 1.21 jmcneill
62 1.30 jmcneill #define ARMGIC_SGI_IPIBASE 0
63 1.30 jmcneill
64 1.30 jmcneill /*
65 1.30 jmcneill * SGIs 8-16 are reserved for use by ARM Trusted Firmware.
66 1.30 jmcneill */
67 1.30 jmcneill __CTASSERT(ARMGIC_SGI_IPIBASE + NIPI <= 8);
68 1.1 matt
69 1.1 matt static int armgic_match(device_t, cfdata_t, void *);
70 1.1 matt static void armgic_attach(device_t, device_t, void *);
71 1.1 matt
72 1.1 matt static void armgic_set_priority(struct pic_softc *, int);
73 1.1 matt static void armgic_unblock_irqs(struct pic_softc *, size_t, uint32_t);
74 1.1 matt static void armgic_block_irqs(struct pic_softc *, size_t, uint32_t);
75 1.1 matt static void armgic_establish_irq(struct pic_softc *, struct intrsource *);
76 1.1 matt #if 0
77 1.1 matt static void armgic_source_name(struct pic_softc *, int, char *, size_t);
78 1.1 matt #endif
79 1.1 matt
80 1.1 matt #ifdef MULTIPROCESSOR
81 1.1 matt static void armgic_cpu_init(struct pic_softc *, struct cpu_info *);
82 1.1 matt static void armgic_ipi_send(struct pic_softc *, const kcpuset_t *, u_long);
83 1.35 jmcneill static void armgic_get_affinity(struct pic_softc *, size_t, kcpuset_t *);
84 1.35 jmcneill static int armgic_set_affinity(struct pic_softc *, size_t, const kcpuset_t *);
85 1.1 matt #endif
86 1.1 matt
87 1.1 matt static const struct pic_ops armgic_picops = {
88 1.1 matt .pic_unblock_irqs = armgic_unblock_irqs,
89 1.1 matt .pic_block_irqs = armgic_block_irqs,
90 1.1 matt .pic_establish_irq = armgic_establish_irq,
91 1.1 matt #if 0
92 1.1 matt .pic_source_name = armgic_source_name,
93 1.1 matt #endif
94 1.1 matt .pic_set_priority = armgic_set_priority,
95 1.1 matt #ifdef MULTIPROCESSOR
96 1.1 matt .pic_cpu_init = armgic_cpu_init,
97 1.1 matt .pic_ipi_send = armgic_ipi_send,
98 1.35 jmcneill .pic_get_affinity = armgic_get_affinity,
99 1.35 jmcneill .pic_set_affinity = armgic_set_affinity,
100 1.1 matt #endif
101 1.1 matt };
102 1.1 matt
103 1.1 matt #define PICTOSOFTC(pic) ((struct armgic_softc *)(pic))
104 1.1 matt
105 1.1 matt static struct armgic_softc {
106 1.1 matt struct pic_softc sc_pic;
107 1.1 matt device_t sc_dev;
108 1.1 matt bus_space_tag_t sc_memt;
109 1.4 matt bus_space_handle_t sc_gicch;
110 1.4 matt bus_space_handle_t sc_gicdh;
111 1.1 matt size_t sc_gic_lines;
112 1.1 matt uint32_t sc_gic_type;
113 1.1 matt uint32_t sc_gic_valid_lines[1024/32];
114 1.1 matt uint32_t sc_enabled_local;
115 1.7 matt #ifdef MULTIPROCESSOR
116 1.35 jmcneill uint32_t sc_target[MAXCPUS];
117 1.7 matt uint32_t sc_mptargets;
118 1.7 matt #endif
119 1.24 jmcneill uint32_t sc_bptargets;
120 1.1 matt } armgic_softc = {
121 1.1 matt .sc_pic = {
122 1.1 matt .pic_ops = &armgic_picops,
123 1.1 matt .pic_name = "armgic",
124 1.1 matt },
125 1.1 matt };
126 1.1 matt
127 1.1 matt static struct intrsource armgic_dummy_source;
128 1.1 matt
129 1.1 matt __CTASSERT(NIPL == 8);
130 1.1 matt
131 1.1 matt /*
132 1.6 matt * GIC register are always in little-endian. It is assumed the bus_space
133 1.6 matt * will do any endian conversion required.
134 1.1 matt */
135 1.1 matt static inline uint32_t
136 1.1 matt gicc_read(struct armgic_softc *sc, bus_size_t o)
137 1.1 matt {
138 1.6 matt return bus_space_read_4(sc->sc_memt, sc->sc_gicch, o);
139 1.1 matt }
140 1.1 matt
141 1.1 matt static inline void
142 1.1 matt gicc_write(struct armgic_softc *sc, bus_size_t o, uint32_t v)
143 1.1 matt {
144 1.4 matt bus_space_write_4(sc->sc_memt, sc->sc_gicch, o, v);
145 1.1 matt }
146 1.1 matt
147 1.1 matt static inline uint32_t
148 1.1 matt gicd_read(struct armgic_softc *sc, bus_size_t o)
149 1.1 matt {
150 1.6 matt return bus_space_read_4(sc->sc_memt, sc->sc_gicdh, o);
151 1.1 matt }
152 1.1 matt
153 1.1 matt static inline void
154 1.1 matt gicd_write(struct armgic_softc *sc, bus_size_t o, uint32_t v)
155 1.1 matt {
156 1.4 matt bus_space_write_4(sc->sc_memt, sc->sc_gicdh, o, v);
157 1.1 matt }
158 1.1 matt
159 1.24 jmcneill static uint32_t
160 1.24 jmcneill gicd_find_targets(struct armgic_softc *sc)
161 1.24 jmcneill {
162 1.24 jmcneill uint32_t targets = 0;
163 1.24 jmcneill
164 1.24 jmcneill /*
165 1.24 jmcneill * GICD_ITARGETSR0 through 7 are read-only, and each field returns
166 1.24 jmcneill * a value that corresponds only to the processor reading the
167 1.24 jmcneill * register. Use this to determine the current processor's
168 1.24 jmcneill * CPU interface number.
169 1.24 jmcneill */
170 1.24 jmcneill for (int i = 0; i < 8; i++) {
171 1.24 jmcneill targets = gicd_read(sc, GICD_ITARGETSRn(i));
172 1.24 jmcneill if (targets != 0)
173 1.24 jmcneill break;
174 1.24 jmcneill }
175 1.24 jmcneill targets |= (targets >> 16);
176 1.24 jmcneill targets |= (targets >> 8);
177 1.24 jmcneill targets &= 0xff;
178 1.24 jmcneill
179 1.24 jmcneill return targets ? targets : 1;
180 1.24 jmcneill }
181 1.24 jmcneill
182 1.1 matt /*
183 1.1 matt * In the GIC prioritization scheme, lower numbers have higher priority.
184 1.9 matt * Only write priorities that could be non-secure.
185 1.1 matt */
186 1.1 matt static inline uint32_t
187 1.1 matt armgic_ipl_to_priority(int ipl)
188 1.1 matt {
189 1.9 matt return GICC_PMR_NONSECURE
190 1.9 matt | ((IPL_HIGH - ipl) * GICC_PMR_NS_PRIORITIES / NIPL);
191 1.1 matt }
192 1.1 matt
193 1.5 joerg #if 0
194 1.1 matt static inline int
195 1.1 matt armgic_priority_to_ipl(uint32_t priority)
196 1.1 matt {
197 1.9 matt return IPL_HIGH
198 1.9 matt - (priority & ~GICC_PMR_NONSECURE) * NIPL / GICC_PMR_NS_PRIORITIES;
199 1.1 matt }
200 1.5 joerg #endif
201 1.1 matt
202 1.1 matt static void
203 1.1 matt armgic_unblock_irqs(struct pic_softc *pic, size_t irq_base, uint32_t irq_mask)
204 1.1 matt {
205 1.1 matt struct armgic_softc * const sc = PICTOSOFTC(pic);
206 1.1 matt const size_t group = irq_base / 32;
207 1.1 matt
208 1.1 matt if (group == 0)
209 1.1 matt sc->sc_enabled_local |= irq_mask;
210 1.1 matt
211 1.1 matt gicd_write(sc, GICD_ISENABLERn(group), irq_mask);
212 1.1 matt }
213 1.1 matt
214 1.1 matt static void
215 1.1 matt armgic_block_irqs(struct pic_softc *pic, size_t irq_base, uint32_t irq_mask)
216 1.1 matt {
217 1.1 matt struct armgic_softc * const sc = PICTOSOFTC(pic);
218 1.1 matt const size_t group = irq_base / 32;
219 1.1 matt
220 1.1 matt if (group == 0)
221 1.1 matt sc->sc_enabled_local &= ~irq_mask;
222 1.1 matt
223 1.1 matt gicd_write(sc, GICD_ICENABLERn(group), irq_mask);
224 1.1 matt }
225 1.1 matt
226 1.1 matt static void
227 1.1 matt armgic_set_priority(struct pic_softc *pic, int ipl)
228 1.1 matt {
229 1.1 matt struct armgic_softc * const sc = PICTOSOFTC(pic);
230 1.45 jmcneill struct cpu_info * const ci = curcpu();
231 1.1 matt
232 1.48 jmcneill if (ipl < ci->ci_hwpl) {
233 1.45 jmcneill /* Lowering priority mask */
234 1.48 jmcneill ci->ci_hwpl = ipl;
235 1.48 jmcneill gicc_write(sc, GICC_PMR, armgic_ipl_to_priority(ipl));
236 1.45 jmcneill }
237 1.1 matt }
238 1.1 matt
239 1.35 jmcneill #ifdef MULTIPROCESSOR
240 1.35 jmcneill static void
241 1.35 jmcneill armgic_get_affinity(struct pic_softc *pic, size_t irq, kcpuset_t *affinity)
242 1.35 jmcneill {
243 1.35 jmcneill struct armgic_softc * const sc = PICTOSOFTC(pic);
244 1.35 jmcneill const size_t group = irq / 32;
245 1.35 jmcneill int n;
246 1.35 jmcneill
247 1.35 jmcneill kcpuset_zero(affinity);
248 1.35 jmcneill if (group == 0) {
249 1.35 jmcneill /* All CPUs are targets for group 0 (SGI/PPI) */
250 1.35 jmcneill for (n = 0; n < MAXCPUS; n++) {
251 1.35 jmcneill if (sc->sc_target[n] != 0)
252 1.35 jmcneill kcpuset_set(affinity, n);
253 1.35 jmcneill }
254 1.35 jmcneill } else {
255 1.35 jmcneill /* Find distributor targets (SPI) */
256 1.35 jmcneill const u_int byte_shift = 8 * (irq & 3);
257 1.35 jmcneill const bus_size_t targets_reg = GICD_ITARGETSRn(irq / 4);
258 1.35 jmcneill const uint32_t targets = gicd_read(sc, targets_reg);
259 1.35 jmcneill const uint32_t targets_val = (targets >> byte_shift) & 0xff;
260 1.35 jmcneill
261 1.35 jmcneill for (n = 0; n < MAXCPUS; n++) {
262 1.35 jmcneill if (sc->sc_target[n] & targets_val)
263 1.35 jmcneill kcpuset_set(affinity, n);
264 1.35 jmcneill }
265 1.35 jmcneill }
266 1.35 jmcneill }
267 1.35 jmcneill
268 1.35 jmcneill static int
269 1.35 jmcneill armgic_set_affinity(struct pic_softc *pic, size_t irq,
270 1.35 jmcneill const kcpuset_t *affinity)
271 1.35 jmcneill {
272 1.35 jmcneill struct armgic_softc * const sc = PICTOSOFTC(pic);
273 1.35 jmcneill const size_t group = irq / 32;
274 1.35 jmcneill if (group == 0)
275 1.35 jmcneill return EINVAL;
276 1.35 jmcneill
277 1.35 jmcneill const u_int byte_shift = 8 * (irq & 3);
278 1.35 jmcneill const bus_size_t targets_reg = GICD_ITARGETSRn(irq / 4);
279 1.35 jmcneill uint32_t targets_val = 0;
280 1.35 jmcneill int n;
281 1.35 jmcneill
282 1.35 jmcneill for (n = 0; n < MAXCPUS; n++) {
283 1.35 jmcneill if (kcpuset_isset(affinity, n))
284 1.35 jmcneill targets_val |= sc->sc_target[n];
285 1.35 jmcneill }
286 1.35 jmcneill
287 1.35 jmcneill uint32_t targets = gicd_read(sc, targets_reg);
288 1.35 jmcneill targets &= ~(0xff << byte_shift);
289 1.35 jmcneill targets |= (targets_val << byte_shift);
290 1.35 jmcneill gicd_write(sc, targets_reg, targets);
291 1.35 jmcneill
292 1.35 jmcneill return 0;
293 1.35 jmcneill }
294 1.35 jmcneill #endif
295 1.35 jmcneill
296 1.1 matt #ifdef __HAVE_PIC_FAST_SOFTINTS
297 1.1 matt void
298 1.1 matt softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep_p)
299 1.1 matt {
300 1.1 matt lwp_t **lp = &l->l_cpu->ci_softlwps[level];
301 1.1 matt KASSERT(*lp == NULL || *lp == l);
302 1.1 matt *lp = l;
303 1.1 matt /*
304 1.1 matt * Really easy. Just tell it to trigger the local CPU.
305 1.1 matt */
306 1.1 matt *machdep_p = GICD_SGIR_TargetListFilter_Me
307 1.1 matt | __SHIFTIN(level, GICD_SGIR_SGIINTID);
308 1.1 matt }
309 1.1 matt
310 1.1 matt void
311 1.1 matt softint_trigger(uintptr_t machdep)
312 1.1 matt {
313 1.1 matt
314 1.1 matt gicd_write(&armgic_softc, GICD_SGIR, machdep);
315 1.1 matt }
316 1.1 matt #endif
317 1.1 matt
318 1.1 matt void
319 1.29 skrll armgic_irq_handler(void *tf)
320 1.1 matt {
321 1.1 matt struct cpu_info * const ci = curcpu();
322 1.1 matt struct armgic_softc * const sc = &armgic_softc;
323 1.1 matt const int old_ipl = ci->ci_cpl;
324 1.1 matt #ifdef DIAGNOSTIC
325 1.1 matt const int old_mtx_count = ci->ci_mtx_count;
326 1.1 matt const int old_l_biglocks = ci->ci_curlwp->l_biglocks;
327 1.1 matt #endif
328 1.1 matt #ifdef DEBUG
329 1.1 matt size_t n = 0;
330 1.1 matt #endif
331 1.1 matt
332 1.1 matt ci->ci_data.cpu_nintr++;
333 1.1 matt
334 1.51 skrll /*
335 1.51 skrll * Raise ci_hwpl (and PMR) to ci_cpl and IAR will tell us if the
336 1.51 skrll * interrupt that got us here can have its handler run or not.
337 1.51 skrll */
338 1.51 skrll if (ci->ci_hwpl <= old_ipl) {
339 1.48 jmcneill ci->ci_hwpl = old_ipl;
340 1.48 jmcneill gicc_write(sc, GICC_PMR, armgic_ipl_to_priority(old_ipl));
341 1.51 skrll /*
342 1.51 skrll * we'll get no interrupts when PMR is IPL_HIGH, so bail
343 1.51 skrll * early.
344 1.51 skrll */
345 1.46 jmcneill if (old_ipl == IPL_HIGH) {
346 1.46 jmcneill return;
347 1.46 jmcneill }
348 1.45 jmcneill }
349 1.45 jmcneill
350 1.1 matt for (;;) {
351 1.1 matt uint32_t iar = gicc_read(sc, GICC_IAR);
352 1.1 matt uint32_t irq = __SHIFTOUT(iar, GICC_IAR_IRQ);
353 1.25 skrll
354 1.28 skrll if (irq == GICC_IAR_IRQ_SPURIOUS ||
355 1.28 skrll irq == GICC_IAR_IRQ_SSPURIOUS) {
356 1.1 matt iar = gicc_read(sc, GICC_IAR);
357 1.1 matt irq = __SHIFTOUT(iar, GICC_IAR_IRQ);
358 1.1 matt if (irq == GICC_IAR_IRQ_SPURIOUS)
359 1.1 matt break;
360 1.28 skrll if (irq == GICC_IAR_IRQ_SSPURIOUS) {
361 1.28 skrll break;
362 1.28 skrll }
363 1.1 matt }
364 1.1 matt
365 1.32 jmcneill KASSERTMSG(old_ipl != IPL_HIGH, "old_ipl %d pmr %#x hppir %#x",
366 1.32 jmcneill old_ipl, gicc_read(sc, GICC_PMR), gicc_read(sc, GICC_HPPIR));
367 1.32 jmcneill
368 1.1 matt //const uint32_t cpuid = __SHIFTOUT(iar, GICC_IAR_CPUID_MASK);
369 1.1 matt struct intrsource * const is = sc->sc_pic.pic_sources[irq];
370 1.2 matt KASSERT(is != &armgic_dummy_source);
371 1.1 matt
372 1.1 matt /*
373 1.1 matt * GIC has asserted IPL for us so we can just update ci_cpl.
374 1.1 matt *
375 1.1 matt * But it's not that simple. We may have already bumped ci_cpl
376 1.1 matt * due to a high priority interrupt and now we are about to
377 1.1 matt * dispatch one lower than the previous. It's possible for
378 1.1 matt * that previous interrupt to have deferred some interrupts
379 1.1 matt * so we need deal with those when lowering to the current
380 1.1 matt * interrupt's ipl.
381 1.1 matt *
382 1.1 matt * However, if are just raising ipl, we can just update ci_cpl.
383 1.1 matt */
384 1.51 skrll
385 1.51 skrll /* Surely we can KASSERT(ipl < ci->ci_cpl); */
386 1.1 matt const int ipl = is->is_ipl;
387 1.1 matt if (__predict_false(ipl < ci->ci_cpl)) {
388 1.1 matt pic_do_pending_ints(I32_bit, ipl, tf);
389 1.1 matt KASSERT(ci->ci_cpl == ipl);
390 1.51 skrll } else if (ci->ci_cpl != ipl) {
391 1.1 matt KASSERTMSG(ipl > ci->ci_cpl, "ipl %d cpl %d hw-ipl %#x",
392 1.1 matt ipl, ci->ci_cpl,
393 1.1 matt gicc_read(sc, GICC_PMR));
394 1.1 matt gicc_write(sc, GICC_PMR, armgic_ipl_to_priority(ipl));
395 1.45 jmcneill ci->ci_hwpl = ci->ci_cpl = ipl;
396 1.1 matt }
397 1.44 jakllsch ENABLE_INTERRUPT();
398 1.1 matt pic_dispatch(is, tf);
399 1.44 jakllsch DISABLE_INTERRUPT();
400 1.1 matt gicc_write(sc, GICC_EOIR, iar);
401 1.1 matt #ifdef DEBUG
402 1.1 matt n++;
403 1.1 matt KDASSERTMSG(n < 5, "%s: processed too many (%zu)",
404 1.1 matt ci->ci_data.cpu_name, n);
405 1.1 matt #endif
406 1.1 matt }
407 1.1 matt
408 1.1 matt /*
409 1.1 matt * Now handle any pending ints.
410 1.1 matt */
411 1.1 matt pic_do_pending_ints(I32_bit, old_ipl, tf);
412 1.29 skrll KASSERTMSG(ci->ci_cpl == old_ipl, "ci_cpl %d old_ipl %d", ci->ci_cpl, old_ipl);
413 1.1 matt KASSERT(old_mtx_count == ci->ci_mtx_count);
414 1.1 matt KASSERT(old_l_biglocks == ci->ci_curlwp->l_biglocks);
415 1.1 matt }
416 1.1 matt
417 1.1 matt void
418 1.1 matt armgic_establish_irq(struct pic_softc *pic, struct intrsource *is)
419 1.1 matt {
420 1.1 matt struct armgic_softc * const sc = PICTOSOFTC(pic);
421 1.1 matt const size_t group = is->is_irq / 32;
422 1.1 matt const u_int irq = is->is_irq & 31;
423 1.1 matt const u_int byte_shift = 8 * (irq & 3);
424 1.1 matt const u_int twopair_shift = 2 * (irq & 15);
425 1.1 matt
426 1.1 matt KASSERTMSG(sc->sc_gic_valid_lines[group] & __BIT(irq),
427 1.1 matt "irq %u: not valid (group[%zu]=0x%08x [0x%08x])",
428 1.1 matt is->is_irq, group, sc->sc_gic_valid_lines[group],
429 1.1 matt (uint32_t)__BIT(irq));
430 1.16 skrll
431 1.1 matt KASSERTMSG(is->is_type == IST_LEVEL || is->is_type == IST_EDGE,
432 1.1 matt "irq %u: type %u unsupported", is->is_irq, is->is_type);
433 1.1 matt
434 1.1 matt const bus_size_t targets_reg = GICD_ITARGETSRn(is->is_irq / 4);
435 1.1 matt const bus_size_t cfg_reg = GICD_ICFGRn(is->is_irq / 16);
436 1.1 matt uint32_t targets = gicd_read(sc, targets_reg);
437 1.1 matt uint32_t cfg = gicd_read(sc, cfg_reg);
438 1.1 matt
439 1.1 matt if (group > 0) {
440 1.16 skrll /*
441 1.1 matt * There are 4 irqs per TARGETS register. For now bind
442 1.1 matt * to the primary cpu.
443 1.1 matt */
444 1.39 jmcneill targets &= ~(0xffU << byte_shift);
445 1.12 skrll #if 0
446 1.7 matt #ifdef MULTIPROCESSOR
447 1.7 matt if (is->is_mpsafe) {
448 1.12 skrll targets |= sc->sc_mptargets << byte_shift;
449 1.7 matt } else
450 1.7 matt #endif
451 1.12 skrll #endif
452 1.24 jmcneill targets |= sc->sc_bptargets << byte_shift;
453 1.1 matt gicd_write(sc, targets_reg, targets);
454 1.1 matt
455 1.16 skrll /*
456 1.1 matt * There are 16 irqs per CFG register. 10=EDGE 00=LEVEL
457 1.1 matt */
458 1.1 matt uint32_t new_cfg = cfg;
459 1.40 skrll uint32_t old_cfg = (cfg >> twopair_shift) & __BITS(1, 0);
460 1.40 skrll if (is->is_type == IST_LEVEL && (old_cfg & __BIT(1)) != 0) {
461 1.40 skrll new_cfg &= ~(__BITS(1, 0) << twopair_shift);
462 1.1 matt } else if (is->is_type == IST_EDGE && (old_cfg & 2) == 0) {
463 1.40 skrll new_cfg |= __BIT(1) << twopair_shift;
464 1.1 matt }
465 1.1 matt if (new_cfg != cfg) {
466 1.14 jmcneill gicd_write(sc, cfg_reg, new_cfg);
467 1.1 matt }
468 1.7 matt #ifdef MULTIPROCESSOR
469 1.7 matt } else {
470 1.7 matt /*
471 1.7 matt * All group 0 interrupts are per processor and MPSAFE by
472 1.7 matt * default.
473 1.7 matt */
474 1.7 matt is->is_mpsafe = true;
475 1.50 jmcneill is->is_percpu = true;
476 1.7 matt #endif
477 1.1 matt }
478 1.1 matt
479 1.16 skrll /*
480 1.1 matt * There are 4 irqs per PRIORITY register. Map the IPL
481 1.1 matt * to GIC priority.
482 1.1 matt */
483 1.1 matt const bus_size_t priority_reg = GICD_IPRIORITYRn(is->is_irq / 4);
484 1.1 matt uint32_t priority = gicd_read(sc, priority_reg);
485 1.39 jmcneill priority &= ~(0xffU << byte_shift);
486 1.1 matt priority |= armgic_ipl_to_priority(is->is_ipl) << byte_shift;
487 1.1 matt gicd_write(sc, priority_reg, priority);
488 1.1 matt }
489 1.1 matt
490 1.1 matt #ifdef MULTIPROCESSOR
491 1.1 matt static void
492 1.1 matt armgic_cpu_init_priorities(struct armgic_softc *sc)
493 1.1 matt {
494 1.22 skrll /* Set lowest priority, i.e. disable interrupts */
495 1.34 jakllsch for (size_t i = 0; i < sc->sc_pic.pic_maxsources; i += 4) {
496 1.22 skrll const bus_size_t priority_reg = GICD_IPRIORITYRn(i / 4);
497 1.22 skrll gicd_write(sc, priority_reg, ~0);
498 1.22 skrll }
499 1.22 skrll }
500 1.22 skrll
501 1.22 skrll static void
502 1.22 skrll armgic_cpu_update_priorities(struct armgic_softc *sc)
503 1.22 skrll {
504 1.1 matt uint32_t enabled = sc->sc_enabled_local;
505 1.34 jakllsch for (size_t i = 0; i < sc->sc_pic.pic_maxsources; i += 4, enabled >>= 4) {
506 1.1 matt const bus_size_t priority_reg = GICD_IPRIORITYRn(i / 4);
507 1.1 matt uint32_t priority = gicd_read(sc, priority_reg);
508 1.1 matt uint32_t byte_mask = 0xff;
509 1.1 matt size_t byte_shift = 0;
510 1.1 matt for (size_t j = 0; j < 4; j++, byte_mask <<= 8, byte_shift += 8) {
511 1.1 matt struct intrsource * const is = sc->sc_pic.pic_sources[i+j];
512 1.22 skrll priority |= byte_mask;
513 1.1 matt if (is == NULL || is == &armgic_dummy_source)
514 1.1 matt continue;
515 1.1 matt priority &= ~byte_mask;
516 1.1 matt priority |= armgic_ipl_to_priority(is->is_ipl) << byte_shift;
517 1.1 matt }
518 1.1 matt gicd_write(sc, priority_reg, priority);
519 1.1 matt }
520 1.1 matt }
521 1.1 matt
522 1.7 matt static void
523 1.7 matt armgic_cpu_init_targets(struct armgic_softc *sc)
524 1.7 matt {
525 1.7 matt /*
526 1.16 skrll * Update the mpsafe targets
527 1.7 matt */
528 1.13 jmcneill for (size_t irq = 32; irq < sc->sc_pic.pic_maxsources; irq++) {
529 1.7 matt struct intrsource * const is = sc->sc_pic.pic_sources[irq];
530 1.7 matt const bus_size_t targets_reg = GICD_ITARGETSRn(irq / 4);
531 1.7 matt if (is != NULL && is->is_mpsafe) {
532 1.12 skrll const u_int byte_shift = 8 * (irq & 3);
533 1.7 matt uint32_t targets = gicd_read(sc, targets_reg);
534 1.47 skrll #if 0
535 1.7 matt targets |= sc->sc_mptargets << byte_shift;
536 1.47 skrll #else
537 1.47 skrll targets |= sc->sc_bptargets << byte_shift;
538 1.47 skrll #endif
539 1.7 matt gicd_write(sc, targets_reg, targets);
540 1.7 matt }
541 1.7 matt }
542 1.7 matt }
543 1.7 matt
544 1.1 matt void
545 1.1 matt armgic_cpu_init(struct pic_softc *pic, struct cpu_info *ci)
546 1.1 matt {
547 1.1 matt struct armgic_softc * const sc = PICTOSOFTC(pic);
548 1.35 jmcneill sc->sc_target[cpu_index(ci)] = gicd_find_targets(sc);
549 1.36 jmcneill atomic_or_32(&sc->sc_mptargets, sc->sc_target[cpu_index(ci)]);
550 1.7 matt KASSERTMSG(ci->ci_cpl == IPL_HIGH, "ipl %d not IPL_HIGH", ci->ci_cpl);
551 1.22 skrll armgic_cpu_init_priorities(sc);
552 1.7 matt if (!CPU_IS_PRIMARY(ci)) {
553 1.24 jmcneill if (popcount(sc->sc_mptargets) != 1) {
554 1.7 matt armgic_cpu_init_targets(sc);
555 1.7 matt }
556 1.7 matt if (sc->sc_enabled_local) {
557 1.22 skrll armgic_cpu_update_priorities(sc);
558 1.7 matt gicd_write(sc, GICD_ISENABLERn(0),
559 1.7 matt sc->sc_enabled_local);
560 1.7 matt }
561 1.1 matt }
562 1.48 jmcneill ci->ci_hwpl = ci->ci_cpl;
563 1.1 matt gicc_write(sc, GICC_PMR, armgic_ipl_to_priority(ci->ci_cpl)); // set PMR
564 1.1 matt gicc_write(sc, GICC_CTRL, GICC_CTRL_V1_Enable); // enable interrupt
565 1.44 jakllsch ENABLE_INTERRUPT(); // allow IRQ exceptions
566 1.1 matt }
567 1.1 matt
568 1.1 matt void
569 1.1 matt armgic_ipi_send(struct pic_softc *pic, const kcpuset_t *kcp, u_long ipi)
570 1.1 matt {
571 1.1 matt struct armgic_softc * const sc = PICTOSOFTC(pic);
572 1.1 matt
573 1.7 matt #if 0
574 1.1 matt if (ipi == IPI_NOP) {
575 1.43 skrll sev();
576 1.1 matt return;
577 1.1 matt }
578 1.7 matt #endif
579 1.1 matt
580 1.7 matt uint32_t sgir = __SHIFTIN(ARMGIC_SGI_IPIBASE + ipi, GICD_SGIR_SGIINTID);
581 1.7 matt if (kcp != NULL) {
582 1.37 jmcneill uint32_t targets_val = 0;
583 1.37 jmcneill for (int n = 0; n < MAXCPUS; n++) {
584 1.37 jmcneill if (kcpuset_isset(kcp, n))
585 1.37 jmcneill targets_val |= sc->sc_target[n];
586 1.37 jmcneill }
587 1.37 jmcneill sgir |= __SHIFTIN(targets_val, GICD_SGIR_TargetList);
588 1.7 matt sgir |= GICD_SGIR_TargetListFilter_List;
589 1.7 matt } else {
590 1.7 matt if (ncpu == 1)
591 1.7 matt return;
592 1.7 matt sgir |= GICD_SGIR_TargetListFilter_NotMe;
593 1.7 matt }
594 1.1 matt
595 1.1 matt gicd_write(sc, GICD_SGIR, sgir);
596 1.1 matt }
597 1.1 matt #endif
598 1.1 matt
599 1.1 matt int
600 1.1 matt armgic_match(device_t parent, cfdata_t cf, void *aux)
601 1.1 matt {
602 1.1 matt struct mpcore_attach_args * const mpcaa = aux;
603 1.1 matt
604 1.1 matt if (strcmp(cf->cf_name, mpcaa->mpcaa_name) != 0)
605 1.1 matt return 0;
606 1.1 matt
607 1.1 matt return 1;
608 1.1 matt }
609 1.1 matt
610 1.1 matt void
611 1.1 matt armgic_attach(device_t parent, device_t self, void *aux)
612 1.1 matt {
613 1.1 matt struct armgic_softc * const sc = &armgic_softc;
614 1.1 matt struct mpcore_attach_args * const mpcaa = aux;
615 1.1 matt
616 1.1 matt sc->sc_dev = self;
617 1.1 matt self->dv_private = sc;
618 1.1 matt
619 1.1 matt sc->sc_memt = mpcaa->mpcaa_memt; /* provided for us */
620 1.4 matt bus_space_subregion(sc->sc_memt, mpcaa->mpcaa_memh, mpcaa->mpcaa_off1,
621 1.4 matt 4096, &sc->sc_gicdh);
622 1.4 matt bus_space_subregion(sc->sc_memt, mpcaa->mpcaa_memh, mpcaa->mpcaa_off2,
623 1.4 matt 4096, &sc->sc_gicch);
624 1.1 matt
625 1.1 matt sc->sc_gic_type = gicd_read(sc, GICD_TYPER);
626 1.1 matt sc->sc_pic.pic_maxsources = GICD_TYPER_LINES(sc->sc_gic_type);
627 1.1 matt
628 1.1 matt gicc_write(sc, GICC_CTRL, 0); /* disable all interrupts */
629 1.1 matt gicd_write(sc, GICD_CTRL, 0); /* disable all interrupts */
630 1.1 matt
631 1.1 matt gicc_write(sc, GICC_PMR, 0xff);
632 1.1 matt uint32_t pmr = gicc_read(sc, GICC_PMR);
633 1.1 matt u_int priorities = 1 << popcount32(pmr);
634 1.1 matt
635 1.26 skrll const uint32_t iidr = gicc_read(sc, GICC_IIDR);
636 1.26 skrll const int iidr_prod = __SHIFTOUT(iidr, GICC_IIDR_ProductID);
637 1.26 skrll const int iidr_arch = __SHIFTOUT(iidr, GICC_IIDR_ArchVersion);
638 1.26 skrll const int iidr_rev = __SHIFTOUT(iidr, GICC_IIDR_Revision);
639 1.26 skrll const int iidr_imp = __SHIFTOUT(iidr, GICC_IIDR_Implementer);
640 1.26 skrll
641 1.1 matt /*
642 1.24 jmcneill * Find the boot processor's CPU interface number.
643 1.24 jmcneill */
644 1.24 jmcneill sc->sc_bptargets = gicd_find_targets(sc);
645 1.24 jmcneill
646 1.24 jmcneill /*
647 1.1 matt * Let's find out how many real sources we have.
648 1.1 matt */
649 1.1 matt for (size_t i = 0, group = 0;
650 1.1 matt i < sc->sc_pic.pic_maxsources;
651 1.1 matt i += 32, group++) {
652 1.1 matt /*
653 1.1 matt * To figure what sources are real, one enables all interrupts
654 1.1 matt * and then reads back the enable mask so which ones really
655 1.1 matt * got enabled.
656 1.1 matt */
657 1.1 matt gicd_write(sc, GICD_ISENABLERn(group), 0xffffffff);
658 1.1 matt uint32_t valid = gicd_read(sc, GICD_ISENABLERn(group));
659 1.1 matt
660 1.1 matt /*
661 1.1 matt * Now disable (clear enable) them again.
662 1.1 matt */
663 1.1 matt gicd_write(sc, GICD_ICENABLERn(group), valid);
664 1.1 matt
665 1.1 matt /*
666 1.1 matt * Count how many are valid.
667 1.1 matt */
668 1.1 matt sc->sc_gic_lines += popcount32(valid);
669 1.1 matt sc->sc_gic_valid_lines[group] = valid;
670 1.1 matt }
671 1.1 matt
672 1.8 matt aprint_normal(": Generic Interrupt Controller, "
673 1.8 matt "%zu sources (%zu valid)\n",
674 1.8 matt sc->sc_pic.pic_maxsources, sc->sc_gic_lines);
675 1.26 skrll aprint_debug_dev(sc->sc_dev, "Architecture version %d"
676 1.26 skrll " (0x%x:%d rev %d)\n", iidr_arch, iidr_imp, iidr_prod,
677 1.26 skrll iidr_rev);
678 1.8 matt
679 1.18 matt #ifdef MULTIPROCESSOR
680 1.18 matt sc->sc_pic.pic_cpus = kcpuset_running;
681 1.18 matt #endif
682 1.1 matt pic_add(&sc->sc_pic, 0);
683 1.1 matt
684 1.1 matt /*
685 1.1 matt * Force the GICD to IPL_HIGH and then enable interrupts.
686 1.1 matt */
687 1.1 matt struct cpu_info * const ci = curcpu();
688 1.1 matt KASSERTMSG(ci->ci_cpl == IPL_HIGH, "ipl %d not IPL_HIGH", ci->ci_cpl);
689 1.1 matt armgic_set_priority(&sc->sc_pic, ci->ci_cpl); // set PMR
690 1.1 matt gicd_write(sc, GICD_CTRL, GICD_CTRL_Enable); // enable Distributer
691 1.1 matt gicc_write(sc, GICC_CTRL, GICC_CTRL_V1_Enable); // enable CPU interrupts
692 1.44 jakllsch ENABLE_INTERRUPT(); // allow interrupt exceptions
693 1.1 matt
694 1.1 matt /*
695 1.1 matt * For each line that isn't valid, we set the intrsource for it to
696 1.1 matt * point at a dummy source so that pic_intr_establish will fail for it.
697 1.1 matt */
698 1.1 matt for (size_t i = 0, group = 0;
699 1.1 matt i < sc->sc_pic.pic_maxsources;
700 1.1 matt i += 32, group++) {
701 1.1 matt uint32_t invalid = ~sc->sc_gic_valid_lines[group];
702 1.1 matt for (size_t j = 0; invalid && j < 32; j++, invalid >>= 1) {
703 1.1 matt if (invalid & 1) {
704 1.1 matt sc->sc_pic.pic_sources[i + j] =
705 1.1 matt &armgic_dummy_source;
706 1.1 matt }
707 1.1 matt }
708 1.1 matt }
709 1.1 matt #ifdef __HAVE_PIC_FAST_SOFTINTS
710 1.38 jmcneill intr_establish_xname(SOFTINT_BIO, IPL_SOFTBIO, IST_MPSAFE | IST_EDGE,
711 1.38 jmcneill pic_handle_softint, (void *)SOFTINT_BIO, "softint bio");
712 1.38 jmcneill intr_establish_xname(SOFTINT_CLOCK, IPL_SOFTCLOCK, IST_MPSAFE | IST_EDGE,
713 1.38 jmcneill pic_handle_softint, (void *)SOFTINT_CLOCK, "softint clock");
714 1.38 jmcneill intr_establish_xname(SOFTINT_NET, IPL_SOFTNET, IST_MPSAFE | IST_EDGE,
715 1.38 jmcneill pic_handle_softint, (void *)SOFTINT_NET, "softint net");
716 1.38 jmcneill intr_establish_xname(SOFTINT_SERIAL, IPL_SOFTSERIAL, IST_MPSAFE | IST_EDGE,
717 1.38 jmcneill pic_handle_softint, (void *)SOFTINT_SERIAL, "softint serial");
718 1.1 matt #endif
719 1.1 matt #ifdef MULTIPROCESSOR
720 1.22 skrll armgic_cpu_init(&sc->sc_pic, curcpu());
721 1.22 skrll
722 1.38 jmcneill intr_establish_xname(ARMGIC_SGI_IPIBASE + IPI_AST, IPL_VM,
723 1.38 jmcneill IST_MPSAFE | IST_EDGE, pic_ipi_ast, (void *)-1, "IPI ast");
724 1.38 jmcneill intr_establish_xname(ARMGIC_SGI_IPIBASE + IPI_XCALL, IPL_HIGH,
725 1.38 jmcneill IST_MPSAFE | IST_EDGE, pic_ipi_xcall, (void *)-1, "IPI xcall");
726 1.38 jmcneill intr_establish_xname(ARMGIC_SGI_IPIBASE + IPI_GENERIC, IPL_HIGH,
727 1.38 jmcneill IST_MPSAFE | IST_EDGE, pic_ipi_generic, (void *)-1, "IPI generic");
728 1.38 jmcneill intr_establish_xname(ARMGIC_SGI_IPIBASE + IPI_NOP, IPL_VM,
729 1.38 jmcneill IST_MPSAFE | IST_EDGE, pic_ipi_nop, (void *)-1, "IPI nop");
730 1.38 jmcneill intr_establish_xname(ARMGIC_SGI_IPIBASE + IPI_SHOOTDOWN, IPL_SCHED,
731 1.38 jmcneill IST_MPSAFE | IST_EDGE, pic_ipi_shootdown, (void *)-1, "IPI shootdown");
732 1.7 matt #ifdef DDB
733 1.38 jmcneill intr_establish_xname(ARMGIC_SGI_IPIBASE + IPI_DDB, IPL_HIGH,
734 1.38 jmcneill IST_MPSAFE | IST_EDGE, pic_ipi_ddb, NULL, "IPI ddb");
735 1.1 matt #endif
736 1.1 matt #ifdef __HAVE_PREEMPTION
737 1.38 jmcneill intr_establish_xname(ARMGIC_SGI_IPIBASE + IPI_KPREEMPT, IPL_VM,
738 1.38 jmcneill IST_MPSAFE | IST_EDGE, pic_ipi_kpreempt, (void *)-1, "IPI kpreempt");
739 1.1 matt #endif
740 1.1 matt #endif
741 1.1 matt
742 1.1 matt const u_int ppis = popcount32(sc->sc_gic_valid_lines[0] >> 16);
743 1.1 matt const u_int sgis = popcount32(sc->sc_gic_valid_lines[0] & 0xffff);
744 1.27 skrll aprint_normal_dev(sc->sc_dev, "%u Priorities, %zu SPIs, %u PPIs, "
745 1.27 skrll "%u SGIs\n", priorities, sc->sc_gic_lines - ppis - sgis, ppis,
746 1.27 skrll sgis);
747 1.48 jmcneill
748 1.49 jmcneill #ifdef GIC_SPLFUNCS
749 1.48 jmcneill gic_spl_init();
750 1.49 jmcneill #endif
751 1.1 matt }
752 1.1 matt
753 1.1 matt CFATTACH_DECL_NEW(armgic, 0,
754 1.1 matt armgic_match, armgic_attach, NULL, NULL);
755