Home | History | Annotate | Line # | Download | only in footbridge
      1 /*	$NetBSD: footbridge_clock.c,v 1.27 2021/08/13 11:40:43 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Mark Brinicombe.
      5  * Copyright (c) 1997 Causality Limited.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Mark Brinicombe
     19  *	for the NetBSD Project.
     20  * 4. The name of the company nor the name of the author may be used to
     21  *    endorse or promote products derived from this software without specific
     22  *    prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     28  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     29  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     30  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.27 2021/08/13 11:40:43 skrll Exp $");
     39 
     40 /* Include header files */
     41 
     42 #include <sys/types.h>
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/time.h>
     47 #include <sys/timetc.h>
     48 #include <sys/device.h>
     49 
     50 #include <machine/intr.h>
     51 
     52 #include <arm/cpufunc.h>
     53 
     54 #include <arm/footbridge/dc21285reg.h>
     55 #include <arm/footbridge/footbridgevar.h>
     56 #include <arm/footbridge/footbridge.h>
     57 
     58 extern struct footbridge_softc *clock_sc;
     59 extern u_int dc21285_fclk;
     60 
     61 int clockhandler(void *);
     62 int statclockhandler(void *);
     63 static int load_timer(int, int);
     64 
     65 /*
     66  * Statistics clock variance, in usec.  Variance must be a
     67  * power of two.  Since this gives us an even number, not an odd number,
     68  * we discard one case and compensate.  That is, a variance of 1024 would
     69  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
     70  * This is symmetric about the point 512, or statvar/2, and thus averages
     71  * to that value (assuming uniform random numbers).
     72  */
     73 const int statvar = 1024;
     74 int statmin;			/* minimum stat clock count in ticks */
     75 int statcountperusec;		/* number of ticks per usec at current stathz */
     76 int statprev;			/* last value of we set statclock to */
     77 
     78 void footbridge_tc_init(void);
     79 
     80 #if 0
     81 static int clockmatch(device_t parent, cfdata_t cf, void *aux);
     82 static void clockattach(device_t parent, device_t self, void *aux);
     83 
     84 CFATTACH_DECL_NEW(footbridge_clock, sizeof(struct clock_softc),
     85     clockmatch, clockattach, NULL, NULL);
     86 
     87 /*
     88  * int clockmatch(device_t parent, cfdata_t cf, void *aux);
     89  *
     90  * Just return ok for this if it is device 0
     91  */
     92 
     93 static int
     94 clockmatch(device_t parent, cfdata_t cf, void *aux)
     95 {
     96 	union footbridge_attach_args *fba = aux;
     97 
     98 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
     99 		return 1;
    100 	return 0;
    101 }
    102 
    103 
    104 /*
    105  * void clockattach(device_t parent, device_t self, void *aux)
    106  *
    107  */
    108 
    109 static void
    110 clockattach(device_t parent, device_t self, void *aux)
    111 {
    112 	struct clock_softc *sc = device_private(self);
    113 	union footbridge_attach_args *fba = aux;
    114 
    115 	sc->sc_dev = self;
    116 	sc->sc_iot = fba->fba_ca.ca_iot;
    117 	sc->sc_ioh = fba->fba_ca.ca_ioh;
    118 
    119 	clock_sc = sc;
    120 
    121 	/* Cannot do anything until cpu_initclocks() has been called */
    122 
    123 	aprint_normal("\n");
    124 }
    125 #endif
    126 
    127 /*
    128  * int clockhandler(struct clockframe *frame)
    129  *
    130  * Function called by timer 1 interrupts.
    131  * This just clears the interrupt condition and calls hardclock().
    132  */
    133 
    134 int
    135 clockhandler(void *aframe)
    136 {
    137 	struct clockframe *frame = aframe;
    138 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    139 	    TIMER_1_CLEAR, 0);
    140 	hardclock(frame);
    141 	return 0;	/* Pass the interrupt on down the chain */
    142 }
    143 
    144 /*
    145  * int statclockhandler(struct clockframe *frame)
    146  *
    147  * Function called by timer 2 interrupts.
    148  * This just clears the interrupt condition and calls statclock().
    149  */
    150 
    151 int
    152 statclockhandler(void *aframe)
    153 {
    154 	struct clockframe *frame = aframe;
    155 	int newint, r;
    156 	int currentclock ;
    157 
    158 	/* start the clock off again */
    159 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    160 			TIMER_2_CLEAR, 0);
    161 
    162 	do {
    163 		r = random() & (statvar-1);
    164 	} while (r == 0);
    165 	newint = statmin + (r * statcountperusec);
    166 
    167 	/* fetch the current count */
    168 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    169 		    TIMER_2_VALUE);
    170 
    171 	/*
    172 	 * work out how much time has run, add another usec for time spent
    173 	 * here
    174 	 */
    175 	r = ((statprev - currentclock) + statcountperusec);
    176 
    177 	if (r < newint) {
    178 		newint -= r;
    179 		r = 0;
    180 	}
    181 	else
    182 		printf("statclockhandler: Statclock overrun\n");
    183 
    184 
    185 	/*
    186 	 * update the clock to the new counter, this reloads the existing
    187 	 * timer
    188 	 */
    189 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    190 	    		TIMER_2_LOAD, newint);
    191 	statprev = newint;
    192 	statclock(frame);
    193 	if (r)
    194 		/*
    195 		 * We've completely overrun the previous interval,
    196 		 * make sure we report the correct number of ticks.
    197 		 */
    198 		statclock(frame);
    199 
    200 	return 0;	/* Pass the interrupt on down the chain */
    201 }
    202 
    203 static int
    204 load_timer(int base, int herz)
    205 {
    206 	unsigned int timer_count;
    207 	int control;
    208 
    209 	timer_count = dc21285_fclk / herz;
    210 	if (timer_count > TIMER_MAX_VAL * 16) {
    211 		control = TIMER_FCLK_256;
    212 		timer_count >>= 8;
    213 	} else if (timer_count > TIMER_MAX_VAL) {
    214 		control = TIMER_FCLK_16;
    215 		timer_count >>= 4;
    216 	} else
    217 		control = TIMER_FCLK;
    218 
    219 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
    220 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    221 	    base + TIMER_LOAD, timer_count);
    222 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    223 	    base + TIMER_CONTROL, control);
    224 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    225 	    base + TIMER_CLEAR, 0);
    226 	return timer_count;
    227 }
    228 
    229 /*
    230  * void setstatclockrate(int herz)
    231  *
    232  * Set the stat clock rate. The stat clock uses timer2
    233  */
    234 
    235 void
    236 setstatclockrate(int herz)
    237 {
    238 	int statint;
    239 	int countpersecond;
    240 	int statvarticks;
    241 
    242 	/* statint == num in counter to drop by desired herz */
    243 	statint = statprev = clock_sc->sc_statclock_count =
    244 	    load_timer(TIMER_2_BASE, herz);
    245 
    246 	/* Get the total ticks a second */
    247 	countpersecond = statint * herz;
    248 
    249 	/* now work out how many ticks per usec */
    250 	statcountperusec = countpersecond / 1000000;
    251 
    252 	/* calculate a variance range of statvar */
    253 	statvarticks = statcountperusec * statvar;
    254 
    255 	/* minimum is statint - 50% of variant */
    256 	statmin = statint - (statvarticks / 2);
    257 }
    258 
    259 /*
    260  * void cpu_initclocks(void)
    261  *
    262  * Initialise the clocks.
    263  *
    264  * Timer 1 is used for the main system clock (hardclock)
    265  * Timer 2 is used for the statistics clock (statclock)
    266  */
    267 
    268 void
    269 cpu_initclocks(void)
    270 {
    271 	/* stathz and profhz should be set to something, we have the timer */
    272 	if (stathz == 0)
    273 		stathz = hz;
    274 
    275 	if (profhz == 0)
    276 		profhz = stathz * 5;
    277 
    278 	/* Report the clock frequencies */
    279 	aprint_debug("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
    280 
    281 	/* Setup timer 1 and claim interrupt */
    282 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
    283 
    284 	/*
    285 	 * Use ticks per 256us for accuracy since ticks per us is often
    286 	 * fractional e.g. @ 66MHz
    287 	 */
    288 	clock_sc->sc_clock_ticks_per_256us =
    289 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
    290 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
    291 	    "tmr1 hard clk", clockhandler, 0);
    292 
    293 	if (clock_sc->sc_clockintr == NULL)
    294 		panic("%s: Cannot install timer 1 interrupt handler",
    295 		    device_xname(clock_sc->sc_dev));
    296 
    297 	/* If stathz is non-zero then setup the stat clock */
    298 	if (stathz) {
    299 		/* Setup timer 2 and claim interrupt */
    300 		setstatclockrate(stathz);
    301        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_HIGH,
    302        		    "tmr2 stat clk", statclockhandler, 0);
    303 		if (clock_sc->sc_statclockintr == NULL)
    304 			panic("%s: Cannot install timer 2 interrupt handler",
    305 			    device_xname(clock_sc->sc_dev));
    306 	}
    307 
    308 	footbridge_tc_init();
    309 }
    310 
    311 static uint32_t
    312 fclk_get_count(struct timecounter *tc)
    313 {
    314 	return (TIMER_MAX_VAL -
    315 	    bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    316 	    TIMER_3_VALUE));
    317 }
    318 
    319 void
    320 footbridge_tc_init(void)
    321 {
    322 	static struct timecounter fb_tc = {
    323 		.tc_get_timecount = fclk_get_count,
    324 		.tc_counter_mask = TIMER_MAX_VAL,
    325 		.tc_name = "dc21285_fclk",
    326 		.tc_quality = 100
    327 	};
    328 	fb_tc.tc_frequency = dc21285_fclk;
    329 	tc_init(&fb_tc);
    330 }
    331 
    332 /*
    333  * Use a timer to track microseconds, if the footbridge hasn't been setup we
    334  * rely on an estimated loop, however footbridge is attached very early on.
    335  */
    336 
    337 static int delay_count_per_usec = 0;
    338 
    339 void
    340 calibrate_delay(void)
    341 {
    342 	/*
    343 	 * For all current footbridge hardware, the fclk runs at a
    344 	 * rate that is sufficiently slow enough that we don't need to
    345 	 * use a prescaler.  A prescaler would be needed if the fclk
    346 	 * could wrap within 2 hardclock periods (2 * HZ).  With
    347 	 * normal values of HZ (100 and higher), this is unlikely to
    348 	 * ever happen.
    349 	 *
    350 	 * We let TIMER 3 just run free, at the freqeuncy supplied by
    351 	 * dc21285_fclk.
    352 	 */
    353 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    354 	    TIMER_3_BASE + TIMER_CONTROL, TIMER_ENABLE);
    355 	delay_count_per_usec = dc21285_fclk / 1000000;
    356 	if (dc21285_fclk % 1000000)
    357 		delay_count_per_usec += 1;
    358 }
    359 
    360 void
    361 delay(unsigned n)
    362 {
    363 	uint32_t cur, last, delta, usecs;
    364 
    365 	if (n == 0)
    366 		return;
    367 
    368 	/*
    369 	 * not calibrated the timer yet, so try to live with this horrible
    370 	 * loop!
    371 	 *
    372 	 * Note: a much better solution might be to have the timers
    373 	 * get get calibrated out of mach_init.  Of course, the
    374 	 * clock_sc needs to be set up, so we can read/write the clock
    375 	 * registers.
    376 	 */
    377 	if (!delay_count_per_usec)
    378 	{
    379 		/*
    380 		 * the loop below has a core of 6 instructions
    381 		 * StrongArms top out at 233Mhz, so one instruction takes
    382 		 * 0.004 us, and 6 take 0.025 us, so we need to loop 40
    383 		 * times to make one usec
    384 		 */
    385 		int delaycount = 40;
    386 		volatile int i;
    387 
    388 		while (n-- > 0) {
    389 			for (i = delaycount; --i;);
    390 		}
    391 		return;
    392 	}
    393 
    394 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    395 	    TIMER_3_VALUE);
    396 	delta = usecs = 0;
    397 
    398 	while (n > usecs) {
    399 		cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    400 		    TIMER_3_VALUE);
    401 		if (last < cur)
    402 			/* timer has wrapped */
    403 			delta += ((TIMER_MAX_VAL - cur) + last);
    404 		else
    405 			delta += (last - cur);
    406 
    407 		last = cur;
    408 
    409 		while (delta >= delay_count_per_usec) {
    410 			delta -= delay_count_per_usec;
    411 			usecs++;
    412 		}
    413 	}
    414 }
    415 
    416 /* End of footbridge_clock.c */
    417