Home | History | Annotate | Line # | Download | only in footbridge
footbridge_clock.c revision 1.17
      1  1.17    chris /*	$NetBSD: footbridge_clock.c,v 1.17 2003/03/23 14:12:25 chris Exp $	*/
      2   1.1    chris 
      3   1.1    chris /*
      4   1.1    chris  * Copyright (c) 1997 Mark Brinicombe.
      5   1.1    chris  * Copyright (c) 1997 Causality Limited.
      6   1.1    chris  * All rights reserved.
      7   1.1    chris  *
      8   1.1    chris  * Redistribution and use in source and binary forms, with or without
      9   1.1    chris  * modification, are permitted provided that the following conditions
     10   1.1    chris  * are met:
     11   1.1    chris  * 1. Redistributions of source code must retain the above copyright
     12   1.1    chris  *    notice, this list of conditions and the following disclaimer.
     13   1.1    chris  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1    chris  *    notice, this list of conditions and the following disclaimer in the
     15   1.1    chris  *    documentation and/or other materials provided with the distribution.
     16   1.1    chris  * 3. All advertising materials mentioning features or use of this software
     17   1.1    chris  *    must display the following acknowledgement:
     18   1.1    chris  *	This product includes software developed by Mark Brinicombe
     19   1.1    chris  *	for the NetBSD Project.
     20   1.1    chris  * 4. The name of the company nor the name of the author may be used to
     21   1.1    chris  *    endorse or promote products derived from this software without specific
     22   1.1    chris  *    prior written permission.
     23   1.1    chris  *
     24   1.1    chris  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25   1.1    chris  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26   1.1    chris  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27   1.1    chris  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     28   1.1    chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     29   1.1    chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     30   1.1    chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31   1.1    chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32   1.1    chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33   1.1    chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34   1.1    chris  * SUCH DAMAGE.
     35   1.1    chris  */
     36  1.17    chris 
     37  1.17    chris #include <sys/cdefs.h>
     38  1.17    chris __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.17 2003/03/23 14:12:25 chris Exp $");
     39   1.1    chris 
     40   1.1    chris /* Include header files */
     41   1.1    chris 
     42   1.1    chris #include <sys/types.h>
     43   1.1    chris #include <sys/param.h>
     44   1.1    chris #include <sys/systm.h>
     45   1.1    chris #include <sys/kernel.h>
     46   1.1    chris #include <sys/time.h>
     47   1.1    chris #include <sys/device.h>
     48   1.1    chris 
     49   1.2     matt #include <machine/intr.h>
     50   1.3  thorpej 
     51   1.3  thorpej #include <arm/cpufunc.h>
     52   1.3  thorpej 
     53   1.1    chris #include <arm/footbridge/dc21285reg.h>
     54   1.1    chris #include <arm/footbridge/footbridgevar.h>
     55   1.6    chris #include <arm/footbridge/footbridge.h>
     56   1.1    chris 
     57   1.1    chris extern struct footbridge_softc *clock_sc;
     58   1.1    chris extern u_int dc21285_fclk;
     59   1.1    chris 
     60   1.4    chris int clockhandler __P((void *));
     61   1.4    chris int statclockhandler __P((void *));
     62   1.4    chris static int load_timer __P((int, int));
     63   1.4    chris 
     64  1.11    chris /*
     65  1.11    chris  * Statistics clock variance, in usec.  Variance must be a
     66  1.11    chris  * power of two.  Since this gives us an even number, not an odd number,
     67  1.11    chris  * we discard one case and compensate.  That is, a variance of 1024 would
     68  1.11    chris  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
     69  1.11    chris  * This is symmetric about the point 512, or statvar/2, and thus averages
     70  1.11    chris  * to that value (assuming uniform random numbers).
     71  1.11    chris  */
     72  1.11    chris const int statvar = 1024;
     73  1.11    chris int statmin;			/* minimum stat clock count in ticks */
     74  1.11    chris int statcountperusec;		/* number of ticks per usec at current stathz */
     75  1.11    chris int statprev;			/* last value of we set statclock to */
     76   1.4    chris 
     77   1.1    chris #if 0
     78   1.1    chris static int clockmatch	__P((struct device *parent, struct cfdata *cf, void *aux));
     79   1.1    chris static void clockattach	__P((struct device *parent, struct device *self, void *aux));
     80   1.1    chris 
     81  1.10  thorpej CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
     82  1.10  thorpej     clockmatch, clockattach, NULL, NULL);
     83   1.1    chris 
     84   1.1    chris /*
     85   1.1    chris  * int clockmatch(struct device *parent, void *match, void *aux)
     86   1.1    chris  *
     87   1.1    chris  * Just return ok for this if it is device 0
     88   1.1    chris  */
     89   1.1    chris 
     90   1.1    chris static int
     91   1.1    chris clockmatch(parent, cf, aux)
     92   1.1    chris 	struct device *parent;
     93   1.1    chris 	struct cfdata *cf;
     94   1.1    chris 	void *aux;
     95   1.1    chris {
     96   1.1    chris 	union footbridge_attach_args *fba = aux;
     97   1.1    chris 
     98   1.1    chris 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
     99   1.1    chris 		return(1);
    100   1.1    chris 	return(0);
    101   1.1    chris }
    102   1.1    chris 
    103   1.1    chris 
    104   1.1    chris /*
    105   1.1    chris  * void clockattach(struct device *parent, struct device *dev, void *aux)
    106   1.1    chris  *
    107   1.1    chris  */
    108   1.1    chris 
    109   1.1    chris static void
    110   1.1    chris clockattach(parent, self, aux)
    111   1.1    chris 	struct device *parent;
    112   1.1    chris 	struct device *self;
    113   1.1    chris 	void *aux;
    114   1.1    chris {
    115   1.1    chris 	struct clock_softc *sc = (struct clock_softc *)self;
    116   1.1    chris 	union footbridge_attach_args *fba = aux;
    117   1.1    chris 
    118   1.1    chris 	sc->sc_iot = fba->fba_ca.ca_iot;
    119   1.1    chris 	sc->sc_ioh = fba->fba_ca.ca_ioh;
    120   1.1    chris 
    121   1.1    chris 	clock_sc = sc;
    122   1.1    chris 
    123   1.1    chris 	/* Cannot do anything until cpu_initclocks() has been called */
    124   1.1    chris 
    125   1.1    chris 	printf("\n");
    126   1.1    chris }
    127   1.1    chris #endif
    128   1.1    chris 
    129   1.1    chris /*
    130   1.1    chris  * int clockhandler(struct clockframe *frame)
    131   1.1    chris  *
    132   1.1    chris  * Function called by timer 1 interrupts.
    133   1.1    chris  * This just clears the interrupt condition and calls hardclock().
    134   1.1    chris  */
    135   1.1    chris 
    136   1.1    chris int
    137   1.4    chris clockhandler(aframe)
    138   1.4    chris 	void *aframe;
    139   1.1    chris {
    140   1.4    chris 	struct clockframe *frame = aframe;
    141   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    142   1.1    chris 	    TIMER_1_CLEAR, 0);
    143   1.1    chris 	hardclock(frame);
    144   1.1    chris 	return(0);	/* Pass the interrupt on down the chain */
    145   1.1    chris }
    146   1.1    chris 
    147   1.1    chris /*
    148   1.1    chris  * int statclockhandler(struct clockframe *frame)
    149   1.1    chris  *
    150   1.1    chris  * Function called by timer 2 interrupts.
    151   1.1    chris  * This just clears the interrupt condition and calls statclock().
    152   1.1    chris  */
    153   1.1    chris 
    154   1.1    chris int
    155   1.4    chris statclockhandler(aframe)
    156   1.4    chris 	void *aframe;
    157   1.1    chris {
    158   1.4    chris 	struct clockframe *frame = aframe;
    159  1.11    chris 	int newint, r;
    160  1.11    chris 	int currentclock ;
    161  1.11    chris 
    162  1.11    chris 	/* start the clock off again */
    163  1.11    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    164  1.11    chris 			TIMER_2_CLEAR, 0);
    165  1.11    chris 
    166  1.11    chris 	do {
    167  1.11    chris 		r = random() & (statvar-1);
    168  1.11    chris 	} while (r == 0);
    169  1.11    chris 	newint = statmin + (r * statcountperusec);
    170  1.11    chris 
    171  1.11    chris 	/* fetch the current count */
    172  1.11    chris 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    173  1.11    chris 		    TIMER_2_VALUE);
    174  1.11    chris 
    175  1.11    chris 	/*
    176  1.11    chris 	 * work out how much time has run, add another usec for time spent
    177  1.11    chris 	 * here
    178  1.11    chris 	 */
    179  1.11    chris 	r = ((statprev - currentclock) + statcountperusec);
    180  1.11    chris 
    181  1.11    chris 	if (r < newint) {
    182  1.11    chris 		newint -= r;
    183  1.11    chris 		r = 0;
    184  1.11    chris 	}
    185  1.11    chris 	else
    186  1.11    chris 		printf("statclockhandler: Statclock overrun\n");
    187  1.11    chris 
    188  1.11    chris 
    189  1.11    chris 	/*
    190  1.11    chris 	 * update the clock to the new counter, this reloads the existing
    191  1.11    chris 	 * timer
    192  1.11    chris 	 */
    193   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    194  1.11    chris 	    		TIMER_2_LOAD, newint);
    195  1.11    chris 	statprev = newint;
    196   1.1    chris 	statclock(frame);
    197  1.11    chris 	if (r)
    198  1.11    chris 		/*
    199  1.11    chris 		 * We've completely overrun the previous interval,
    200  1.11    chris 		 * make sure we report the correct number of ticks.
    201  1.11    chris 		 */
    202  1.11    chris 		statclock(frame);
    203  1.11    chris 
    204   1.1    chris 	return(0);	/* Pass the interrupt on down the chain */
    205   1.1    chris }
    206   1.1    chris 
    207   1.1    chris static int
    208   1.1    chris load_timer(base, hz)
    209   1.1    chris 	int base;
    210   1.1    chris 	int hz;
    211   1.1    chris {
    212   1.1    chris 	unsigned int timer_count;
    213   1.1    chris 	int control;
    214   1.1    chris 
    215   1.1    chris 	timer_count = dc21285_fclk / hz;
    216  1.16  thorpej 	if (timer_count > TIMER_MAX_VAL * 16) {
    217   1.1    chris 		control = TIMER_FCLK_256;
    218   1.1    chris 		timer_count >>= 8;
    219  1.16  thorpej 	} else if (timer_count > TIMER_MAX_VAL) {
    220   1.1    chris 		control = TIMER_FCLK_16;
    221   1.1    chris 		timer_count >>= 4;
    222   1.1    chris 	} else
    223   1.1    chris 		control = TIMER_FCLK;
    224   1.1    chris 
    225   1.1    chris 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
    226   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    227   1.1    chris 	    base + TIMER_LOAD, timer_count);
    228   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    229   1.1    chris 	    base + TIMER_CONTROL, control);
    230   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    231   1.1    chris 	    base + TIMER_CLEAR, 0);
    232   1.1    chris 	return(timer_count);
    233   1.1    chris }
    234   1.1    chris 
    235   1.1    chris /*
    236   1.1    chris  * void setstatclockrate(int hz)
    237   1.1    chris  *
    238   1.1    chris  * Set the stat clock rate. The stat clock uses timer2
    239   1.1    chris  */
    240   1.1    chris 
    241   1.1    chris void
    242   1.1    chris setstatclockrate(hz)
    243   1.1    chris 	int hz;
    244   1.1    chris {
    245  1.11    chris 	int statint;
    246  1.11    chris 	int countpersecond;
    247  1.11    chris 	int statvarticks;
    248  1.11    chris 
    249  1.11    chris 	/* statint == num in counter to drop by desired hz */
    250  1.14  tsutsui 	statint = statprev = clock_sc->sc_statclock_count =
    251  1.14  tsutsui 	    load_timer(TIMER_2_BASE, hz);
    252  1.11    chris 
    253  1.11    chris 	/* Get the total ticks a second */
    254  1.11    chris 	countpersecond = statint * hz;
    255  1.11    chris 
    256  1.11    chris 	/* now work out how many ticks per usec */
    257  1.11    chris 	statcountperusec = countpersecond / 1000000;
    258   1.1    chris 
    259  1.11    chris 	/* calculate a variance range of statvar */
    260  1.11    chris 	statvarticks = statcountperusec * statvar;
    261  1.11    chris 
    262  1.11    chris 	/* minimum is statint - 50% of variant */
    263  1.11    chris 	statmin = statint - (statvarticks / 2);
    264   1.1    chris }
    265   1.1    chris 
    266   1.1    chris /*
    267   1.1    chris  * void cpu_initclocks(void)
    268   1.1    chris  *
    269   1.1    chris  * Initialise the clocks.
    270   1.1    chris  *
    271   1.1    chris  * Timer 1 is used for the main system clock (hardclock)
    272   1.1    chris  * Timer 2 is used for the statistics clock (statclock)
    273   1.1    chris  */
    274   1.1    chris 
    275   1.1    chris void
    276   1.1    chris cpu_initclocks()
    277   1.1    chris {
    278   1.9    chris 	/* stathz and profhz should be set to something, we have the timer */
    279   1.9    chris 	if (stathz == 0)
    280  1.11    chris 		stathz = hz;
    281   1.9    chris 
    282   1.9    chris 	if (profhz == 0)
    283   1.9    chris 		profhz = stathz * 5;
    284   1.1    chris 
    285   1.1    chris 	/* Report the clock frequencies */
    286   1.1    chris 	printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
    287   1.1    chris 
    288   1.1    chris 	/* Setup timer 1 and claim interrupt */
    289   1.1    chris 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
    290   1.1    chris 
    291   1.1    chris 	/*
    292   1.1    chris 	 * Use ticks per 256us for accuracy since ticks per us is often
    293   1.1    chris 	 * fractional e.g. @ 66MHz
    294   1.1    chris 	 */
    295   1.1    chris 	clock_sc->sc_clock_ticks_per_256us =
    296   1.1    chris 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
    297  1.15    chris 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
    298   1.1    chris 	    "tmr1 hard clk", clockhandler, 0);
    299   1.1    chris 
    300   1.1    chris 	if (clock_sc->sc_clockintr == NULL)
    301   1.7   provos 		panic("%s: Cannot install timer 1 interrupt handler",
    302   1.1    chris 		    clock_sc->sc_dev.dv_xname);
    303   1.1    chris 
    304   1.1    chris 	/* If stathz is non-zero then setup the stat clock */
    305   1.1    chris 	if (stathz) {
    306   1.1    chris 		/* Setup timer 2 and claim interrupt */
    307   1.1    chris 		setstatclockrate(stathz);
    308  1.15    chris        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_STATCLOCK,
    309   1.1    chris        		    "tmr2 stat clk", statclockhandler, 0);
    310   1.1    chris 		if (clock_sc->sc_statclockintr == NULL)
    311   1.7   provos 			panic("%s: Cannot install timer 2 interrupt handler",
    312   1.1    chris 			    clock_sc->sc_dev.dv_xname);
    313   1.1    chris 	}
    314   1.1    chris }
    315   1.1    chris 
    316   1.1    chris 
    317   1.1    chris /*
    318   1.1    chris  * void microtime(struct timeval *tvp)
    319   1.1    chris  *
    320   1.1    chris  * Fill in the specified timeval struct with the current time
    321   1.1    chris  * accurate to the microsecond.
    322   1.1    chris  */
    323   1.1    chris 
    324   1.1    chris void
    325   1.1    chris microtime(tvp)
    326   1.1    chris 	struct timeval *tvp;
    327   1.1    chris {
    328   1.1    chris 	int s;
    329   1.1    chris 	int tm;
    330   1.1    chris 	int deltatm;
    331   1.1    chris 	static struct timeval oldtv;
    332   1.1    chris 
    333   1.1    chris 	if (clock_sc == NULL || clock_sc->sc_clock_count == 0)
    334   1.1    chris 		return;
    335   1.1    chris 
    336   1.1    chris 	s = splhigh();
    337   1.1    chris 
    338   1.1    chris 	tm = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    339   1.1    chris 	    TIMER_1_VALUE);
    340   1.1    chris 
    341   1.1    chris 	deltatm = clock_sc->sc_clock_count - tm;
    342   1.1    chris 
    343   1.1    chris #ifdef DIAGNOSTIC
    344   1.1    chris 	if (deltatm < 0)
    345   1.7   provos 		panic("opps deltatm < 0 tm=%d deltatm=%d", tm, deltatm);
    346   1.1    chris #endif
    347   1.1    chris 
    348   1.1    chris 	/* Fill in the timeval struct */
    349   1.1    chris 	*tvp = time;
    350   1.1    chris 	tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
    351   1.1    chris 
    352   1.1    chris 	/* Make sure the micro seconds don't overflow. */
    353   1.1    chris 	while (tvp->tv_usec >= 1000000) {
    354   1.1    chris 		tvp->tv_usec -= 1000000;
    355   1.1    chris 		++tvp->tv_sec;
    356   1.1    chris 	}
    357   1.1    chris 
    358   1.1    chris 	/* Make sure the time has advanced. */
    359   1.1    chris 	if (tvp->tv_sec == oldtv.tv_sec &&
    360   1.1    chris 	    tvp->tv_usec <= oldtv.tv_usec) {
    361   1.1    chris 		tvp->tv_usec = oldtv.tv_usec + 1;
    362   1.1    chris 		if (tvp->tv_usec >= 1000000) {
    363   1.1    chris 			tvp->tv_usec -= 1000000;
    364   1.1    chris 			++tvp->tv_sec;
    365   1.1    chris 		}
    366   1.1    chris 	}
    367   1.1    chris 
    368   1.1    chris 	oldtv = *tvp;
    369   1.1    chris 	(void)splx(s);
    370   1.1    chris }
    371   1.1    chris 
    372   1.1    chris /*
    373   1.6    chris  * Use a timer to track microseconds, if the footbridge hasn't been setup we
    374   1.6    chris  * rely on an estimated loop, however footbridge is attached very early on.
    375   1.1    chris  */
    376   1.1    chris 
    377   1.6    chris static int delay_clock_count = 0;
    378   1.6    chris static int delay_count_per_usec = 0;
    379   1.1    chris 
    380   1.6    chris void
    381   1.6    chris calibrate_delay(void)
    382   1.6    chris {
    383   1.6    chris      delay_clock_count = load_timer(TIMER_3_BASE, 100);
    384   1.6    chris      delay_count_per_usec = delay_clock_count/10000;
    385  1.12    chris #ifdef VERBOSE_DELAY_CALIBRATION
    386  1.12    chris      printf("delay calibration: delay_cc = %d, delay_c/us=%d\n",
    387  1.12    chris 		     delay_clock_count, delay_count_per_usec);
    388  1.12    chris 
    389  1.12    chris      printf("0..");
    390  1.12    chris      delay(1000000);
    391  1.12    chris      printf("1..");
    392  1.12    chris      delay(1000000);
    393  1.12    chris      printf("2..");
    394  1.12    chris      delay(1000000);
    395  1.12    chris      printf("3..");
    396  1.12    chris      delay(1000000);
    397  1.12    chris      printf("4..");
    398  1.12    chris       delay(1000000);
    399  1.12    chris      printf("5..");
    400  1.12    chris       delay(1000000);
    401  1.12    chris      printf("6..");
    402  1.12    chris       delay(1000000);
    403  1.12    chris      printf("7..");
    404  1.12    chris       delay(1000000);
    405  1.12    chris      printf("8..");
    406  1.12    chris       delay(1000000);
    407  1.12    chris      printf("9..");
    408  1.12    chris       delay(1000000);
    409  1.12    chris      printf("10\n");
    410  1.12    chris #endif
    411   1.6    chris }
    412   1.1    chris 
    413   1.6    chris int delaycount = 500;
    414   1.1    chris 
    415   1.1    chris void
    416   1.1    chris delay(n)
    417   1.1    chris 	u_int n;
    418   1.1    chris {
    419   1.6    chris 	volatile u_int i;
    420   1.6    chris 	uint32_t cur, last, delta, usecs;
    421   1.1    chris 
    422   1.1    chris 	if (n == 0) return;
    423   1.6    chris 
    424   1.6    chris 
    425   1.6    chris 	// not calibrated the timer yet, so try to live with this horrible
    426   1.6    chris 	// loop!
    427   1.6    chris 	if (delay_clock_count == 0)
    428   1.6    chris 	{
    429   1.6    chris 	    while (n-- > 0) {
    430   1.6    chris 		for (i = delaycount; --i;);
    431   1.6    chris 	    }
    432   1.6    chris 	    return;
    433   1.6    chris 	}
    434  1.13    chris 
    435  1.13    chris 	/*
    436  1.13    chris 	 * read the current value (do not reset it as delay is reentrant)
    437  1.13    chris 	 */
    438  1.13    chris 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    439  1.13    chris 		    TIMER_3_VALUE);
    440  1.12    chris 
    441   1.6    chris 	delta = usecs = 0;
    442   1.6    chris 
    443   1.6    chris 	while (n > usecs)
    444   1.6    chris 	{
    445   1.6    chris 	    cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    446   1.6    chris 		    TIMER_3_VALUE);
    447   1.6    chris 	    if (last < cur)
    448   1.6    chris 		/* timer has wrapped */
    449   1.6    chris 		delta += ((delay_clock_count - cur) + last);
    450   1.6    chris 	    else
    451   1.6    chris 		delta += (last - cur);
    452   1.6    chris 
    453  1.12    chris 	    if (cur == 0)
    454   1.6    chris 	    {
    455  1.13    chris 		/*
    456  1.13    chris 		 * reset the timer, note that if something blocks us for more
    457  1.13    chris 		 * than 1/100s we may delay for too long, but I believe that
    458  1.13    chris 		 * is fairly unlikely.
    459  1.13    chris 		 */
    460   1.6    chris 		bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    461   1.6    chris 			TIMER_3_CLEAR, 0);
    462   1.6    chris 	    }
    463   1.6    chris 	    last = cur;
    464   1.6    chris 
    465   1.6    chris 	    if (delta >= delay_count_per_usec)
    466   1.6    chris 	    {
    467   1.6    chris 		usecs += delta / delay_count_per_usec;
    468   1.6    chris 		delta %= delay_count_per_usec;
    469   1.6    chris 	    }
    470   1.1    chris 	}
    471   1.1    chris }
    472   1.1    chris 
    473   1.1    chris /* End of footbridge_clock.c */
    474