Home | History | Annotate | Line # | Download | only in footbridge
footbridge_clock.c revision 1.19.2.2
      1  1.19.2.2     yamt /*	$NetBSD: footbridge_clock.c,v 1.19.2.2 2006/12/30 20:45:32 yamt Exp $	*/
      2       1.1    chris 
      3       1.1    chris /*
      4       1.1    chris  * Copyright (c) 1997 Mark Brinicombe.
      5       1.1    chris  * Copyright (c) 1997 Causality Limited.
      6       1.1    chris  * All rights reserved.
      7       1.1    chris  *
      8       1.1    chris  * Redistribution and use in source and binary forms, with or without
      9       1.1    chris  * modification, are permitted provided that the following conditions
     10       1.1    chris  * are met:
     11       1.1    chris  * 1. Redistributions of source code must retain the above copyright
     12       1.1    chris  *    notice, this list of conditions and the following disclaimer.
     13       1.1    chris  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1    chris  *    notice, this list of conditions and the following disclaimer in the
     15       1.1    chris  *    documentation and/or other materials provided with the distribution.
     16       1.1    chris  * 3. All advertising materials mentioning features or use of this software
     17       1.1    chris  *    must display the following acknowledgement:
     18       1.1    chris  *	This product includes software developed by Mark Brinicombe
     19       1.1    chris  *	for the NetBSD Project.
     20       1.1    chris  * 4. The name of the company nor the name of the author may be used to
     21       1.1    chris  *    endorse or promote products derived from this software without specific
     22       1.1    chris  *    prior written permission.
     23       1.1    chris  *
     24       1.1    chris  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25       1.1    chris  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26       1.1    chris  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27       1.1    chris  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     28       1.1    chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     29       1.1    chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     30       1.1    chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31       1.1    chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32       1.1    chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33       1.1    chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34       1.1    chris  * SUCH DAMAGE.
     35       1.1    chris  */
     36      1.17    chris 
     37      1.17    chris #include <sys/cdefs.h>
     38  1.19.2.2     yamt __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.19.2.2 2006/12/30 20:45:32 yamt Exp $");
     39       1.1    chris 
     40       1.1    chris /* Include header files */
     41       1.1    chris 
     42       1.1    chris #include <sys/types.h>
     43       1.1    chris #include <sys/param.h>
     44       1.1    chris #include <sys/systm.h>
     45       1.1    chris #include <sys/kernel.h>
     46       1.1    chris #include <sys/time.h>
     47  1.19.2.2     yamt #include <sys/timetc.h>
     48       1.1    chris #include <sys/device.h>
     49       1.1    chris 
     50       1.2     matt #include <machine/intr.h>
     51       1.3  thorpej 
     52       1.3  thorpej #include <arm/cpufunc.h>
     53       1.3  thorpej 
     54       1.1    chris #include <arm/footbridge/dc21285reg.h>
     55       1.1    chris #include <arm/footbridge/footbridgevar.h>
     56       1.6    chris #include <arm/footbridge/footbridge.h>
     57       1.1    chris 
     58       1.1    chris extern struct footbridge_softc *clock_sc;
     59       1.1    chris extern u_int dc21285_fclk;
     60       1.1    chris 
     61  1.19.2.2     yamt int clockhandler(void *);
     62  1.19.2.2     yamt int statclockhandler(void *);
     63  1.19.2.2     yamt static int load_timer(int, int);
     64       1.4    chris 
     65      1.11    chris /*
     66      1.11    chris  * Statistics clock variance, in usec.  Variance must be a
     67      1.11    chris  * power of two.  Since this gives us an even number, not an odd number,
     68      1.11    chris  * we discard one case and compensate.  That is, a variance of 1024 would
     69      1.11    chris  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
     70      1.11    chris  * This is symmetric about the point 512, or statvar/2, and thus averages
     71      1.11    chris  * to that value (assuming uniform random numbers).
     72      1.11    chris  */
     73      1.11    chris const int statvar = 1024;
     74      1.11    chris int statmin;			/* minimum stat clock count in ticks */
     75      1.11    chris int statcountperusec;		/* number of ticks per usec at current stathz */
     76      1.11    chris int statprev;			/* last value of we set statclock to */
     77       1.4    chris 
     78  1.19.2.2     yamt void footbridge_tc_init(void);
     79  1.19.2.2     yamt 
     80       1.1    chris #if 0
     81  1.19.2.2     yamt static int clockmatch(struct device *parent, struct cfdata *cf, void *aux);
     82  1.19.2.2     yamt static void clockattach(struct device *parent, struct device *self, void *aux);
     83       1.1    chris 
     84      1.10  thorpej CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
     85      1.10  thorpej     clockmatch, clockattach, NULL, NULL);
     86       1.1    chris 
     87       1.1    chris /*
     88       1.1    chris  * int clockmatch(struct device *parent, void *match, void *aux)
     89       1.1    chris  *
     90       1.1    chris  * Just return ok for this if it is device 0
     91       1.1    chris  */
     92       1.1    chris 
     93       1.1    chris static int
     94  1.19.2.2     yamt clockmatch(struct device *parent, struct cfdata *cf, void *aux)
     95       1.1    chris {
     96       1.1    chris 	union footbridge_attach_args *fba = aux;
     97       1.1    chris 
     98       1.1    chris 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
     99  1.19.2.2     yamt 		return 1;
    100  1.19.2.2     yamt 	return 0;
    101       1.1    chris }
    102       1.1    chris 
    103       1.1    chris 
    104       1.1    chris /*
    105       1.1    chris  * void clockattach(struct device *parent, struct device *dev, void *aux)
    106       1.1    chris  *
    107       1.1    chris  */
    108       1.1    chris 
    109       1.1    chris static void
    110  1.19.2.2     yamt clockattach(struct device *parent, struct device *self, void *aux)
    111       1.1    chris {
    112       1.1    chris 	struct clock_softc *sc = (struct clock_softc *)self;
    113       1.1    chris 	union footbridge_attach_args *fba = aux;
    114       1.1    chris 
    115       1.1    chris 	sc->sc_iot = fba->fba_ca.ca_iot;
    116       1.1    chris 	sc->sc_ioh = fba->fba_ca.ca_ioh;
    117       1.1    chris 
    118       1.1    chris 	clock_sc = sc;
    119       1.1    chris 
    120       1.1    chris 	/* Cannot do anything until cpu_initclocks() has been called */
    121       1.1    chris 
    122       1.1    chris 	printf("\n");
    123       1.1    chris }
    124       1.1    chris #endif
    125       1.1    chris 
    126       1.1    chris /*
    127       1.1    chris  * int clockhandler(struct clockframe *frame)
    128       1.1    chris  *
    129       1.1    chris  * Function called by timer 1 interrupts.
    130       1.1    chris  * This just clears the interrupt condition and calls hardclock().
    131       1.1    chris  */
    132       1.1    chris 
    133       1.1    chris int
    134  1.19.2.2     yamt clockhandler(void *aframe)
    135       1.1    chris {
    136       1.4    chris 	struct clockframe *frame = aframe;
    137       1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    138       1.1    chris 	    TIMER_1_CLEAR, 0);
    139       1.1    chris 	hardclock(frame);
    140  1.19.2.2     yamt 	return 0;	/* Pass the interrupt on down the chain */
    141       1.1    chris }
    142       1.1    chris 
    143       1.1    chris /*
    144       1.1    chris  * int statclockhandler(struct clockframe *frame)
    145       1.1    chris  *
    146       1.1    chris  * Function called by timer 2 interrupts.
    147       1.1    chris  * This just clears the interrupt condition and calls statclock().
    148       1.1    chris  */
    149       1.1    chris 
    150       1.1    chris int
    151  1.19.2.2     yamt statclockhandler(void *aframe)
    152       1.1    chris {
    153       1.4    chris 	struct clockframe *frame = aframe;
    154      1.11    chris 	int newint, r;
    155      1.11    chris 	int currentclock ;
    156      1.11    chris 
    157      1.11    chris 	/* start the clock off again */
    158      1.11    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    159      1.11    chris 			TIMER_2_CLEAR, 0);
    160      1.11    chris 
    161      1.11    chris 	do {
    162      1.11    chris 		r = random() & (statvar-1);
    163      1.11    chris 	} while (r == 0);
    164      1.11    chris 	newint = statmin + (r * statcountperusec);
    165      1.11    chris 
    166      1.11    chris 	/* fetch the current count */
    167      1.11    chris 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    168      1.11    chris 		    TIMER_2_VALUE);
    169      1.11    chris 
    170      1.11    chris 	/*
    171      1.11    chris 	 * work out how much time has run, add another usec for time spent
    172      1.11    chris 	 * here
    173      1.11    chris 	 */
    174      1.11    chris 	r = ((statprev - currentclock) + statcountperusec);
    175      1.11    chris 
    176      1.11    chris 	if (r < newint) {
    177      1.11    chris 		newint -= r;
    178      1.11    chris 		r = 0;
    179      1.11    chris 	}
    180      1.11    chris 	else
    181      1.11    chris 		printf("statclockhandler: Statclock overrun\n");
    182      1.11    chris 
    183      1.11    chris 
    184      1.11    chris 	/*
    185      1.11    chris 	 * update the clock to the new counter, this reloads the existing
    186      1.11    chris 	 * timer
    187      1.11    chris 	 */
    188       1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    189      1.11    chris 	    		TIMER_2_LOAD, newint);
    190      1.11    chris 	statprev = newint;
    191       1.1    chris 	statclock(frame);
    192      1.11    chris 	if (r)
    193      1.11    chris 		/*
    194      1.11    chris 		 * We've completely overrun the previous interval,
    195      1.11    chris 		 * make sure we report the correct number of ticks.
    196      1.11    chris 		 */
    197      1.11    chris 		statclock(frame);
    198      1.11    chris 
    199  1.19.2.2     yamt 	return 0;	/* Pass the interrupt on down the chain */
    200       1.1    chris }
    201       1.1    chris 
    202       1.1    chris static int
    203  1.19.2.2     yamt load_timer(int base, int herz)
    204       1.1    chris {
    205       1.1    chris 	unsigned int timer_count;
    206       1.1    chris 	int control;
    207       1.1    chris 
    208      1.19       he 	timer_count = dc21285_fclk / herz;
    209      1.16  thorpej 	if (timer_count > TIMER_MAX_VAL * 16) {
    210       1.1    chris 		control = TIMER_FCLK_256;
    211       1.1    chris 		timer_count >>= 8;
    212      1.16  thorpej 	} else if (timer_count > TIMER_MAX_VAL) {
    213       1.1    chris 		control = TIMER_FCLK_16;
    214       1.1    chris 		timer_count >>= 4;
    215       1.1    chris 	} else
    216       1.1    chris 		control = TIMER_FCLK;
    217       1.1    chris 
    218       1.1    chris 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
    219       1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    220       1.1    chris 	    base + TIMER_LOAD, timer_count);
    221       1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    222       1.1    chris 	    base + TIMER_CONTROL, control);
    223       1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    224       1.1    chris 	    base + TIMER_CLEAR, 0);
    225  1.19.2.2     yamt 	return timer_count;
    226       1.1    chris }
    227       1.1    chris 
    228       1.1    chris /*
    229      1.19       he  * void setstatclockrate(int herz)
    230       1.1    chris  *
    231       1.1    chris  * Set the stat clock rate. The stat clock uses timer2
    232       1.1    chris  */
    233       1.1    chris 
    234       1.1    chris void
    235  1.19.2.2     yamt setstatclockrate(int herz)
    236       1.1    chris {
    237      1.11    chris 	int statint;
    238      1.11    chris 	int countpersecond;
    239      1.11    chris 	int statvarticks;
    240      1.11    chris 
    241      1.19       he 	/* statint == num in counter to drop by desired herz */
    242      1.14  tsutsui 	statint = statprev = clock_sc->sc_statclock_count =
    243      1.19       he 	    load_timer(TIMER_2_BASE, herz);
    244      1.11    chris 
    245      1.11    chris 	/* Get the total ticks a second */
    246      1.19       he 	countpersecond = statint * herz;
    247      1.11    chris 
    248      1.11    chris 	/* now work out how many ticks per usec */
    249      1.11    chris 	statcountperusec = countpersecond / 1000000;
    250       1.1    chris 
    251      1.11    chris 	/* calculate a variance range of statvar */
    252      1.11    chris 	statvarticks = statcountperusec * statvar;
    253      1.11    chris 
    254      1.11    chris 	/* minimum is statint - 50% of variant */
    255      1.11    chris 	statmin = statint - (statvarticks / 2);
    256       1.1    chris }
    257       1.1    chris 
    258       1.1    chris /*
    259       1.1    chris  * void cpu_initclocks(void)
    260       1.1    chris  *
    261       1.1    chris  * Initialise the clocks.
    262       1.1    chris  *
    263       1.1    chris  * Timer 1 is used for the main system clock (hardclock)
    264       1.1    chris  * Timer 2 is used for the statistics clock (statclock)
    265       1.1    chris  */
    266       1.1    chris 
    267       1.1    chris void
    268  1.19.2.2     yamt cpu_initclocks(void)
    269       1.1    chris {
    270       1.9    chris 	/* stathz and profhz should be set to something, we have the timer */
    271       1.9    chris 	if (stathz == 0)
    272      1.11    chris 		stathz = hz;
    273       1.9    chris 
    274       1.9    chris 	if (profhz == 0)
    275       1.9    chris 		profhz = stathz * 5;
    276       1.1    chris 
    277       1.1    chris 	/* Report the clock frequencies */
    278       1.1    chris 	printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
    279       1.1    chris 
    280       1.1    chris 	/* Setup timer 1 and claim interrupt */
    281       1.1    chris 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
    282       1.1    chris 
    283       1.1    chris 	/*
    284       1.1    chris 	 * Use ticks per 256us for accuracy since ticks per us is often
    285       1.1    chris 	 * fractional e.g. @ 66MHz
    286       1.1    chris 	 */
    287       1.1    chris 	clock_sc->sc_clock_ticks_per_256us =
    288       1.1    chris 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
    289      1.15    chris 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
    290       1.1    chris 	    "tmr1 hard clk", clockhandler, 0);
    291       1.1    chris 
    292       1.1    chris 	if (clock_sc->sc_clockintr == NULL)
    293       1.7   provos 		panic("%s: Cannot install timer 1 interrupt handler",
    294       1.1    chris 		    clock_sc->sc_dev.dv_xname);
    295       1.1    chris 
    296       1.1    chris 	/* If stathz is non-zero then setup the stat clock */
    297       1.1    chris 	if (stathz) {
    298       1.1    chris 		/* Setup timer 2 and claim interrupt */
    299       1.1    chris 		setstatclockrate(stathz);
    300      1.15    chris        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_STATCLOCK,
    301       1.1    chris        		    "tmr2 stat clk", statclockhandler, 0);
    302       1.1    chris 		if (clock_sc->sc_statclockintr == NULL)
    303       1.7   provos 			panic("%s: Cannot install timer 2 interrupt handler",
    304       1.1    chris 			    clock_sc->sc_dev.dv_xname);
    305       1.1    chris 	}
    306       1.1    chris 
    307  1.19.2.2     yamt 	footbridge_tc_init();
    308  1.19.2.2     yamt }
    309       1.1    chris 
    310  1.19.2.2     yamt static uint32_t
    311  1.19.2.2     yamt fclk_get_count(struct timecounter *tc)
    312  1.19.2.2     yamt {
    313  1.19.2.2     yamt 	return (TIMER_MAX_VAL -
    314  1.19.2.2     yamt 	    bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    315  1.19.2.2     yamt 	    TIMER_3_VALUE));
    316  1.19.2.2     yamt }
    317       1.1    chris 
    318       1.1    chris void
    319  1.19.2.2     yamt footbridge_tc_init(void)
    320       1.1    chris {
    321  1.19.2.2     yamt 	static struct timecounter fb_tc = {
    322  1.19.2.2     yamt 		.tc_get_timecount = fclk_get_count,
    323  1.19.2.2     yamt 		.tc_counter_mask = TIMER_MAX_VAL,
    324  1.19.2.2     yamt 		.tc_name = "dc21285_fclk",
    325  1.19.2.2     yamt 		.tc_quality = 100
    326  1.19.2.2     yamt 	};
    327  1.19.2.2     yamt 	fb_tc.tc_frequency = dc21285_fclk;
    328  1.19.2.2     yamt 	tc_init(&fb_tc);
    329       1.1    chris }
    330       1.1    chris 
    331       1.1    chris /*
    332       1.6    chris  * Use a timer to track microseconds, if the footbridge hasn't been setup we
    333       1.6    chris  * rely on an estimated loop, however footbridge is attached very early on.
    334       1.1    chris  */
    335       1.1    chris 
    336       1.6    chris static int delay_count_per_usec = 0;
    337       1.1    chris 
    338       1.6    chris void
    339       1.6    chris calibrate_delay(void)
    340       1.6    chris {
    341  1.19.2.2     yamt 	/*
    342  1.19.2.2     yamt 	 * For all current footbridge hardware, the fclk runs at a
    343  1.19.2.2     yamt 	 * rate that is sufficiently slow enough that we don't need to
    344  1.19.2.2     yamt 	 * use a prescaler.  A prescaler would be needed if the fclk
    345  1.19.2.2     yamt 	 * could wrap within 2 hardclock periods (2 * HZ).  With
    346  1.19.2.2     yamt 	 * normal values of HZ (100 and higher), this is unlikely to
    347  1.19.2.2     yamt 	 * ever happen.
    348  1.19.2.2     yamt 	 *
    349  1.19.2.2     yamt 	 * We let TIMER 3 just run free, at the freqeuncy supplied by
    350  1.19.2.2     yamt 	 * dc21285_fclk.
    351  1.19.2.2     yamt 	 */
    352  1.19.2.2     yamt 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    353  1.19.2.2     yamt 	    TIMER_3_BASE + TIMER_CONTROL, TIMER_ENABLE);
    354  1.19.2.2     yamt 	delay_count_per_usec = dc21285_fclk / 1000000;
    355  1.19.2.2     yamt 	if (dc21285_fclk % 1000000)
    356  1.19.2.2     yamt 		delay_count_per_usec += 1;
    357       1.6    chris }
    358       1.1    chris 
    359       1.1    chris void
    360  1.19.2.2     yamt delay(unsigned n)
    361       1.1    chris {
    362       1.6    chris 	uint32_t cur, last, delta, usecs;
    363       1.1    chris 
    364  1.19.2.2     yamt 	if (n == 0)
    365  1.19.2.2     yamt 		return;
    366       1.6    chris 
    367      1.18     matt 	/*
    368      1.18     matt 	 * not calibrated the timer yet, so try to live with this horrible
    369      1.18     matt 	 * loop!
    370  1.19.2.2     yamt 	 *
    371  1.19.2.2     yamt 	 * Note: a much better solution might be to have the timers
    372  1.19.2.2     yamt 	 * get get calibrated out of mach_init.  Of course, the
    373  1.19.2.2     yamt 	 * clock_sc needs to be set up, so we can read/write the clock
    374  1.19.2.2     yamt 	 * registers.
    375      1.18     matt 	 */
    376  1.19.2.2     yamt 	if (!delay_count_per_usec)
    377       1.6    chris 	{
    378  1.19.2.2     yamt 		int delaycount = 25000;
    379  1.19.2.2     yamt 		volatile int i;
    380  1.19.2.2     yamt 
    381  1.19.2.2     yamt 		while (n-- > 0) {
    382  1.19.2.2     yamt 			for (i = delaycount; --i;);
    383  1.19.2.2     yamt 		}
    384  1.19.2.2     yamt 		return;
    385       1.6    chris 	}
    386      1.13    chris 
    387      1.13    chris 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    388  1.19.2.2     yamt 	    TIMER_3_VALUE);
    389  1.19.2.2     yamt 	delta = usecs = 0;
    390  1.19.2.2     yamt 
    391  1.19.2.2     yamt 	while (n > usecs) {
    392  1.19.2.2     yamt 		cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    393      1.13    chris 		    TIMER_3_VALUE);
    394  1.19.2.2     yamt 		if (last < cur)
    395  1.19.2.2     yamt 			/* timer has wrapped */
    396  1.19.2.2     yamt 			delta += ((TIMER_MAX_VAL - cur) + last);
    397  1.19.2.2     yamt 		else
    398  1.19.2.2     yamt 			delta += (last - cur);
    399  1.19.2.2     yamt 
    400  1.19.2.2     yamt 		last = cur;
    401  1.19.2.2     yamt 
    402  1.19.2.2     yamt 		while (delta >= delay_count_per_usec) {
    403  1.19.2.2     yamt 			delta -= delay_count_per_usec;
    404  1.19.2.2     yamt 			usecs++;
    405  1.19.2.2     yamt 		}
    406       1.1    chris 	}
    407       1.1    chris }
    408       1.1    chris 
    409       1.1    chris /* End of footbridge_clock.c */
    410