Home | History | Annotate | Line # | Download | only in footbridge
footbridge_clock.c revision 1.22
      1  1.22  gdamore /*	$NetBSD: footbridge_clock.c,v 1.22 2006/09/11 06:02:30 gdamore Exp $	*/
      2   1.1    chris 
      3   1.1    chris /*
      4   1.1    chris  * Copyright (c) 1997 Mark Brinicombe.
      5   1.1    chris  * Copyright (c) 1997 Causality Limited.
      6   1.1    chris  * All rights reserved.
      7   1.1    chris  *
      8   1.1    chris  * Redistribution and use in source and binary forms, with or without
      9   1.1    chris  * modification, are permitted provided that the following conditions
     10   1.1    chris  * are met:
     11   1.1    chris  * 1. Redistributions of source code must retain the above copyright
     12   1.1    chris  *    notice, this list of conditions and the following disclaimer.
     13   1.1    chris  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1    chris  *    notice, this list of conditions and the following disclaimer in the
     15   1.1    chris  *    documentation and/or other materials provided with the distribution.
     16   1.1    chris  * 3. All advertising materials mentioning features or use of this software
     17   1.1    chris  *    must display the following acknowledgement:
     18   1.1    chris  *	This product includes software developed by Mark Brinicombe
     19   1.1    chris  *	for the NetBSD Project.
     20   1.1    chris  * 4. The name of the company nor the name of the author may be used to
     21   1.1    chris  *    endorse or promote products derived from this software without specific
     22   1.1    chris  *    prior written permission.
     23   1.1    chris  *
     24   1.1    chris  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25   1.1    chris  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26   1.1    chris  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27   1.1    chris  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     28   1.1    chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     29   1.1    chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     30   1.1    chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31   1.1    chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32   1.1    chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33   1.1    chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34   1.1    chris  * SUCH DAMAGE.
     35   1.1    chris  */
     36  1.17    chris 
     37  1.17    chris #include <sys/cdefs.h>
     38  1.22  gdamore __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.22 2006/09/11 06:02:30 gdamore Exp $");
     39   1.1    chris 
     40   1.1    chris /* Include header files */
     41   1.1    chris 
     42   1.1    chris #include <sys/types.h>
     43   1.1    chris #include <sys/param.h>
     44   1.1    chris #include <sys/systm.h>
     45   1.1    chris #include <sys/kernel.h>
     46   1.1    chris #include <sys/time.h>
     47   1.1    chris #include <sys/device.h>
     48   1.1    chris 
     49   1.2     matt #include <machine/intr.h>
     50   1.3  thorpej 
     51   1.3  thorpej #include <arm/cpufunc.h>
     52   1.3  thorpej 
     53   1.1    chris #include <arm/footbridge/dc21285reg.h>
     54   1.1    chris #include <arm/footbridge/footbridgevar.h>
     55   1.6    chris #include <arm/footbridge/footbridge.h>
     56   1.1    chris 
     57   1.1    chris extern struct footbridge_softc *clock_sc;
     58   1.1    chris extern u_int dc21285_fclk;
     59   1.1    chris 
     60  1.22  gdamore int clockhandler(void *);
     61  1.22  gdamore int statclockhandler(void *);
     62  1.22  gdamore static int load_timer(int, int);
     63   1.4    chris 
     64  1.11    chris /*
     65  1.11    chris  * Statistics clock variance, in usec.  Variance must be a
     66  1.11    chris  * power of two.  Since this gives us an even number, not an odd number,
     67  1.11    chris  * we discard one case and compensate.  That is, a variance of 1024 would
     68  1.11    chris  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
     69  1.11    chris  * This is symmetric about the point 512, or statvar/2, and thus averages
     70  1.11    chris  * to that value (assuming uniform random numbers).
     71  1.11    chris  */
     72  1.11    chris const int statvar = 1024;
     73  1.11    chris int statmin;			/* minimum stat clock count in ticks */
     74  1.11    chris int statcountperusec;		/* number of ticks per usec at current stathz */
     75  1.11    chris int statprev;			/* last value of we set statclock to */
     76   1.4    chris 
     77   1.1    chris #if 0
     78  1.22  gdamore static int clockmatch(struct device *parent, struct cfdata *cf, void *aux);
     79  1.22  gdamore static void clockattach(struct device *parent, struct device *self, void *aux);
     80   1.1    chris 
     81  1.10  thorpej CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
     82  1.10  thorpej     clockmatch, clockattach, NULL, NULL);
     83   1.1    chris 
     84   1.1    chris /*
     85   1.1    chris  * int clockmatch(struct device *parent, void *match, void *aux)
     86   1.1    chris  *
     87   1.1    chris  * Just return ok for this if it is device 0
     88   1.1    chris  */
     89   1.1    chris 
     90   1.1    chris static int
     91  1.22  gdamore clockmatch(struct device *parent, struct cfdata *cf, void *aux)
     92   1.1    chris {
     93   1.1    chris 	union footbridge_attach_args *fba = aux;
     94   1.1    chris 
     95   1.1    chris 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
     96  1.22  gdamore 		return 1;
     97  1.22  gdamore 	return 0;
     98   1.1    chris }
     99   1.1    chris 
    100   1.1    chris 
    101   1.1    chris /*
    102   1.1    chris  * void clockattach(struct device *parent, struct device *dev, void *aux)
    103   1.1    chris  *
    104   1.1    chris  */
    105   1.1    chris 
    106   1.1    chris static void
    107  1.22  gdamore clockattach(struct device *parent, struct device *self, void *aux)
    108   1.1    chris {
    109   1.1    chris 	struct clock_softc *sc = (struct clock_softc *)self;
    110   1.1    chris 	union footbridge_attach_args *fba = aux;
    111   1.1    chris 
    112   1.1    chris 	sc->sc_iot = fba->fba_ca.ca_iot;
    113   1.1    chris 	sc->sc_ioh = fba->fba_ca.ca_ioh;
    114   1.1    chris 
    115   1.1    chris 	clock_sc = sc;
    116   1.1    chris 
    117   1.1    chris 	/* Cannot do anything until cpu_initclocks() has been called */
    118   1.1    chris 
    119   1.1    chris 	printf("\n");
    120   1.1    chris }
    121   1.1    chris #endif
    122   1.1    chris 
    123   1.1    chris /*
    124   1.1    chris  * int clockhandler(struct clockframe *frame)
    125   1.1    chris  *
    126   1.1    chris  * Function called by timer 1 interrupts.
    127   1.1    chris  * This just clears the interrupt condition and calls hardclock().
    128   1.1    chris  */
    129   1.1    chris 
    130   1.1    chris int
    131  1.22  gdamore clockhandler(void *aframe)
    132   1.1    chris {
    133   1.4    chris 	struct clockframe *frame = aframe;
    134   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    135   1.1    chris 	    TIMER_1_CLEAR, 0);
    136   1.1    chris 	hardclock(frame);
    137  1.22  gdamore 	return 0;	/* Pass the interrupt on down the chain */
    138   1.1    chris }
    139   1.1    chris 
    140   1.1    chris /*
    141   1.1    chris  * int statclockhandler(struct clockframe *frame)
    142   1.1    chris  *
    143   1.1    chris  * Function called by timer 2 interrupts.
    144   1.1    chris  * This just clears the interrupt condition and calls statclock().
    145   1.1    chris  */
    146   1.1    chris 
    147   1.1    chris int
    148  1.22  gdamore statclockhandler(void *aframe)
    149   1.1    chris {
    150   1.4    chris 	struct clockframe *frame = aframe;
    151  1.11    chris 	int newint, r;
    152  1.11    chris 	int currentclock ;
    153  1.11    chris 
    154  1.11    chris 	/* start the clock off again */
    155  1.11    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    156  1.11    chris 			TIMER_2_CLEAR, 0);
    157  1.11    chris 
    158  1.11    chris 	do {
    159  1.11    chris 		r = random() & (statvar-1);
    160  1.11    chris 	} while (r == 0);
    161  1.11    chris 	newint = statmin + (r * statcountperusec);
    162  1.11    chris 
    163  1.11    chris 	/* fetch the current count */
    164  1.11    chris 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    165  1.11    chris 		    TIMER_2_VALUE);
    166  1.11    chris 
    167  1.11    chris 	/*
    168  1.11    chris 	 * work out how much time has run, add another usec for time spent
    169  1.11    chris 	 * here
    170  1.11    chris 	 */
    171  1.11    chris 	r = ((statprev - currentclock) + statcountperusec);
    172  1.11    chris 
    173  1.11    chris 	if (r < newint) {
    174  1.11    chris 		newint -= r;
    175  1.11    chris 		r = 0;
    176  1.11    chris 	}
    177  1.11    chris 	else
    178  1.11    chris 		printf("statclockhandler: Statclock overrun\n");
    179  1.11    chris 
    180  1.11    chris 
    181  1.11    chris 	/*
    182  1.11    chris 	 * update the clock to the new counter, this reloads the existing
    183  1.11    chris 	 * timer
    184  1.11    chris 	 */
    185   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    186  1.11    chris 	    		TIMER_2_LOAD, newint);
    187  1.11    chris 	statprev = newint;
    188   1.1    chris 	statclock(frame);
    189  1.11    chris 	if (r)
    190  1.11    chris 		/*
    191  1.11    chris 		 * We've completely overrun the previous interval,
    192  1.11    chris 		 * make sure we report the correct number of ticks.
    193  1.11    chris 		 */
    194  1.11    chris 		statclock(frame);
    195  1.11    chris 
    196  1.22  gdamore 	return 0;	/* Pass the interrupt on down the chain */
    197   1.1    chris }
    198   1.1    chris 
    199   1.1    chris static int
    200  1.22  gdamore load_timer(int base, int herz)
    201   1.1    chris {
    202   1.1    chris 	unsigned int timer_count;
    203   1.1    chris 	int control;
    204   1.1    chris 
    205  1.19       he 	timer_count = dc21285_fclk / herz;
    206  1.16  thorpej 	if (timer_count > TIMER_MAX_VAL * 16) {
    207   1.1    chris 		control = TIMER_FCLK_256;
    208   1.1    chris 		timer_count >>= 8;
    209  1.16  thorpej 	} else if (timer_count > TIMER_MAX_VAL) {
    210   1.1    chris 		control = TIMER_FCLK_16;
    211   1.1    chris 		timer_count >>= 4;
    212   1.1    chris 	} else
    213   1.1    chris 		control = TIMER_FCLK;
    214   1.1    chris 
    215   1.1    chris 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
    216   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    217   1.1    chris 	    base + TIMER_LOAD, timer_count);
    218   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    219   1.1    chris 	    base + TIMER_CONTROL, control);
    220   1.1    chris 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    221   1.1    chris 	    base + TIMER_CLEAR, 0);
    222  1.22  gdamore 	return timer_count;
    223   1.1    chris }
    224   1.1    chris 
    225   1.1    chris /*
    226  1.19       he  * void setstatclockrate(int herz)
    227   1.1    chris  *
    228   1.1    chris  * Set the stat clock rate. The stat clock uses timer2
    229   1.1    chris  */
    230   1.1    chris 
    231   1.1    chris void
    232  1.22  gdamore setstatclockrate(int herz)
    233   1.1    chris {
    234  1.11    chris 	int statint;
    235  1.11    chris 	int countpersecond;
    236  1.11    chris 	int statvarticks;
    237  1.11    chris 
    238  1.19       he 	/* statint == num in counter to drop by desired herz */
    239  1.14  tsutsui 	statint = statprev = clock_sc->sc_statclock_count =
    240  1.19       he 	    load_timer(TIMER_2_BASE, herz);
    241  1.11    chris 
    242  1.11    chris 	/* Get the total ticks a second */
    243  1.19       he 	countpersecond = statint * herz;
    244  1.11    chris 
    245  1.11    chris 	/* now work out how many ticks per usec */
    246  1.11    chris 	statcountperusec = countpersecond / 1000000;
    247   1.1    chris 
    248  1.11    chris 	/* calculate a variance range of statvar */
    249  1.11    chris 	statvarticks = statcountperusec * statvar;
    250  1.11    chris 
    251  1.11    chris 	/* minimum is statint - 50% of variant */
    252  1.11    chris 	statmin = statint - (statvarticks / 2);
    253   1.1    chris }
    254   1.1    chris 
    255   1.1    chris /*
    256   1.1    chris  * void cpu_initclocks(void)
    257   1.1    chris  *
    258   1.1    chris  * Initialise the clocks.
    259   1.1    chris  *
    260   1.1    chris  * Timer 1 is used for the main system clock (hardclock)
    261   1.1    chris  * Timer 2 is used for the statistics clock (statclock)
    262   1.1    chris  */
    263   1.1    chris 
    264   1.1    chris void
    265  1.22  gdamore cpu_initclocks(void)
    266   1.1    chris {
    267   1.9    chris 	/* stathz and profhz should be set to something, we have the timer */
    268   1.9    chris 	if (stathz == 0)
    269  1.11    chris 		stathz = hz;
    270   1.9    chris 
    271   1.9    chris 	if (profhz == 0)
    272   1.9    chris 		profhz = stathz * 5;
    273   1.1    chris 
    274   1.1    chris 	/* Report the clock frequencies */
    275   1.1    chris 	printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
    276   1.1    chris 
    277   1.1    chris 	/* Setup timer 1 and claim interrupt */
    278   1.1    chris 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
    279   1.1    chris 
    280   1.1    chris 	/*
    281   1.1    chris 	 * Use ticks per 256us for accuracy since ticks per us is often
    282   1.1    chris 	 * fractional e.g. @ 66MHz
    283   1.1    chris 	 */
    284   1.1    chris 	clock_sc->sc_clock_ticks_per_256us =
    285   1.1    chris 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
    286  1.15    chris 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
    287   1.1    chris 	    "tmr1 hard clk", clockhandler, 0);
    288   1.1    chris 
    289   1.1    chris 	if (clock_sc->sc_clockintr == NULL)
    290   1.7   provos 		panic("%s: Cannot install timer 1 interrupt handler",
    291   1.1    chris 		    clock_sc->sc_dev.dv_xname);
    292   1.1    chris 
    293   1.1    chris 	/* If stathz is non-zero then setup the stat clock */
    294   1.1    chris 	if (stathz) {
    295   1.1    chris 		/* Setup timer 2 and claim interrupt */
    296   1.1    chris 		setstatclockrate(stathz);
    297  1.15    chris        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_STATCLOCK,
    298   1.1    chris        		    "tmr2 stat clk", statclockhandler, 0);
    299   1.1    chris 		if (clock_sc->sc_statclockintr == NULL)
    300   1.7   provos 			panic("%s: Cannot install timer 2 interrupt handler",
    301   1.1    chris 			    clock_sc->sc_dev.dv_xname);
    302   1.1    chris 	}
    303   1.1    chris }
    304   1.1    chris 
    305   1.1    chris 
    306   1.1    chris /*
    307   1.1    chris  * void microtime(struct timeval *tvp)
    308   1.1    chris  *
    309   1.1    chris  * Fill in the specified timeval struct with the current time
    310   1.1    chris  * accurate to the microsecond.
    311   1.1    chris  */
    312   1.1    chris 
    313   1.1    chris void
    314  1.22  gdamore microtime(struct timeval *tvp)
    315   1.1    chris {
    316   1.1    chris 	int s;
    317   1.1    chris 	int tm;
    318   1.1    chris 	int deltatm;
    319   1.1    chris 	static struct timeval oldtv;
    320   1.1    chris 
    321   1.1    chris 	if (clock_sc == NULL || clock_sc->sc_clock_count == 0)
    322   1.1    chris 		return;
    323   1.1    chris 
    324   1.1    chris 	s = splhigh();
    325   1.1    chris 
    326   1.1    chris 	tm = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    327   1.1    chris 	    TIMER_1_VALUE);
    328   1.1    chris 
    329   1.1    chris 	deltatm = clock_sc->sc_clock_count - tm;
    330   1.1    chris 
    331   1.1    chris #ifdef DIAGNOSTIC
    332   1.1    chris 	if (deltatm < 0)
    333   1.7   provos 		panic("opps deltatm < 0 tm=%d deltatm=%d", tm, deltatm);
    334   1.1    chris #endif
    335   1.1    chris 
    336   1.1    chris 	/* Fill in the timeval struct */
    337   1.1    chris 	*tvp = time;
    338   1.1    chris 	tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
    339   1.1    chris 
    340   1.1    chris 	/* Make sure the micro seconds don't overflow. */
    341   1.1    chris 	while (tvp->tv_usec >= 1000000) {
    342   1.1    chris 		tvp->tv_usec -= 1000000;
    343   1.1    chris 		++tvp->tv_sec;
    344   1.1    chris 	}
    345   1.1    chris 
    346   1.1    chris 	/* Make sure the time has advanced. */
    347   1.1    chris 	if (tvp->tv_sec == oldtv.tv_sec &&
    348   1.1    chris 	    tvp->tv_usec <= oldtv.tv_usec) {
    349   1.1    chris 		tvp->tv_usec = oldtv.tv_usec + 1;
    350   1.1    chris 		if (tvp->tv_usec >= 1000000) {
    351   1.1    chris 			tvp->tv_usec -= 1000000;
    352   1.1    chris 			++tvp->tv_sec;
    353   1.1    chris 		}
    354   1.1    chris 	}
    355   1.1    chris 
    356   1.1    chris 	oldtv = *tvp;
    357   1.1    chris 	(void)splx(s);
    358   1.1    chris }
    359   1.1    chris 
    360   1.1    chris /*
    361   1.6    chris  * Use a timer to track microseconds, if the footbridge hasn't been setup we
    362   1.6    chris  * rely on an estimated loop, however footbridge is attached very early on.
    363   1.1    chris  */
    364   1.1    chris 
    365   1.6    chris static int delay_clock_count = 0;
    366   1.6    chris static int delay_count_per_usec = 0;
    367   1.1    chris 
    368   1.6    chris void
    369   1.6    chris calibrate_delay(void)
    370   1.6    chris {
    371   1.6    chris      delay_clock_count = load_timer(TIMER_3_BASE, 100);
    372   1.6    chris      delay_count_per_usec = delay_clock_count/10000;
    373  1.12    chris #ifdef VERBOSE_DELAY_CALIBRATION
    374  1.12    chris      printf("delay calibration: delay_cc = %d, delay_c/us=%d\n",
    375  1.12    chris 		     delay_clock_count, delay_count_per_usec);
    376  1.12    chris 
    377  1.12    chris      printf("0..");
    378  1.12    chris      delay(1000000);
    379  1.12    chris      printf("1..");
    380  1.12    chris      delay(1000000);
    381  1.12    chris      printf("2..");
    382  1.12    chris      delay(1000000);
    383  1.12    chris      printf("3..");
    384  1.12    chris      delay(1000000);
    385  1.12    chris      printf("4..");
    386  1.12    chris       delay(1000000);
    387  1.12    chris      printf("5..");
    388  1.12    chris       delay(1000000);
    389  1.12    chris      printf("6..");
    390  1.12    chris       delay(1000000);
    391  1.12    chris      printf("7..");
    392  1.12    chris       delay(1000000);
    393  1.12    chris      printf("8..");
    394  1.12    chris       delay(1000000);
    395  1.12    chris      printf("9..");
    396  1.12    chris       delay(1000000);
    397  1.12    chris      printf("10\n");
    398  1.12    chris #endif
    399   1.6    chris }
    400   1.1    chris 
    401  1.18     matt int delaycount = 25000;
    402   1.1    chris 
    403   1.1    chris void
    404  1.22  gdamore delay(u_int n)
    405   1.1    chris {
    406   1.6    chris 	volatile u_int i;
    407   1.6    chris 	uint32_t cur, last, delta, usecs;
    408   1.1    chris 
    409   1.1    chris 	if (n == 0) return;
    410   1.6    chris 
    411  1.18     matt 	/*
    412  1.18     matt 	 * not calibrated the timer yet, so try to live with this horrible
    413  1.18     matt 	 * loop!
    414  1.18     matt 	 */
    415   1.6    chris 	if (delay_clock_count == 0)
    416   1.6    chris 	{
    417   1.6    chris 	    while (n-- > 0) {
    418   1.6    chris 		for (i = delaycount; --i;);
    419   1.6    chris 	    }
    420   1.6    chris 	    return;
    421   1.6    chris 	}
    422  1.13    chris 
    423  1.13    chris 	/*
    424  1.13    chris 	 * read the current value (do not reset it as delay is reentrant)
    425  1.13    chris 	 */
    426  1.13    chris 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    427  1.13    chris 		    TIMER_3_VALUE);
    428  1.12    chris 
    429  1.21    chris 	delta = 0;
    430  1.21    chris 
    431  1.21    chris 	usecs = n * delay_count_per_usec;
    432   1.6    chris 
    433  1.21    chris 	while (usecs > delta)
    434   1.6    chris 	{
    435   1.6    chris 	    cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    436   1.6    chris 		    TIMER_3_VALUE);
    437   1.6    chris 	    if (last < cur)
    438   1.6    chris 		/* timer has wrapped */
    439   1.6    chris 		delta += ((delay_clock_count - cur) + last);
    440   1.6    chris 	    else
    441   1.6    chris 		delta += (last - cur);
    442   1.6    chris 
    443  1.12    chris 	    if (cur == 0)
    444   1.6    chris 	    {
    445  1.13    chris 		/*
    446  1.13    chris 		 * reset the timer, note that if something blocks us for more
    447  1.13    chris 		 * than 1/100s we may delay for too long, but I believe that
    448  1.13    chris 		 * is fairly unlikely.
    449  1.13    chris 		 */
    450   1.6    chris 		bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    451   1.6    chris 			TIMER_3_CLEAR, 0);
    452   1.6    chris 	    }
    453   1.6    chris 	    last = cur;
    454   1.1    chris 	}
    455   1.1    chris }
    456   1.1    chris 
    457   1.1    chris /* End of footbridge_clock.c */
    458