footbridge_clock.c revision 1.24 1 1.24 ad /* $NetBSD: footbridge_clock.c,v 1.24 2007/12/03 15:33:17 ad Exp $ */
2 1.1 chris
3 1.1 chris /*
4 1.1 chris * Copyright (c) 1997 Mark Brinicombe.
5 1.1 chris * Copyright (c) 1997 Causality Limited.
6 1.1 chris * All rights reserved.
7 1.1 chris *
8 1.1 chris * Redistribution and use in source and binary forms, with or without
9 1.1 chris * modification, are permitted provided that the following conditions
10 1.1 chris * are met:
11 1.1 chris * 1. Redistributions of source code must retain the above copyright
12 1.1 chris * notice, this list of conditions and the following disclaimer.
13 1.1 chris * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 chris * notice, this list of conditions and the following disclaimer in the
15 1.1 chris * documentation and/or other materials provided with the distribution.
16 1.1 chris * 3. All advertising materials mentioning features or use of this software
17 1.1 chris * must display the following acknowledgement:
18 1.1 chris * This product includes software developed by Mark Brinicombe
19 1.1 chris * for the NetBSD Project.
20 1.1 chris * 4. The name of the company nor the name of the author may be used to
21 1.1 chris * endorse or promote products derived from this software without specific
22 1.1 chris * prior written permission.
23 1.1 chris *
24 1.1 chris * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 1.1 chris * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 1.1 chris * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 1.1 chris * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 1.1 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 1.1 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 1.1 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 chris * SUCH DAMAGE.
35 1.1 chris */
36 1.17 chris
37 1.17 chris #include <sys/cdefs.h>
38 1.24 ad __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.24 2007/12/03 15:33:17 ad Exp $");
39 1.1 chris
40 1.1 chris /* Include header files */
41 1.1 chris
42 1.1 chris #include <sys/types.h>
43 1.1 chris #include <sys/param.h>
44 1.1 chris #include <sys/systm.h>
45 1.1 chris #include <sys/kernel.h>
46 1.1 chris #include <sys/time.h>
47 1.23 gdamore #include <sys/timetc.h>
48 1.1 chris #include <sys/device.h>
49 1.1 chris
50 1.2 matt #include <machine/intr.h>
51 1.3 thorpej
52 1.3 thorpej #include <arm/cpufunc.h>
53 1.3 thorpej
54 1.1 chris #include <arm/footbridge/dc21285reg.h>
55 1.1 chris #include <arm/footbridge/footbridgevar.h>
56 1.6 chris #include <arm/footbridge/footbridge.h>
57 1.1 chris
58 1.1 chris extern struct footbridge_softc *clock_sc;
59 1.1 chris extern u_int dc21285_fclk;
60 1.1 chris
61 1.22 gdamore int clockhandler(void *);
62 1.22 gdamore int statclockhandler(void *);
63 1.22 gdamore static int load_timer(int, int);
64 1.4 chris
65 1.11 chris /*
66 1.11 chris * Statistics clock variance, in usec. Variance must be a
67 1.11 chris * power of two. Since this gives us an even number, not an odd number,
68 1.11 chris * we discard one case and compensate. That is, a variance of 1024 would
69 1.11 chris * give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
70 1.11 chris * This is symmetric about the point 512, or statvar/2, and thus averages
71 1.11 chris * to that value (assuming uniform random numbers).
72 1.11 chris */
73 1.11 chris const int statvar = 1024;
74 1.11 chris int statmin; /* minimum stat clock count in ticks */
75 1.11 chris int statcountperusec; /* number of ticks per usec at current stathz */
76 1.11 chris int statprev; /* last value of we set statclock to */
77 1.4 chris
78 1.23 gdamore void footbridge_tc_init(void);
79 1.23 gdamore
80 1.1 chris #if 0
81 1.22 gdamore static int clockmatch(struct device *parent, struct cfdata *cf, void *aux);
82 1.22 gdamore static void clockattach(struct device *parent, struct device *self, void *aux);
83 1.1 chris
84 1.10 thorpej CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
85 1.10 thorpej clockmatch, clockattach, NULL, NULL);
86 1.1 chris
87 1.1 chris /*
88 1.1 chris * int clockmatch(struct device *parent, void *match, void *aux)
89 1.1 chris *
90 1.1 chris * Just return ok for this if it is device 0
91 1.1 chris */
92 1.1 chris
93 1.1 chris static int
94 1.22 gdamore clockmatch(struct device *parent, struct cfdata *cf, void *aux)
95 1.1 chris {
96 1.1 chris union footbridge_attach_args *fba = aux;
97 1.1 chris
98 1.1 chris if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
99 1.22 gdamore return 1;
100 1.22 gdamore return 0;
101 1.1 chris }
102 1.1 chris
103 1.1 chris
104 1.1 chris /*
105 1.1 chris * void clockattach(struct device *parent, struct device *dev, void *aux)
106 1.1 chris *
107 1.1 chris */
108 1.1 chris
109 1.1 chris static void
110 1.22 gdamore clockattach(struct device *parent, struct device *self, void *aux)
111 1.1 chris {
112 1.1 chris struct clock_softc *sc = (struct clock_softc *)self;
113 1.1 chris union footbridge_attach_args *fba = aux;
114 1.1 chris
115 1.1 chris sc->sc_iot = fba->fba_ca.ca_iot;
116 1.1 chris sc->sc_ioh = fba->fba_ca.ca_ioh;
117 1.1 chris
118 1.1 chris clock_sc = sc;
119 1.1 chris
120 1.1 chris /* Cannot do anything until cpu_initclocks() has been called */
121 1.1 chris
122 1.1 chris printf("\n");
123 1.1 chris }
124 1.1 chris #endif
125 1.1 chris
126 1.1 chris /*
127 1.1 chris * int clockhandler(struct clockframe *frame)
128 1.1 chris *
129 1.1 chris * Function called by timer 1 interrupts.
130 1.1 chris * This just clears the interrupt condition and calls hardclock().
131 1.1 chris */
132 1.1 chris
133 1.1 chris int
134 1.22 gdamore clockhandler(void *aframe)
135 1.1 chris {
136 1.4 chris struct clockframe *frame = aframe;
137 1.1 chris bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
138 1.1 chris TIMER_1_CLEAR, 0);
139 1.1 chris hardclock(frame);
140 1.22 gdamore return 0; /* Pass the interrupt on down the chain */
141 1.1 chris }
142 1.1 chris
143 1.1 chris /*
144 1.1 chris * int statclockhandler(struct clockframe *frame)
145 1.1 chris *
146 1.1 chris * Function called by timer 2 interrupts.
147 1.1 chris * This just clears the interrupt condition and calls statclock().
148 1.1 chris */
149 1.1 chris
150 1.1 chris int
151 1.22 gdamore statclockhandler(void *aframe)
152 1.1 chris {
153 1.4 chris struct clockframe *frame = aframe;
154 1.11 chris int newint, r;
155 1.11 chris int currentclock ;
156 1.11 chris
157 1.11 chris /* start the clock off again */
158 1.11 chris bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
159 1.11 chris TIMER_2_CLEAR, 0);
160 1.11 chris
161 1.11 chris do {
162 1.11 chris r = random() & (statvar-1);
163 1.11 chris } while (r == 0);
164 1.11 chris newint = statmin + (r * statcountperusec);
165 1.11 chris
166 1.11 chris /* fetch the current count */
167 1.11 chris currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
168 1.11 chris TIMER_2_VALUE);
169 1.11 chris
170 1.11 chris /*
171 1.11 chris * work out how much time has run, add another usec for time spent
172 1.11 chris * here
173 1.11 chris */
174 1.11 chris r = ((statprev - currentclock) + statcountperusec);
175 1.11 chris
176 1.11 chris if (r < newint) {
177 1.11 chris newint -= r;
178 1.11 chris r = 0;
179 1.11 chris }
180 1.11 chris else
181 1.11 chris printf("statclockhandler: Statclock overrun\n");
182 1.11 chris
183 1.11 chris
184 1.11 chris /*
185 1.11 chris * update the clock to the new counter, this reloads the existing
186 1.11 chris * timer
187 1.11 chris */
188 1.1 chris bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
189 1.11 chris TIMER_2_LOAD, newint);
190 1.11 chris statprev = newint;
191 1.1 chris statclock(frame);
192 1.11 chris if (r)
193 1.11 chris /*
194 1.11 chris * We've completely overrun the previous interval,
195 1.11 chris * make sure we report the correct number of ticks.
196 1.11 chris */
197 1.11 chris statclock(frame);
198 1.11 chris
199 1.22 gdamore return 0; /* Pass the interrupt on down the chain */
200 1.1 chris }
201 1.1 chris
202 1.1 chris static int
203 1.22 gdamore load_timer(int base, int herz)
204 1.1 chris {
205 1.1 chris unsigned int timer_count;
206 1.1 chris int control;
207 1.1 chris
208 1.19 he timer_count = dc21285_fclk / herz;
209 1.16 thorpej if (timer_count > TIMER_MAX_VAL * 16) {
210 1.1 chris control = TIMER_FCLK_256;
211 1.1 chris timer_count >>= 8;
212 1.16 thorpej } else if (timer_count > TIMER_MAX_VAL) {
213 1.1 chris control = TIMER_FCLK_16;
214 1.1 chris timer_count >>= 4;
215 1.1 chris } else
216 1.1 chris control = TIMER_FCLK;
217 1.1 chris
218 1.1 chris control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
219 1.1 chris bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
220 1.1 chris base + TIMER_LOAD, timer_count);
221 1.1 chris bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
222 1.1 chris base + TIMER_CONTROL, control);
223 1.1 chris bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
224 1.1 chris base + TIMER_CLEAR, 0);
225 1.22 gdamore return timer_count;
226 1.1 chris }
227 1.1 chris
228 1.1 chris /*
229 1.19 he * void setstatclockrate(int herz)
230 1.1 chris *
231 1.1 chris * Set the stat clock rate. The stat clock uses timer2
232 1.1 chris */
233 1.1 chris
234 1.1 chris void
235 1.22 gdamore setstatclockrate(int herz)
236 1.1 chris {
237 1.11 chris int statint;
238 1.11 chris int countpersecond;
239 1.11 chris int statvarticks;
240 1.11 chris
241 1.19 he /* statint == num in counter to drop by desired herz */
242 1.14 tsutsui statint = statprev = clock_sc->sc_statclock_count =
243 1.19 he load_timer(TIMER_2_BASE, herz);
244 1.11 chris
245 1.11 chris /* Get the total ticks a second */
246 1.19 he countpersecond = statint * herz;
247 1.11 chris
248 1.11 chris /* now work out how many ticks per usec */
249 1.11 chris statcountperusec = countpersecond / 1000000;
250 1.1 chris
251 1.11 chris /* calculate a variance range of statvar */
252 1.11 chris statvarticks = statcountperusec * statvar;
253 1.11 chris
254 1.11 chris /* minimum is statint - 50% of variant */
255 1.11 chris statmin = statint - (statvarticks / 2);
256 1.1 chris }
257 1.1 chris
258 1.1 chris /*
259 1.1 chris * void cpu_initclocks(void)
260 1.1 chris *
261 1.1 chris * Initialise the clocks.
262 1.1 chris *
263 1.1 chris * Timer 1 is used for the main system clock (hardclock)
264 1.1 chris * Timer 2 is used for the statistics clock (statclock)
265 1.1 chris */
266 1.1 chris
267 1.1 chris void
268 1.22 gdamore cpu_initclocks(void)
269 1.1 chris {
270 1.9 chris /* stathz and profhz should be set to something, we have the timer */
271 1.9 chris if (stathz == 0)
272 1.11 chris stathz = hz;
273 1.9 chris
274 1.9 chris if (profhz == 0)
275 1.9 chris profhz = stathz * 5;
276 1.1 chris
277 1.1 chris /* Report the clock frequencies */
278 1.1 chris printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
279 1.1 chris
280 1.1 chris /* Setup timer 1 and claim interrupt */
281 1.1 chris clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
282 1.1 chris
283 1.1 chris /*
284 1.1 chris * Use ticks per 256us for accuracy since ticks per us is often
285 1.1 chris * fractional e.g. @ 66MHz
286 1.1 chris */
287 1.1 chris clock_sc->sc_clock_ticks_per_256us =
288 1.1 chris ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
289 1.15 chris clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
290 1.1 chris "tmr1 hard clk", clockhandler, 0);
291 1.1 chris
292 1.1 chris if (clock_sc->sc_clockintr == NULL)
293 1.7 provos panic("%s: Cannot install timer 1 interrupt handler",
294 1.1 chris clock_sc->sc_dev.dv_xname);
295 1.1 chris
296 1.1 chris /* If stathz is non-zero then setup the stat clock */
297 1.1 chris if (stathz) {
298 1.1 chris /* Setup timer 2 and claim interrupt */
299 1.1 chris setstatclockrate(stathz);
300 1.24 ad clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_HIGH,
301 1.1 chris "tmr2 stat clk", statclockhandler, 0);
302 1.1 chris if (clock_sc->sc_statclockintr == NULL)
303 1.7 provos panic("%s: Cannot install timer 2 interrupt handler",
304 1.1 chris clock_sc->sc_dev.dv_xname);
305 1.1 chris }
306 1.23 gdamore
307 1.23 gdamore footbridge_tc_init();
308 1.1 chris }
309 1.1 chris
310 1.23 gdamore static uint32_t
311 1.23 gdamore fclk_get_count(struct timecounter *tc)
312 1.23 gdamore {
313 1.23 gdamore return (TIMER_MAX_VAL -
314 1.23 gdamore bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
315 1.23 gdamore TIMER_3_VALUE));
316 1.23 gdamore }
317 1.1 chris
318 1.1 chris void
319 1.23 gdamore footbridge_tc_init(void)
320 1.1 chris {
321 1.23 gdamore static struct timecounter fb_tc = {
322 1.23 gdamore .tc_get_timecount = fclk_get_count,
323 1.23 gdamore .tc_counter_mask = TIMER_MAX_VAL,
324 1.23 gdamore .tc_name = "dc21285_fclk",
325 1.23 gdamore .tc_quality = 100
326 1.23 gdamore };
327 1.23 gdamore fb_tc.tc_frequency = dc21285_fclk;
328 1.23 gdamore tc_init(&fb_tc);
329 1.1 chris }
330 1.1 chris
331 1.1 chris /*
332 1.6 chris * Use a timer to track microseconds, if the footbridge hasn't been setup we
333 1.6 chris * rely on an estimated loop, however footbridge is attached very early on.
334 1.1 chris */
335 1.1 chris
336 1.6 chris static int delay_count_per_usec = 0;
337 1.1 chris
338 1.6 chris void
339 1.6 chris calibrate_delay(void)
340 1.6 chris {
341 1.23 gdamore /*
342 1.23 gdamore * For all current footbridge hardware, the fclk runs at a
343 1.23 gdamore * rate that is sufficiently slow enough that we don't need to
344 1.23 gdamore * use a prescaler. A prescaler would be needed if the fclk
345 1.23 gdamore * could wrap within 2 hardclock periods (2 * HZ). With
346 1.23 gdamore * normal values of HZ (100 and higher), this is unlikely to
347 1.23 gdamore * ever happen.
348 1.23 gdamore *
349 1.23 gdamore * We let TIMER 3 just run free, at the freqeuncy supplied by
350 1.23 gdamore * dc21285_fclk.
351 1.23 gdamore */
352 1.23 gdamore bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
353 1.23 gdamore TIMER_3_BASE + TIMER_CONTROL, TIMER_ENABLE);
354 1.23 gdamore delay_count_per_usec = dc21285_fclk / 1000000;
355 1.23 gdamore if (dc21285_fclk % 1000000)
356 1.23 gdamore delay_count_per_usec += 1;
357 1.6 chris }
358 1.1 chris
359 1.1 chris void
360 1.23 gdamore delay(unsigned n)
361 1.1 chris {
362 1.6 chris uint32_t cur, last, delta, usecs;
363 1.1 chris
364 1.23 gdamore if (n == 0)
365 1.23 gdamore return;
366 1.6 chris
367 1.18 matt /*
368 1.18 matt * not calibrated the timer yet, so try to live with this horrible
369 1.18 matt * loop!
370 1.23 gdamore *
371 1.23 gdamore * Note: a much better solution might be to have the timers
372 1.23 gdamore * get get calibrated out of mach_init. Of course, the
373 1.23 gdamore * clock_sc needs to be set up, so we can read/write the clock
374 1.23 gdamore * registers.
375 1.18 matt */
376 1.23 gdamore if (!delay_count_per_usec)
377 1.6 chris {
378 1.23 gdamore int delaycount = 25000;
379 1.23 gdamore volatile int i;
380 1.23 gdamore
381 1.23 gdamore while (n-- > 0) {
382 1.23 gdamore for (i = delaycount; --i;);
383 1.23 gdamore }
384 1.23 gdamore return;
385 1.6 chris }
386 1.13 chris
387 1.13 chris last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
388 1.23 gdamore TIMER_3_VALUE);
389 1.23 gdamore delta = usecs = 0;
390 1.23 gdamore
391 1.23 gdamore while (n > usecs) {
392 1.23 gdamore cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
393 1.13 chris TIMER_3_VALUE);
394 1.23 gdamore if (last < cur)
395 1.23 gdamore /* timer has wrapped */
396 1.23 gdamore delta += ((TIMER_MAX_VAL - cur) + last);
397 1.23 gdamore else
398 1.23 gdamore delta += (last - cur);
399 1.23 gdamore
400 1.23 gdamore last = cur;
401 1.23 gdamore
402 1.23 gdamore while (delta >= delay_count_per_usec) {
403 1.23 gdamore delta -= delay_count_per_usec;
404 1.23 gdamore usecs++;
405 1.23 gdamore }
406 1.1 chris }
407 1.1 chris }
408 1.1 chris
409 1.1 chris /* End of footbridge_clock.c */
410