footbridge_clock.c revision 1.19 1 /* $NetBSD: footbridge_clock.c,v 1.19 2005/06/02 17:45:59 he Exp $ */
2
3 /*
4 * Copyright (c) 1997 Mark Brinicombe.
5 * Copyright (c) 1997 Causality Limited.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Mark Brinicombe
19 * for the NetBSD Project.
20 * 4. The name of the company nor the name of the author may be used to
21 * endorse or promote products derived from this software without specific
22 * prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.19 2005/06/02 17:45:59 he Exp $");
39
40 /* Include header files */
41
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/time.h>
47 #include <sys/device.h>
48
49 #include <machine/intr.h>
50
51 #include <arm/cpufunc.h>
52
53 #include <arm/footbridge/dc21285reg.h>
54 #include <arm/footbridge/footbridgevar.h>
55 #include <arm/footbridge/footbridge.h>
56
57 extern struct footbridge_softc *clock_sc;
58 extern u_int dc21285_fclk;
59
60 int clockhandler __P((void *));
61 int statclockhandler __P((void *));
62 static int load_timer __P((int, int));
63
64 /*
65 * Statistics clock variance, in usec. Variance must be a
66 * power of two. Since this gives us an even number, not an odd number,
67 * we discard one case and compensate. That is, a variance of 1024 would
68 * give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
69 * This is symmetric about the point 512, or statvar/2, and thus averages
70 * to that value (assuming uniform random numbers).
71 */
72 const int statvar = 1024;
73 int statmin; /* minimum stat clock count in ticks */
74 int statcountperusec; /* number of ticks per usec at current stathz */
75 int statprev; /* last value of we set statclock to */
76
77 #if 0
78 static int clockmatch __P((struct device *parent, struct cfdata *cf, void *aux));
79 static void clockattach __P((struct device *parent, struct device *self, void *aux));
80
81 CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
82 clockmatch, clockattach, NULL, NULL);
83
84 /*
85 * int clockmatch(struct device *parent, void *match, void *aux)
86 *
87 * Just return ok for this if it is device 0
88 */
89
90 static int
91 clockmatch(parent, cf, aux)
92 struct device *parent;
93 struct cfdata *cf;
94 void *aux;
95 {
96 union footbridge_attach_args *fba = aux;
97
98 if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
99 return(1);
100 return(0);
101 }
102
103
104 /*
105 * void clockattach(struct device *parent, struct device *dev, void *aux)
106 *
107 */
108
109 static void
110 clockattach(parent, self, aux)
111 struct device *parent;
112 struct device *self;
113 void *aux;
114 {
115 struct clock_softc *sc = (struct clock_softc *)self;
116 union footbridge_attach_args *fba = aux;
117
118 sc->sc_iot = fba->fba_ca.ca_iot;
119 sc->sc_ioh = fba->fba_ca.ca_ioh;
120
121 clock_sc = sc;
122
123 /* Cannot do anything until cpu_initclocks() has been called */
124
125 printf("\n");
126 }
127 #endif
128
129 /*
130 * int clockhandler(struct clockframe *frame)
131 *
132 * Function called by timer 1 interrupts.
133 * This just clears the interrupt condition and calls hardclock().
134 */
135
136 int
137 clockhandler(aframe)
138 void *aframe;
139 {
140 struct clockframe *frame = aframe;
141 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
142 TIMER_1_CLEAR, 0);
143 hardclock(frame);
144 return(0); /* Pass the interrupt on down the chain */
145 }
146
147 /*
148 * int statclockhandler(struct clockframe *frame)
149 *
150 * Function called by timer 2 interrupts.
151 * This just clears the interrupt condition and calls statclock().
152 */
153
154 int
155 statclockhandler(aframe)
156 void *aframe;
157 {
158 struct clockframe *frame = aframe;
159 int newint, r;
160 int currentclock ;
161
162 /* start the clock off again */
163 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
164 TIMER_2_CLEAR, 0);
165
166 do {
167 r = random() & (statvar-1);
168 } while (r == 0);
169 newint = statmin + (r * statcountperusec);
170
171 /* fetch the current count */
172 currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
173 TIMER_2_VALUE);
174
175 /*
176 * work out how much time has run, add another usec for time spent
177 * here
178 */
179 r = ((statprev - currentclock) + statcountperusec);
180
181 if (r < newint) {
182 newint -= r;
183 r = 0;
184 }
185 else
186 printf("statclockhandler: Statclock overrun\n");
187
188
189 /*
190 * update the clock to the new counter, this reloads the existing
191 * timer
192 */
193 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
194 TIMER_2_LOAD, newint);
195 statprev = newint;
196 statclock(frame);
197 if (r)
198 /*
199 * We've completely overrun the previous interval,
200 * make sure we report the correct number of ticks.
201 */
202 statclock(frame);
203
204 return(0); /* Pass the interrupt on down the chain */
205 }
206
207 static int
208 load_timer(base, herz)
209 int base;
210 int herz;
211 {
212 unsigned int timer_count;
213 int control;
214
215 timer_count = dc21285_fclk / herz;
216 if (timer_count > TIMER_MAX_VAL * 16) {
217 control = TIMER_FCLK_256;
218 timer_count >>= 8;
219 } else if (timer_count > TIMER_MAX_VAL) {
220 control = TIMER_FCLK_16;
221 timer_count >>= 4;
222 } else
223 control = TIMER_FCLK;
224
225 control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
226 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
227 base + TIMER_LOAD, timer_count);
228 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
229 base + TIMER_CONTROL, control);
230 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
231 base + TIMER_CLEAR, 0);
232 return(timer_count);
233 }
234
235 /*
236 * void setstatclockrate(int herz)
237 *
238 * Set the stat clock rate. The stat clock uses timer2
239 */
240
241 void
242 setstatclockrate(herz)
243 int herz;
244 {
245 int statint;
246 int countpersecond;
247 int statvarticks;
248
249 /* statint == num in counter to drop by desired herz */
250 statint = statprev = clock_sc->sc_statclock_count =
251 load_timer(TIMER_2_BASE, herz);
252
253 /* Get the total ticks a second */
254 countpersecond = statint * herz;
255
256 /* now work out how many ticks per usec */
257 statcountperusec = countpersecond / 1000000;
258
259 /* calculate a variance range of statvar */
260 statvarticks = statcountperusec * statvar;
261
262 /* minimum is statint - 50% of variant */
263 statmin = statint - (statvarticks / 2);
264 }
265
266 /*
267 * void cpu_initclocks(void)
268 *
269 * Initialise the clocks.
270 *
271 * Timer 1 is used for the main system clock (hardclock)
272 * Timer 2 is used for the statistics clock (statclock)
273 */
274
275 void
276 cpu_initclocks()
277 {
278 /* stathz and profhz should be set to something, we have the timer */
279 if (stathz == 0)
280 stathz = hz;
281
282 if (profhz == 0)
283 profhz = stathz * 5;
284
285 /* Report the clock frequencies */
286 printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
287
288 /* Setup timer 1 and claim interrupt */
289 clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
290
291 /*
292 * Use ticks per 256us for accuracy since ticks per us is often
293 * fractional e.g. @ 66MHz
294 */
295 clock_sc->sc_clock_ticks_per_256us =
296 ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
297 clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
298 "tmr1 hard clk", clockhandler, 0);
299
300 if (clock_sc->sc_clockintr == NULL)
301 panic("%s: Cannot install timer 1 interrupt handler",
302 clock_sc->sc_dev.dv_xname);
303
304 /* If stathz is non-zero then setup the stat clock */
305 if (stathz) {
306 /* Setup timer 2 and claim interrupt */
307 setstatclockrate(stathz);
308 clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_STATCLOCK,
309 "tmr2 stat clk", statclockhandler, 0);
310 if (clock_sc->sc_statclockintr == NULL)
311 panic("%s: Cannot install timer 2 interrupt handler",
312 clock_sc->sc_dev.dv_xname);
313 }
314 }
315
316
317 /*
318 * void microtime(struct timeval *tvp)
319 *
320 * Fill in the specified timeval struct with the current time
321 * accurate to the microsecond.
322 */
323
324 void
325 microtime(tvp)
326 struct timeval *tvp;
327 {
328 int s;
329 int tm;
330 int deltatm;
331 static struct timeval oldtv;
332
333 if (clock_sc == NULL || clock_sc->sc_clock_count == 0)
334 return;
335
336 s = splhigh();
337
338 tm = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
339 TIMER_1_VALUE);
340
341 deltatm = clock_sc->sc_clock_count - tm;
342
343 #ifdef DIAGNOSTIC
344 if (deltatm < 0)
345 panic("opps deltatm < 0 tm=%d deltatm=%d", tm, deltatm);
346 #endif
347
348 /* Fill in the timeval struct */
349 *tvp = time;
350 tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
351
352 /* Make sure the micro seconds don't overflow. */
353 while (tvp->tv_usec >= 1000000) {
354 tvp->tv_usec -= 1000000;
355 ++tvp->tv_sec;
356 }
357
358 /* Make sure the time has advanced. */
359 if (tvp->tv_sec == oldtv.tv_sec &&
360 tvp->tv_usec <= oldtv.tv_usec) {
361 tvp->tv_usec = oldtv.tv_usec + 1;
362 if (tvp->tv_usec >= 1000000) {
363 tvp->tv_usec -= 1000000;
364 ++tvp->tv_sec;
365 }
366 }
367
368 oldtv = *tvp;
369 (void)splx(s);
370 }
371
372 /*
373 * Use a timer to track microseconds, if the footbridge hasn't been setup we
374 * rely on an estimated loop, however footbridge is attached very early on.
375 */
376
377 static int delay_clock_count = 0;
378 static int delay_count_per_usec = 0;
379
380 void
381 calibrate_delay(void)
382 {
383 delay_clock_count = load_timer(TIMER_3_BASE, 100);
384 delay_count_per_usec = delay_clock_count/10000;
385 #ifdef VERBOSE_DELAY_CALIBRATION
386 printf("delay calibration: delay_cc = %d, delay_c/us=%d\n",
387 delay_clock_count, delay_count_per_usec);
388
389 printf("0..");
390 delay(1000000);
391 printf("1..");
392 delay(1000000);
393 printf("2..");
394 delay(1000000);
395 printf("3..");
396 delay(1000000);
397 printf("4..");
398 delay(1000000);
399 printf("5..");
400 delay(1000000);
401 printf("6..");
402 delay(1000000);
403 printf("7..");
404 delay(1000000);
405 printf("8..");
406 delay(1000000);
407 printf("9..");
408 delay(1000000);
409 printf("10\n");
410 #endif
411 }
412
413 int delaycount = 25000;
414
415 void
416 delay(n)
417 u_int n;
418 {
419 volatile u_int i;
420 uint32_t cur, last, delta, usecs;
421
422 if (n == 0) return;
423
424
425 /*
426 * not calibrated the timer yet, so try to live with this horrible
427 * loop!
428 */
429 if (delay_clock_count == 0)
430 {
431 while (n-- > 0) {
432 for (i = delaycount; --i;);
433 }
434 return;
435 }
436
437 /*
438 * read the current value (do not reset it as delay is reentrant)
439 */
440 last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
441 TIMER_3_VALUE);
442
443 delta = usecs = 0;
444
445 while (n > usecs)
446 {
447 cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
448 TIMER_3_VALUE);
449 if (last < cur)
450 /* timer has wrapped */
451 delta += ((delay_clock_count - cur) + last);
452 else
453 delta += (last - cur);
454
455 if (cur == 0)
456 {
457 /*
458 * reset the timer, note that if something blocks us for more
459 * than 1/100s we may delay for too long, but I believe that
460 * is fairly unlikely.
461 */
462 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
463 TIMER_3_CLEAR, 0);
464 }
465 last = cur;
466
467 if (delta >= delay_count_per_usec)
468 {
469 usecs += delta / delay_count_per_usec;
470 delta %= delay_count_per_usec;
471 }
472 }
473 }
474
475 /* End of footbridge_clock.c */
476