Home | History | Annotate | Line # | Download | only in footbridge
footbridge_clock.c revision 1.19
      1 /*	$NetBSD: footbridge_clock.c,v 1.19 2005/06/02 17:45:59 he Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Mark Brinicombe.
      5  * Copyright (c) 1997 Causality Limited.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Mark Brinicombe
     19  *	for the NetBSD Project.
     20  * 4. The name of the company nor the name of the author may be used to
     21  *    endorse or promote products derived from this software without specific
     22  *    prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     28  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     29  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     30  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.19 2005/06/02 17:45:59 he Exp $");
     39 
     40 /* Include header files */
     41 
     42 #include <sys/types.h>
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/time.h>
     47 #include <sys/device.h>
     48 
     49 #include <machine/intr.h>
     50 
     51 #include <arm/cpufunc.h>
     52 
     53 #include <arm/footbridge/dc21285reg.h>
     54 #include <arm/footbridge/footbridgevar.h>
     55 #include <arm/footbridge/footbridge.h>
     56 
     57 extern struct footbridge_softc *clock_sc;
     58 extern u_int dc21285_fclk;
     59 
     60 int clockhandler __P((void *));
     61 int statclockhandler __P((void *));
     62 static int load_timer __P((int, int));
     63 
     64 /*
     65  * Statistics clock variance, in usec.  Variance must be a
     66  * power of two.  Since this gives us an even number, not an odd number,
     67  * we discard one case and compensate.  That is, a variance of 1024 would
     68  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
     69  * This is symmetric about the point 512, or statvar/2, and thus averages
     70  * to that value (assuming uniform random numbers).
     71  */
     72 const int statvar = 1024;
     73 int statmin;			/* minimum stat clock count in ticks */
     74 int statcountperusec;		/* number of ticks per usec at current stathz */
     75 int statprev;			/* last value of we set statclock to */
     76 
     77 #if 0
     78 static int clockmatch	__P((struct device *parent, struct cfdata *cf, void *aux));
     79 static void clockattach	__P((struct device *parent, struct device *self, void *aux));
     80 
     81 CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
     82     clockmatch, clockattach, NULL, NULL);
     83 
     84 /*
     85  * int clockmatch(struct device *parent, void *match, void *aux)
     86  *
     87  * Just return ok for this if it is device 0
     88  */
     89 
     90 static int
     91 clockmatch(parent, cf, aux)
     92 	struct device *parent;
     93 	struct cfdata *cf;
     94 	void *aux;
     95 {
     96 	union footbridge_attach_args *fba = aux;
     97 
     98 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
     99 		return(1);
    100 	return(0);
    101 }
    102 
    103 
    104 /*
    105  * void clockattach(struct device *parent, struct device *dev, void *aux)
    106  *
    107  */
    108 
    109 static void
    110 clockattach(parent, self, aux)
    111 	struct device *parent;
    112 	struct device *self;
    113 	void *aux;
    114 {
    115 	struct clock_softc *sc = (struct clock_softc *)self;
    116 	union footbridge_attach_args *fba = aux;
    117 
    118 	sc->sc_iot = fba->fba_ca.ca_iot;
    119 	sc->sc_ioh = fba->fba_ca.ca_ioh;
    120 
    121 	clock_sc = sc;
    122 
    123 	/* Cannot do anything until cpu_initclocks() has been called */
    124 
    125 	printf("\n");
    126 }
    127 #endif
    128 
    129 /*
    130  * int clockhandler(struct clockframe *frame)
    131  *
    132  * Function called by timer 1 interrupts.
    133  * This just clears the interrupt condition and calls hardclock().
    134  */
    135 
    136 int
    137 clockhandler(aframe)
    138 	void *aframe;
    139 {
    140 	struct clockframe *frame = aframe;
    141 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    142 	    TIMER_1_CLEAR, 0);
    143 	hardclock(frame);
    144 	return(0);	/* Pass the interrupt on down the chain */
    145 }
    146 
    147 /*
    148  * int statclockhandler(struct clockframe *frame)
    149  *
    150  * Function called by timer 2 interrupts.
    151  * This just clears the interrupt condition and calls statclock().
    152  */
    153 
    154 int
    155 statclockhandler(aframe)
    156 	void *aframe;
    157 {
    158 	struct clockframe *frame = aframe;
    159 	int newint, r;
    160 	int currentclock ;
    161 
    162 	/* start the clock off again */
    163 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    164 			TIMER_2_CLEAR, 0);
    165 
    166 	do {
    167 		r = random() & (statvar-1);
    168 	} while (r == 0);
    169 	newint = statmin + (r * statcountperusec);
    170 
    171 	/* fetch the current count */
    172 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    173 		    TIMER_2_VALUE);
    174 
    175 	/*
    176 	 * work out how much time has run, add another usec for time spent
    177 	 * here
    178 	 */
    179 	r = ((statprev - currentclock) + statcountperusec);
    180 
    181 	if (r < newint) {
    182 		newint -= r;
    183 		r = 0;
    184 	}
    185 	else
    186 		printf("statclockhandler: Statclock overrun\n");
    187 
    188 
    189 	/*
    190 	 * update the clock to the new counter, this reloads the existing
    191 	 * timer
    192 	 */
    193 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    194 	    		TIMER_2_LOAD, newint);
    195 	statprev = newint;
    196 	statclock(frame);
    197 	if (r)
    198 		/*
    199 		 * We've completely overrun the previous interval,
    200 		 * make sure we report the correct number of ticks.
    201 		 */
    202 		statclock(frame);
    203 
    204 	return(0);	/* Pass the interrupt on down the chain */
    205 }
    206 
    207 static int
    208 load_timer(base, herz)
    209 	int base;
    210 	int herz;
    211 {
    212 	unsigned int timer_count;
    213 	int control;
    214 
    215 	timer_count = dc21285_fclk / herz;
    216 	if (timer_count > TIMER_MAX_VAL * 16) {
    217 		control = TIMER_FCLK_256;
    218 		timer_count >>= 8;
    219 	} else if (timer_count > TIMER_MAX_VAL) {
    220 		control = TIMER_FCLK_16;
    221 		timer_count >>= 4;
    222 	} else
    223 		control = TIMER_FCLK;
    224 
    225 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
    226 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    227 	    base + TIMER_LOAD, timer_count);
    228 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    229 	    base + TIMER_CONTROL, control);
    230 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    231 	    base + TIMER_CLEAR, 0);
    232 	return(timer_count);
    233 }
    234 
    235 /*
    236  * void setstatclockrate(int herz)
    237  *
    238  * Set the stat clock rate. The stat clock uses timer2
    239  */
    240 
    241 void
    242 setstatclockrate(herz)
    243 	int herz;
    244 {
    245 	int statint;
    246 	int countpersecond;
    247 	int statvarticks;
    248 
    249 	/* statint == num in counter to drop by desired herz */
    250 	statint = statprev = clock_sc->sc_statclock_count =
    251 	    load_timer(TIMER_2_BASE, herz);
    252 
    253 	/* Get the total ticks a second */
    254 	countpersecond = statint * herz;
    255 
    256 	/* now work out how many ticks per usec */
    257 	statcountperusec = countpersecond / 1000000;
    258 
    259 	/* calculate a variance range of statvar */
    260 	statvarticks = statcountperusec * statvar;
    261 
    262 	/* minimum is statint - 50% of variant */
    263 	statmin = statint - (statvarticks / 2);
    264 }
    265 
    266 /*
    267  * void cpu_initclocks(void)
    268  *
    269  * Initialise the clocks.
    270  *
    271  * Timer 1 is used for the main system clock (hardclock)
    272  * Timer 2 is used for the statistics clock (statclock)
    273  */
    274 
    275 void
    276 cpu_initclocks()
    277 {
    278 	/* stathz and profhz should be set to something, we have the timer */
    279 	if (stathz == 0)
    280 		stathz = hz;
    281 
    282 	if (profhz == 0)
    283 		profhz = stathz * 5;
    284 
    285 	/* Report the clock frequencies */
    286 	printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
    287 
    288 	/* Setup timer 1 and claim interrupt */
    289 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
    290 
    291 	/*
    292 	 * Use ticks per 256us for accuracy since ticks per us is often
    293 	 * fractional e.g. @ 66MHz
    294 	 */
    295 	clock_sc->sc_clock_ticks_per_256us =
    296 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
    297 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
    298 	    "tmr1 hard clk", clockhandler, 0);
    299 
    300 	if (clock_sc->sc_clockintr == NULL)
    301 		panic("%s: Cannot install timer 1 interrupt handler",
    302 		    clock_sc->sc_dev.dv_xname);
    303 
    304 	/* If stathz is non-zero then setup the stat clock */
    305 	if (stathz) {
    306 		/* Setup timer 2 and claim interrupt */
    307 		setstatclockrate(stathz);
    308        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_STATCLOCK,
    309        		    "tmr2 stat clk", statclockhandler, 0);
    310 		if (clock_sc->sc_statclockintr == NULL)
    311 			panic("%s: Cannot install timer 2 interrupt handler",
    312 			    clock_sc->sc_dev.dv_xname);
    313 	}
    314 }
    315 
    316 
    317 /*
    318  * void microtime(struct timeval *tvp)
    319  *
    320  * Fill in the specified timeval struct with the current time
    321  * accurate to the microsecond.
    322  */
    323 
    324 void
    325 microtime(tvp)
    326 	struct timeval *tvp;
    327 {
    328 	int s;
    329 	int tm;
    330 	int deltatm;
    331 	static struct timeval oldtv;
    332 
    333 	if (clock_sc == NULL || clock_sc->sc_clock_count == 0)
    334 		return;
    335 
    336 	s = splhigh();
    337 
    338 	tm = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    339 	    TIMER_1_VALUE);
    340 
    341 	deltatm = clock_sc->sc_clock_count - tm;
    342 
    343 #ifdef DIAGNOSTIC
    344 	if (deltatm < 0)
    345 		panic("opps deltatm < 0 tm=%d deltatm=%d", tm, deltatm);
    346 #endif
    347 
    348 	/* Fill in the timeval struct */
    349 	*tvp = time;
    350 	tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
    351 
    352 	/* Make sure the micro seconds don't overflow. */
    353 	while (tvp->tv_usec >= 1000000) {
    354 		tvp->tv_usec -= 1000000;
    355 		++tvp->tv_sec;
    356 	}
    357 
    358 	/* Make sure the time has advanced. */
    359 	if (tvp->tv_sec == oldtv.tv_sec &&
    360 	    tvp->tv_usec <= oldtv.tv_usec) {
    361 		tvp->tv_usec = oldtv.tv_usec + 1;
    362 		if (tvp->tv_usec >= 1000000) {
    363 			tvp->tv_usec -= 1000000;
    364 			++tvp->tv_sec;
    365 		}
    366 	}
    367 
    368 	oldtv = *tvp;
    369 	(void)splx(s);
    370 }
    371 
    372 /*
    373  * Use a timer to track microseconds, if the footbridge hasn't been setup we
    374  * rely on an estimated loop, however footbridge is attached very early on.
    375  */
    376 
    377 static int delay_clock_count = 0;
    378 static int delay_count_per_usec = 0;
    379 
    380 void
    381 calibrate_delay(void)
    382 {
    383      delay_clock_count = load_timer(TIMER_3_BASE, 100);
    384      delay_count_per_usec = delay_clock_count/10000;
    385 #ifdef VERBOSE_DELAY_CALIBRATION
    386      printf("delay calibration: delay_cc = %d, delay_c/us=%d\n",
    387 		     delay_clock_count, delay_count_per_usec);
    388 
    389      printf("0..");
    390      delay(1000000);
    391      printf("1..");
    392      delay(1000000);
    393      printf("2..");
    394      delay(1000000);
    395      printf("3..");
    396      delay(1000000);
    397      printf("4..");
    398       delay(1000000);
    399      printf("5..");
    400       delay(1000000);
    401      printf("6..");
    402       delay(1000000);
    403      printf("7..");
    404       delay(1000000);
    405      printf("8..");
    406       delay(1000000);
    407      printf("9..");
    408       delay(1000000);
    409      printf("10\n");
    410 #endif
    411 }
    412 
    413 int delaycount = 25000;
    414 
    415 void
    416 delay(n)
    417 	u_int n;
    418 {
    419 	volatile u_int i;
    420 	uint32_t cur, last, delta, usecs;
    421 
    422 	if (n == 0) return;
    423 
    424 
    425 	/*
    426 	 * not calibrated the timer yet, so try to live with this horrible
    427 	 * loop!
    428 	 */
    429 	if (delay_clock_count == 0)
    430 	{
    431 	    while (n-- > 0) {
    432 		for (i = delaycount; --i;);
    433 	    }
    434 	    return;
    435 	}
    436 
    437 	/*
    438 	 * read the current value (do not reset it as delay is reentrant)
    439 	 */
    440 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    441 		    TIMER_3_VALUE);
    442 
    443 	delta = usecs = 0;
    444 
    445 	while (n > usecs)
    446 	{
    447 	    cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    448 		    TIMER_3_VALUE);
    449 	    if (last < cur)
    450 		/* timer has wrapped */
    451 		delta += ((delay_clock_count - cur) + last);
    452 	    else
    453 		delta += (last - cur);
    454 
    455 	    if (cur == 0)
    456 	    {
    457 		/*
    458 		 * reset the timer, note that if something blocks us for more
    459 		 * than 1/100s we may delay for too long, but I believe that
    460 		 * is fairly unlikely.
    461 		 */
    462 		bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    463 			TIMER_3_CLEAR, 0);
    464 	    }
    465 	    last = cur;
    466 
    467 	    if (delta >= delay_count_per_usec)
    468 	    {
    469 		usecs += delta / delay_count_per_usec;
    470 		delta %= delay_count_per_usec;
    471 	    }
    472 	}
    473 }
    474 
    475 /* End of footbridge_clock.c */
    476