Home | History | Annotate | Line # | Download | only in footbridge
footbridge_clock.c revision 1.23
      1 /*	$NetBSD: footbridge_clock.c,v 1.23 2006/09/11 15:18:23 gdamore Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Mark Brinicombe.
      5  * Copyright (c) 1997 Causality Limited.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Mark Brinicombe
     19  *	for the NetBSD Project.
     20  * 4. The name of the company nor the name of the author may be used to
     21  *    endorse or promote products derived from this software without specific
     22  *    prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     28  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     29  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     30  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.23 2006/09/11 15:18:23 gdamore Exp $");
     39 
     40 /* Include header files */
     41 
     42 #include <sys/types.h>
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/time.h>
     47 #include <sys/timetc.h>
     48 #include <sys/device.h>
     49 
     50 #include <machine/intr.h>
     51 
     52 #include <arm/cpufunc.h>
     53 
     54 #include <arm/footbridge/dc21285reg.h>
     55 #include <arm/footbridge/footbridgevar.h>
     56 #include <arm/footbridge/footbridge.h>
     57 
     58 extern struct footbridge_softc *clock_sc;
     59 extern u_int dc21285_fclk;
     60 
     61 int clockhandler(void *);
     62 int statclockhandler(void *);
     63 static int load_timer(int, int);
     64 
     65 /*
     66  * Statistics clock variance, in usec.  Variance must be a
     67  * power of two.  Since this gives us an even number, not an odd number,
     68  * we discard one case and compensate.  That is, a variance of 1024 would
     69  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
     70  * This is symmetric about the point 512, or statvar/2, and thus averages
     71  * to that value (assuming uniform random numbers).
     72  */
     73 const int statvar = 1024;
     74 int statmin;			/* minimum stat clock count in ticks */
     75 int statcountperusec;		/* number of ticks per usec at current stathz */
     76 int statprev;			/* last value of we set statclock to */
     77 
     78 void footbridge_tc_init(void);
     79 
     80 #if 0
     81 static int clockmatch(struct device *parent, struct cfdata *cf, void *aux);
     82 static void clockattach(struct device *parent, struct device *self, void *aux);
     83 
     84 CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
     85     clockmatch, clockattach, NULL, NULL);
     86 
     87 /*
     88  * int clockmatch(struct device *parent, void *match, void *aux)
     89  *
     90  * Just return ok for this if it is device 0
     91  */
     92 
     93 static int
     94 clockmatch(struct device *parent, struct cfdata *cf, void *aux)
     95 {
     96 	union footbridge_attach_args *fba = aux;
     97 
     98 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
     99 		return 1;
    100 	return 0;
    101 }
    102 
    103 
    104 /*
    105  * void clockattach(struct device *parent, struct device *dev, void *aux)
    106  *
    107  */
    108 
    109 static void
    110 clockattach(struct device *parent, struct device *self, void *aux)
    111 {
    112 	struct clock_softc *sc = (struct clock_softc *)self;
    113 	union footbridge_attach_args *fba = aux;
    114 
    115 	sc->sc_iot = fba->fba_ca.ca_iot;
    116 	sc->sc_ioh = fba->fba_ca.ca_ioh;
    117 
    118 	clock_sc = sc;
    119 
    120 	/* Cannot do anything until cpu_initclocks() has been called */
    121 
    122 	printf("\n");
    123 }
    124 #endif
    125 
    126 /*
    127  * int clockhandler(struct clockframe *frame)
    128  *
    129  * Function called by timer 1 interrupts.
    130  * This just clears the interrupt condition and calls hardclock().
    131  */
    132 
    133 int
    134 clockhandler(void *aframe)
    135 {
    136 	struct clockframe *frame = aframe;
    137 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    138 	    TIMER_1_CLEAR, 0);
    139 	hardclock(frame);
    140 	return 0;	/* Pass the interrupt on down the chain */
    141 }
    142 
    143 /*
    144  * int statclockhandler(struct clockframe *frame)
    145  *
    146  * Function called by timer 2 interrupts.
    147  * This just clears the interrupt condition and calls statclock().
    148  */
    149 
    150 int
    151 statclockhandler(void *aframe)
    152 {
    153 	struct clockframe *frame = aframe;
    154 	int newint, r;
    155 	int currentclock ;
    156 
    157 	/* start the clock off again */
    158 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    159 			TIMER_2_CLEAR, 0);
    160 
    161 	do {
    162 		r = random() & (statvar-1);
    163 	} while (r == 0);
    164 	newint = statmin + (r * statcountperusec);
    165 
    166 	/* fetch the current count */
    167 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    168 		    TIMER_2_VALUE);
    169 
    170 	/*
    171 	 * work out how much time has run, add another usec for time spent
    172 	 * here
    173 	 */
    174 	r = ((statprev - currentclock) + statcountperusec);
    175 
    176 	if (r < newint) {
    177 		newint -= r;
    178 		r = 0;
    179 	}
    180 	else
    181 		printf("statclockhandler: Statclock overrun\n");
    182 
    183 
    184 	/*
    185 	 * update the clock to the new counter, this reloads the existing
    186 	 * timer
    187 	 */
    188 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    189 	    		TIMER_2_LOAD, newint);
    190 	statprev = newint;
    191 	statclock(frame);
    192 	if (r)
    193 		/*
    194 		 * We've completely overrun the previous interval,
    195 		 * make sure we report the correct number of ticks.
    196 		 */
    197 		statclock(frame);
    198 
    199 	return 0;	/* Pass the interrupt on down the chain */
    200 }
    201 
    202 static int
    203 load_timer(int base, int herz)
    204 {
    205 	unsigned int timer_count;
    206 	int control;
    207 
    208 	timer_count = dc21285_fclk / herz;
    209 	if (timer_count > TIMER_MAX_VAL * 16) {
    210 		control = TIMER_FCLK_256;
    211 		timer_count >>= 8;
    212 	} else if (timer_count > TIMER_MAX_VAL) {
    213 		control = TIMER_FCLK_16;
    214 		timer_count >>= 4;
    215 	} else
    216 		control = TIMER_FCLK;
    217 
    218 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
    219 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    220 	    base + TIMER_LOAD, timer_count);
    221 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    222 	    base + TIMER_CONTROL, control);
    223 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    224 	    base + TIMER_CLEAR, 0);
    225 	return timer_count;
    226 }
    227 
    228 /*
    229  * void setstatclockrate(int herz)
    230  *
    231  * Set the stat clock rate. The stat clock uses timer2
    232  */
    233 
    234 void
    235 setstatclockrate(int herz)
    236 {
    237 	int statint;
    238 	int countpersecond;
    239 	int statvarticks;
    240 
    241 	/* statint == num in counter to drop by desired herz */
    242 	statint = statprev = clock_sc->sc_statclock_count =
    243 	    load_timer(TIMER_2_BASE, herz);
    244 
    245 	/* Get the total ticks a second */
    246 	countpersecond = statint * herz;
    247 
    248 	/* now work out how many ticks per usec */
    249 	statcountperusec = countpersecond / 1000000;
    250 
    251 	/* calculate a variance range of statvar */
    252 	statvarticks = statcountperusec * statvar;
    253 
    254 	/* minimum is statint - 50% of variant */
    255 	statmin = statint - (statvarticks / 2);
    256 }
    257 
    258 /*
    259  * void cpu_initclocks(void)
    260  *
    261  * Initialise the clocks.
    262  *
    263  * Timer 1 is used for the main system clock (hardclock)
    264  * Timer 2 is used for the statistics clock (statclock)
    265  */
    266 
    267 void
    268 cpu_initclocks(void)
    269 {
    270 	/* stathz and profhz should be set to something, we have the timer */
    271 	if (stathz == 0)
    272 		stathz = hz;
    273 
    274 	if (profhz == 0)
    275 		profhz = stathz * 5;
    276 
    277 	/* Report the clock frequencies */
    278 	printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
    279 
    280 	/* Setup timer 1 and claim interrupt */
    281 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
    282 
    283 	/*
    284 	 * Use ticks per 256us for accuracy since ticks per us is often
    285 	 * fractional e.g. @ 66MHz
    286 	 */
    287 	clock_sc->sc_clock_ticks_per_256us =
    288 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
    289 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
    290 	    "tmr1 hard clk", clockhandler, 0);
    291 
    292 	if (clock_sc->sc_clockintr == NULL)
    293 		panic("%s: Cannot install timer 1 interrupt handler",
    294 		    clock_sc->sc_dev.dv_xname);
    295 
    296 	/* If stathz is non-zero then setup the stat clock */
    297 	if (stathz) {
    298 		/* Setup timer 2 and claim interrupt */
    299 		setstatclockrate(stathz);
    300        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_STATCLOCK,
    301        		    "tmr2 stat clk", statclockhandler, 0);
    302 		if (clock_sc->sc_statclockintr == NULL)
    303 			panic("%s: Cannot install timer 2 interrupt handler",
    304 			    clock_sc->sc_dev.dv_xname);
    305 	}
    306 
    307 	footbridge_tc_init();
    308 }
    309 
    310 static uint32_t
    311 fclk_get_count(struct timecounter *tc)
    312 {
    313 	return (TIMER_MAX_VAL -
    314 	    bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    315 	    TIMER_3_VALUE));
    316 }
    317 
    318 void
    319 footbridge_tc_init(void)
    320 {
    321 	static struct timecounter fb_tc = {
    322 		.tc_get_timecount = fclk_get_count,
    323 		.tc_counter_mask = TIMER_MAX_VAL,
    324 		.tc_name = "dc21285_fclk",
    325 		.tc_quality = 100
    326 	};
    327 	fb_tc.tc_frequency = dc21285_fclk;
    328 	tc_init(&fb_tc);
    329 }
    330 
    331 /*
    332  * Use a timer to track microseconds, if the footbridge hasn't been setup we
    333  * rely on an estimated loop, however footbridge is attached very early on.
    334  */
    335 
    336 static int delay_count_per_usec = 0;
    337 
    338 void
    339 calibrate_delay(void)
    340 {
    341 	/*
    342 	 * For all current footbridge hardware, the fclk runs at a
    343 	 * rate that is sufficiently slow enough that we don't need to
    344 	 * use a prescaler.  A prescaler would be needed if the fclk
    345 	 * could wrap within 2 hardclock periods (2 * HZ).  With
    346 	 * normal values of HZ (100 and higher), this is unlikely to
    347 	 * ever happen.
    348 	 *
    349 	 * We let TIMER 3 just run free, at the freqeuncy supplied by
    350 	 * dc21285_fclk.
    351 	 */
    352 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    353 	    TIMER_3_BASE + TIMER_CONTROL, TIMER_ENABLE);
    354 	delay_count_per_usec = dc21285_fclk / 1000000;
    355 	if (dc21285_fclk % 1000000)
    356 		delay_count_per_usec += 1;
    357 }
    358 
    359 void
    360 delay(unsigned n)
    361 {
    362 	uint32_t cur, last, delta, usecs;
    363 
    364 	if (n == 0)
    365 		return;
    366 
    367 	/*
    368 	 * not calibrated the timer yet, so try to live with this horrible
    369 	 * loop!
    370 	 *
    371 	 * Note: a much better solution might be to have the timers
    372 	 * get get calibrated out of mach_init.  Of course, the
    373 	 * clock_sc needs to be set up, so we can read/write the clock
    374 	 * registers.
    375 	 */
    376 	if (!delay_count_per_usec)
    377 	{
    378 		int delaycount = 25000;
    379 		volatile int i;
    380 
    381 		while (n-- > 0) {
    382 			for (i = delaycount; --i;);
    383 		}
    384 		return;
    385 	}
    386 
    387 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    388 	    TIMER_3_VALUE);
    389 	delta = usecs = 0;
    390 
    391 	while (n > usecs) {
    392 		cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
    393 		    TIMER_3_VALUE);
    394 		if (last < cur)
    395 			/* timer has wrapped */
    396 			delta += ((TIMER_MAX_VAL - cur) + last);
    397 		else
    398 			delta += (last - cur);
    399 
    400 		last = cur;
    401 
    402 		while (delta >= delay_count_per_usec) {
    403 			delta -= delay_count_per_usec;
    404 			usecs++;
    405 		}
    406 	}
    407 }
    408 
    409 /* End of footbridge_clock.c */
    410