1 1.177 skrll /* $NetBSD: pmap.h,v 1.177 2023/10/12 11:33:37 skrll Exp $ */ 2 1.46 thorpej 3 1.46 thorpej /* 4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc. 5 1.46 thorpej * All rights reserved. 6 1.46 thorpej * 7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. 8 1.46 thorpej * 9 1.46 thorpej * Redistribution and use in source and binary forms, with or without 10 1.46 thorpej * modification, are permitted provided that the following conditions 11 1.46 thorpej * are met: 12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright 13 1.46 thorpej * notice, this list of conditions and the following disclaimer. 14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright 15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the 16 1.46 thorpej * documentation and/or other materials provided with the distribution. 17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software 18 1.46 thorpej * must display the following acknowledgement: 19 1.46 thorpej * This product includes software developed for the NetBSD Project by 20 1.46 thorpej * Wasabi Systems, Inc. 21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 1.46 thorpej * or promote products derived from this software without specific prior 23 1.46 thorpej * written permission. 24 1.46 thorpej * 25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE. 36 1.46 thorpej */ 37 1.1 reinoud 38 1.1 reinoud /* 39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe. 40 1.1 reinoud * All rights reserved. 41 1.1 reinoud * 42 1.1 reinoud * Redistribution and use in source and binary forms, with or without 43 1.1 reinoud * modification, are permitted provided that the following conditions 44 1.1 reinoud * are met: 45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright 46 1.1 reinoud * notice, this list of conditions and the following disclaimer. 47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright 48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the 49 1.1 reinoud * documentation and/or other materials provided with the distribution. 50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software 51 1.1 reinoud * must display the following acknowledgement: 52 1.1 reinoud * This product includes software developed by Mark Brinicombe 53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products 54 1.1 reinoud * derived from this software without specific prior written permission. 55 1.1 reinoud * 56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 66 1.1 reinoud */ 67 1.1 reinoud 68 1.1 reinoud #ifndef _ARM32_PMAP_H_ 69 1.1 reinoud #define _ARM32_PMAP_H_ 70 1.1 reinoud 71 1.18 thorpej #ifdef _KERNEL 72 1.18 thorpej 73 1.52 thorpej #include <arm/cpuconf.h> 74 1.75 bsh #include <arm/arm32/pte.h> 75 1.75 bsh #ifndef _LOCORE 76 1.85 matt #if defined(_KERNEL_OPT) 77 1.85 matt #include "opt_arm32_pmap.h" 78 1.136 skrll #include "opt_multiprocessor.h" 79 1.85 matt #endif 80 1.19 thorpej #include <arm/cpufunc.h> 81 1.138 joerg #include <arm/locore.h> 82 1.174 skrll 83 1.12 chris #include <uvm/uvm_object.h> 84 1.174 skrll 85 1.174 skrll #include <uvm/pmap/pmap_devmap.h> 86 1.143 skrll #include <uvm/pmap/pmap_pvt.h> 87 1.75 bsh #endif 88 1.1 reinoud 89 1.124 matt #ifdef ARM_MMU_EXTENDED 90 1.168 skrll #define PMAP_HWPAGEWALKER 1 91 1.168 skrll #define PMAP_TLB_MAX 1 92 1.126 matt #if PMAP_TLB_MAX > 1 93 1.168 skrll #define PMAP_TLB_NEED_SHOOTDOWN 1 94 1.126 matt #endif 95 1.172 skrll #define PMAP_TLB_FLUSH_ASID_ON_RESET arm_has_tlbiasid_p 96 1.168 skrll #define PMAP_TLB_NUM_PIDS 256 97 1.176 skrll 98 1.168 skrll #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1) 99 1.124 matt #include <uvm/pmap/tlb.h> 100 1.124 matt #include <uvm/pmap/pmap_tlb.h> 101 1.124 matt 102 1.135 skrll /* 103 1.124 matt * If we have an EXTENDED MMU and the address space is split evenly between 104 1.124 matt * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for 105 1.124 matt * user and kernel address spaces. 106 1.135 skrll */ 107 1.128 matt #if (KERNEL_BASE & 0x80000000) == 0 108 1.128 matt #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000 109 1.135 skrll #endif 110 1.124 matt #endif /* ARM_MMU_EXTENDED */ 111 1.124 matt 112 1.1 reinoud /* 113 1.11 chris * a pmap describes a processes' 4GB virtual address space. this 114 1.11 chris * virtual address space can be broken up into 4096 1MB regions which 115 1.38 thorpej * are described by L1 PTEs in the L1 table. 116 1.11 chris * 117 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line 118 1.38 thorpej * changes when the VM context is switched. Everything above that line 119 1.38 thorpej * is the same no matter which VM context is running. This is achieved 120 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference 121 1.38 thorpej * kernel L2 tables. 122 1.11 chris * 123 1.38 thorpej * The basic layout of the virtual address space thus looks like this: 124 1.38 thorpej * 125 1.38 thorpej * 0xffffffff 126 1.38 thorpej * . 127 1.38 thorpej * . 128 1.38 thorpej * . 129 1.38 thorpej * KERNEL_BASE 130 1.38 thorpej * -------------------- 131 1.38 thorpej * . 132 1.38 thorpej * . 133 1.38 thorpej * . 134 1.38 thorpej * 0x00000000 135 1.11 chris */ 136 1.11 chris 137 1.65 scw /* 138 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable. 139 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address 140 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or 141 1.65 scw * three of these to map their whole working set. 142 1.65 scw */ 143 1.124 matt #define L2_BUCKET_XLOG2 (L1_S_SHIFT) 144 1.168 skrll #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2) 145 1.65 scw #define L2_BUCKET_LOG2 4 146 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 147 1.65 scw 148 1.65 scw /* 149 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number 150 1.65 scw * of l2_dtable structures required to track all possible page descriptors 151 1.65 scw * mappable by an L1 translation table is given by the following constants: 152 1.65 scw */ 153 1.124 matt #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2)) 154 1.65 scw #define L2_SIZE (1 << L2_LOG2) 155 1.65 scw 156 1.90 matt /* 157 1.90 matt * tell MI code that the cache is virtually-indexed. 158 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged. 159 1.90 matt */ 160 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 161 1.168 skrll #define PMAP_CACHE_VIPT 162 1.90 matt #else 163 1.168 skrll #define PMAP_CACHE_VIVT 164 1.90 matt #endif 165 1.90 matt 166 1.75 bsh #ifndef _LOCORE 167 1.75 bsh 168 1.146 skrll #ifndef ARM_MMU_EXTENDED 169 1.65 scw struct l1_ttable; 170 1.65 scw struct l2_dtable; 171 1.65 scw 172 1.65 scw /* 173 1.65 scw * Track cache/tlb occupancy using the following structure 174 1.65 scw */ 175 1.65 scw union pmap_cache_state { 176 1.65 scw struct { 177 1.65 scw union { 178 1.115 skrll uint8_t csu_cache_b[2]; 179 1.115 skrll uint16_t csu_cache; 180 1.65 scw } cs_cache_u; 181 1.65 scw 182 1.65 scw union { 183 1.115 skrll uint8_t csu_tlb_b[2]; 184 1.115 skrll uint16_t csu_tlb; 185 1.65 scw } cs_tlb_u; 186 1.65 scw } cs_s; 187 1.115 skrll uint32_t cs_all; 188 1.65 scw }; 189 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] 190 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] 191 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache 192 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] 193 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] 194 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb 195 1.65 scw 196 1.65 scw /* 197 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap 198 1.65 scw */ 199 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu 200 1.124 matt #endif /* !ARM_MMU_EXTENDED */ 201 1.65 scw 202 1.73 thorpej 203 1.153 skrll #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET) 204 1.153 skrll #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE) 205 1.175 martin #define DEVMAP_FLAGS PMAP_DEV 206 1.153 skrll 207 1.73 thorpej /* 208 1.65 scw * The pmap structure itself 209 1.65 scw */ 210 1.65 scw struct pmap { 211 1.163 ad kmutex_t pm_lock; 212 1.163 ad u_int pm_refs; 213 1.120 matt #ifndef ARM_HAS_VBAR 214 1.82 scw pd_entry_t *pm_pl1vec; 215 1.124 matt pd_entry_t pm_l1vec; 216 1.120 matt #endif 217 1.65 scw struct l2_dtable *pm_l2[L2_SIZE]; 218 1.65 scw struct pmap_statistics pm_stats; 219 1.65 scw LIST_ENTRY(pmap) pm_list; 220 1.171 skrll bool pm_remove_all; 221 1.124 matt #ifdef ARM_MMU_EXTENDED 222 1.124 matt pd_entry_t *pm_l1; 223 1.124 matt paddr_t pm_l1_pa; 224 1.124 matt #ifdef MULTIPROCESSOR 225 1.124 matt kcpuset_t *pm_onproc; 226 1.124 matt kcpuset_t *pm_active; 227 1.126 matt #if PMAP_TLB_MAX > 1 228 1.126 matt u_int pm_shootdown_pending; 229 1.126 matt #endif 230 1.124 matt #endif 231 1.126 matt struct pmap_asid_info pm_pai[PMAP_TLB_MAX]; 232 1.124 matt #else 233 1.124 matt struct l1_ttable *pm_l1; 234 1.124 matt union pmap_cache_state pm_cstate; 235 1.124 matt uint8_t pm_domain; 236 1.124 matt bool pm_activated; 237 1.124 matt #endif 238 1.124 matt }; 239 1.124 matt 240 1.124 matt struct pmap_kernel { 241 1.124 matt struct pmap kernel_pmap; 242 1.65 scw }; 243 1.65 scw 244 1.106 martin /* 245 1.106 martin * Physical / virtual address structure. In a number of places (particularly 246 1.106 martin * during bootstrapping) we need to keep track of the physical and virtual 247 1.106 martin * addresses of various pages 248 1.106 martin */ 249 1.106 martin typedef struct pv_addr { 250 1.106 martin SLIST_ENTRY(pv_addr) pv_list; 251 1.106 martin paddr_t pv_pa; 252 1.106 martin vaddr_t pv_va; 253 1.106 martin vsize_t pv_size; 254 1.106 martin uint8_t pv_cache; 255 1.106 martin uint8_t pv_prot; 256 1.106 martin } pv_addr_t; 257 1.106 martin typedef SLIST_HEAD(, pv_addr) pv_addrqh_t; 258 1.106 martin 259 1.85 matt extern pv_addrqh_t pmap_freeq; 260 1.102 matt extern pv_addr_t kernelstack; 261 1.102 matt extern pv_addr_t abtstack; 262 1.102 matt extern pv_addr_t fiqstack; 263 1.102 matt extern pv_addr_t irqstack; 264 1.102 matt extern pv_addr_t undstack; 265 1.103 matt extern pv_addr_t idlestack; 266 1.85 matt extern pv_addr_t systempage; 267 1.85 matt extern pv_addr_t kernel_l1pt; 268 1.173 skrll #if defined(EFI_RUNTIME) 269 1.173 skrll extern pv_addr_t efirt_l1pt; 270 1.173 skrll #endif 271 1.1 reinoud 272 1.126 matt #ifdef ARM_MMU_EXTENDED 273 1.126 matt extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */ 274 1.126 matt #endif 275 1.126 matt 276 1.1 reinoud /* 277 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable 278 1.24 thorpej * vs. non-cacheable). 279 1.24 thorpej */ 280 1.24 thorpej #define PTE_KERNEL 0 281 1.24 thorpej #define PTE_USER 1 282 1.24 thorpej #define PTE_NOCACHE 0 283 1.24 thorpej #define PTE_CACHE 1 284 1.65 scw #define PTE_PAGETABLE 2 285 1.161 skrll #define PTE_DEV 3 286 1.24 thorpej 287 1.24 thorpej /* 288 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages. 289 1.43 thorpej * 290 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 291 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 292 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so 293 1.43 thorpej * that we can clear multiple attributes at a time. 294 1.43 thorpej * 295 1.43 thorpej * Note the "non-cacheable" flag generally means the page has 296 1.43 thorpej * multiple mappings in a given address space. 297 1.43 thorpej */ 298 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */ 299 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */ 300 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */ 301 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */ 302 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */ 303 1.90 matt #ifdef PMAP_CACHE_VIVT 304 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ 305 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ 306 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC) 307 1.90 matt #endif 308 1.90 matt #ifdef PMAP_CACHE_VIPT 309 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */ 310 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */ 311 1.90 matt #endif 312 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */ 313 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */ 314 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */ 315 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */ 316 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */ 317 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE) 318 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE) 319 1.43 thorpej 320 1.43 thorpej /* 321 1.1 reinoud * Commonly referenced structures 322 1.1 reinoud */ 323 1.113 matt extern int arm_poolpage_vmfreelist; 324 1.1 reinoud 325 1.1 reinoud /* 326 1.1 reinoud * Macros that we need to export 327 1.1 reinoud */ 328 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 329 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 330 1.31 thorpej 331 1.43 thorpej #define pmap_is_modified(pg) \ 332 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) 333 1.43 thorpej #define pmap_is_referenced(pg) \ 334 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) 335 1.96 uebayasi #define pmap_is_page_colored_p(md) \ 336 1.96 uebayasi (((md)->pvh_attrs & PVF_COLORED) != 0) 337 1.41 thorpej 338 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */ 339 1.60 chs 340 1.168 skrll #define pmap_phys_address(ppn) (arm_ptob((ppn))) 341 1.98 macallan u_int arm32_mmap_flags(paddr_t); 342 1.168 skrll #define ARM32_MMAP_WRITECOMBINE 0x40000000 343 1.168 skrll #define ARM32_MMAP_CACHEABLE 0x20000000 344 1.168 skrll #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE 345 1.168 skrll #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE 346 1.168 skrll #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn) 347 1.1 reinoud 348 1.123 matt #define PMAP_PTE 0x10000000 /* kenter_pa */ 349 1.161 skrll #define PMAP_DEV 0x20000000 /* kenter_pa */ 350 1.161 skrll #define PMAP_DEV_SO 0x40000000 /* kenter_pa */ 351 1.161 skrll #define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO) 352 1.123 matt 353 1.1 reinoud /* 354 1.1 reinoud * Functions that we need to export 355 1.1 reinoud */ 356 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int); 357 1.164 ad bool pmap_remove_all(pmap_t); 358 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *); 359 1.39 thorpej 360 1.1 reinoud #define PMAP_NEED_PROCWR 361 1.168 skrll #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 362 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */ 363 1.4 matt 364 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 365 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td)) 366 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int); 367 1.85 matt #endif 368 1.85 matt 369 1.160 skrll #ifdef ARM_MMU_EXTENDED 370 1.159 skrll int pmap_maxproc_set(int); 371 1.173 skrll struct pmap * 372 1.173 skrll pmap_efirt(void); 373 1.159 skrll #endif 374 1.159 skrll 375 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t); 376 1.85 matt 377 1.39 thorpej /* Functions we use internally. */ 378 1.85 matt #ifdef PMAP_STEAL_MEMORY 379 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *); 380 1.85 matt void pmap_boot_pageadd(pv_addr_t *); 381 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *); 382 1.85 matt #endif 383 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t); 384 1.65 scw 385 1.173 skrll struct pmap * 386 1.173 skrll pmap_efirt(void); 387 1.173 skrll void pmap_activate_efirt(void); 388 1.173 skrll void pmap_deactivate_efirt(void); 389 1.173 skrll 390 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int); 391 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); 392 1.124 matt int pmap_prefetchabt_fixup(void *); 393 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); 394 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); 395 1.155 ryo bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *); 396 1.65 scw 397 1.39 thorpej void pmap_postinit(void); 398 1.42 thorpej 399 1.42 thorpej void vector_page_setprot(int); 400 1.24 thorpej 401 1.24 thorpej /* Bootstrapping routines. */ 402 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); 403 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); 404 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); 405 1.156 skrll void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t); 406 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); 407 1.174 skrll 408 1.174 skrll vsize_t pmap_kenter_range(vaddr_t, paddr_t, vsize_t, vm_prot_t, u_int); 409 1.13 chris 410 1.13 chris /* 411 1.135 skrll * Special page zero routine for use by the idle loop (no cache cleans). 412 1.13 chris */ 413 1.80 thorpej bool pmap_pageidlezero(paddr_t); 414 1.168 skrll #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 415 1.1 reinoud 416 1.131 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 417 1.131 matt /* 418 1.131 matt * For the pmap, this is a more useful way to map a direct mapped page. 419 1.131 matt * It returns either the direct-mapped VA or the VA supplied if it can't 420 1.131 matt * be direct mapped. 421 1.131 matt */ 422 1.131 matt vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t); 423 1.131 matt #endif 424 1.131 matt 425 1.29 chris /* 426 1.84 chris * used by dumpsys to record the PA of the L1 table 427 1.84 chris */ 428 1.84 chris uint32_t pmap_kernel_L1_addr(void); 429 1.84 chris /* 430 1.29 chris * The current top of kernel VM 431 1.29 chris */ 432 1.29 chris extern vaddr_t pmap_curmaxkvaddr; 433 1.1 reinoud 434 1.131 matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 435 1.131 matt /* 436 1.141 matt * Ending VA of direct mapped memory (usually KERNEL_VM_BASE). 437 1.131 matt */ 438 1.140 matt extern vaddr_t pmap_directlimit; 439 1.131 matt #endif 440 1.131 matt 441 1.1 reinoud /* 442 1.135 skrll * Useful macros and constants 443 1.1 reinoud */ 444 1.59 thorpej 445 1.65 scw /* Virtual address to page table entry */ 446 1.79 perry static inline pt_entry_t * 447 1.65 scw vtopte(vaddr_t va) 448 1.65 scw { 449 1.65 scw pd_entry_t *pdep; 450 1.65 scw pt_entry_t *ptep; 451 1.65 scw 452 1.124 matt KASSERT(trunc_page(va) == va); 453 1.124 matt 454 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false) 455 1.65 scw return (NULL); 456 1.65 scw return (ptep); 457 1.65 scw } 458 1.65 scw 459 1.65 scw /* 460 1.65 scw * Virtual address to physical address 461 1.65 scw */ 462 1.79 perry static inline paddr_t 463 1.65 scw vtophys(vaddr_t va) 464 1.65 scw { 465 1.65 scw paddr_t pa; 466 1.65 scw 467 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false) 468 1.65 scw return (0); /* XXXSCW: Panic? */ 469 1.65 scw 470 1.65 scw return (pa); 471 1.65 scw } 472 1.65 scw 473 1.65 scw /* 474 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru. 475 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 476 1.65 scw * on every change. 477 1.65 scw * 478 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we 479 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 480 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define 481 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 482 1.69 thorpej * the code. 483 1.69 thorpej */ 484 1.69 thorpej extern int pmap_needs_pte_sync; 485 1.69 thorpej #if defined(_KERNEL_OPT) 486 1.69 thorpej /* 487 1.145 skrll * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a 488 1.145 skrll * single MMU type is selected. 489 1.145 skrll * 490 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these, 491 1.145 skrll * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs. 492 1.145 skrll * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs. 493 1.145 skrll * 494 1.145 skrll * Use run time evaluation for all other cases. 495 1.148 skrll * 496 1.69 thorpej */ 497 1.145 skrll #if (ARM_NMMUS == 1) 498 1.145 skrll #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) 499 1.104 matt #define PMAP_INCLUDE_PTE_SYNC 500 1.109 matt #define PMAP_NEEDS_PTE_SYNC 1 501 1.145 skrll #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0) 502 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0 503 1.69 thorpej #endif 504 1.112 matt #endif 505 1.69 thorpej #endif /* _KERNEL_OPT */ 506 1.69 thorpej 507 1.69 thorpej /* 508 1.69 thorpej * Provide a fallback in case we were not able to determine it at 509 1.69 thorpej * compile-time. 510 1.65 scw */ 511 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC 512 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 513 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC 514 1.69 thorpej #endif 515 1.65 scw 516 1.104 matt static inline void 517 1.104 matt pmap_ptesync(pt_entry_t *ptep, size_t cnt) 518 1.104 matt { 519 1.132 matt if (PMAP_NEEDS_PTE_SYNC) { 520 1.104 matt cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t)); 521 1.132 matt #ifdef SHEEVA_L2_CACHE 522 1.132 matt cpu_sdcache_wb_range((vaddr_t)ptep, -1, 523 1.132 matt cnt * sizeof(pt_entry_t)); 524 1.132 matt #endif 525 1.132 matt } 526 1.169 skrll dsb(sy); 527 1.104 matt } 528 1.69 thorpej 529 1.124 matt #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1) 530 1.124 matt #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt)) 531 1.124 matt #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE) 532 1.104 matt #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt)) 533 1.65 scw 534 1.168 skrll #define l1pte_valid_p(pde) ((pde) != 0) 535 1.168 skrll #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 536 1.168 skrll #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \ 537 1.104 matt && ((pde) & L1_S_V6_SUPER) != 0) 538 1.168 skrll #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 539 1.168 skrll #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 540 1.168 skrll #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK) 541 1.168 skrll #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT) 542 1.124 matt 543 1.124 matt static inline void 544 1.124 matt l1pte_setone(pt_entry_t *pdep, pt_entry_t pde) 545 1.124 matt { 546 1.124 matt *pdep = pde; 547 1.124 matt } 548 1.36 thorpej 549 1.124 matt static inline void 550 1.124 matt l1pte_set(pt_entry_t *pdep, pt_entry_t pde) 551 1.124 matt { 552 1.124 matt *pdep = pde; 553 1.124 matt if (l1pte_page_p(pde)) { 554 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep); 555 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) { 556 1.124 matt pde += L2_T_SIZE; 557 1.124 matt pdep[k] = pde; 558 1.124 matt } 559 1.124 matt } else if (l1pte_supersection_p(pde)) { 560 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep); 561 1.158 christos for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) { 562 1.124 matt pdep[k] = pde; 563 1.124 matt } 564 1.124 matt } 565 1.124 matt } 566 1.124 matt 567 1.168 skrll #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT)) 568 1.168 skrll #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV) 569 1.168 skrll #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 570 1.168 skrll #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L) 571 1.168 skrll #define l2pte_minidata_p(pte) (((pte) & \ 572 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\ 573 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X))) 574 1.35 thorpej 575 1.121 matt static inline void 576 1.121 matt l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte) 577 1.121 matt { 578 1.129 skrll if (l1pte_lpage_p(pte)) { 579 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 580 1.158 christos for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) { 581 1.129 skrll *ptep++ = pte; 582 1.129 skrll } 583 1.129 skrll } else { 584 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 585 1.158 christos for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) { 586 1.129 skrll KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte); 587 1.129 skrll *ptep++ = pte; 588 1.129 skrll pte += L2_S_SIZE; 589 1.129 skrll if (opte) 590 1.129 skrll opte += L2_S_SIZE; 591 1.129 skrll } 592 1.121 matt } 593 1.129 skrll } 594 1.121 matt 595 1.121 matt static inline void 596 1.121 matt l2pte_reset(pt_entry_t *ptep) 597 1.121 matt { 598 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 599 1.121 matt *ptep = 0; 600 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) { 601 1.121 matt ptep[k] = 0; 602 1.121 matt } 603 1.135 skrll } 604 1.121 matt 605 1.1 reinoud /* L1 and L2 page table macros */ 606 1.168 skrll #define pmap_pde_v(pde) l1pte_valid(*(pde)) 607 1.168 skrll #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 608 1.168 skrll #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde)) 609 1.168 skrll #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 610 1.168 skrll #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 611 1.16 rearnsha 612 1.124 matt #define pmap_pte_v(pte) l2pte_valid_p(*(pte)) 613 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 614 1.35 thorpej 615 1.170 skrll static inline uint32_t 616 1.170 skrll pte_value(pt_entry_t pte) 617 1.170 skrll { 618 1.170 skrll return pte; 619 1.170 skrll } 620 1.170 skrll 621 1.170 skrll static inline bool 622 1.170 skrll pte_valid_p(pt_entry_t pte) 623 1.170 skrll { 624 1.170 skrll 625 1.170 skrll return l2pte_valid_p(pte); 626 1.170 skrll } 627 1.170 skrll 628 1.170 skrll 629 1.1 reinoud /* Size of the kernel part of the L1 page table */ 630 1.168 skrll #define KERNEL_PD_SIZE \ 631 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) 632 1.20 chs 633 1.117 matt void bzero_page(vaddr_t); 634 1.117 matt void bcopy_page(vaddr_t, vaddr_t); 635 1.46 thorpej 636 1.116 matt #ifdef FPU_VFP 637 1.117 matt void bzero_page_vfp(vaddr_t); 638 1.117 matt void bcopy_page_vfp(vaddr_t, vaddr_t); 639 1.116 matt #endif 640 1.116 matt 641 1.117 matt /************************* ARM MMU configuration *****************************/ 642 1.117 matt 643 1.95 jmcneill #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 644 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t); 645 1.51 thorpej void pmap_zero_page_generic(paddr_t); 646 1.51 thorpej 647 1.46 thorpej void pmap_pte_init_generic(void); 648 1.69 thorpej #if defined(CPU_ARM8) 649 1.69 thorpej void pmap_pte_init_arm8(void); 650 1.69 thorpej #endif 651 1.46 thorpej #if defined(CPU_ARM9) 652 1.46 thorpej void pmap_pte_init_arm9(void); 653 1.46 thorpej #endif /* CPU_ARM9 */ 654 1.76 rearnsha #if defined(CPU_ARM10) 655 1.76 rearnsha void pmap_pte_init_arm10(void); 656 1.76 rearnsha #endif /* CPU_ARM10 */ 657 1.103 matt #if defined(CPU_ARM11) /* ARM_MMU_V6 */ 658 1.94 uebayasi void pmap_pte_init_arm11(void); 659 1.94 uebayasi #endif /* CPU_ARM11 */ 660 1.103 matt #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */ 661 1.99 bsh void pmap_pte_init_arm11mpcore(void); 662 1.99 bsh #endif 663 1.161 skrll #if ARM_MMU_V6 == 1 664 1.161 skrll void pmap_pte_init_armv6(void); 665 1.161 skrll #endif /* ARM_MMU_V6 */ 666 1.103 matt #if ARM_MMU_V7 == 1 667 1.103 matt void pmap_pte_init_armv7(void); 668 1.103 matt #endif /* ARM_MMU_V7 */ 669 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 670 1.69 thorpej 671 1.69 thorpej #if ARM_MMU_SA1 == 1 672 1.69 thorpej void pmap_pte_init_sa1(void); 673 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */ 674 1.46 thorpej 675 1.52 thorpej #if ARM_MMU_XSCALE == 1 676 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t); 677 1.51 thorpej void pmap_zero_page_xscale(paddr_t); 678 1.51 thorpej 679 1.46 thorpej void pmap_pte_init_xscale(void); 680 1.50 thorpej 681 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); 682 1.77 scw 683 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va) 684 1.77 scw void pmap_uarea(vaddr_t); 685 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */ 686 1.46 thorpej 687 1.161 skrll extern pt_entry_t pte_l1_s_nocache_mode; 688 1.161 skrll extern pt_entry_t pte_l2_l_nocache_mode; 689 1.161 skrll extern pt_entry_t pte_l2_s_nocache_mode; 690 1.161 skrll 691 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode; 692 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode; 693 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode; 694 1.46 thorpej 695 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt; 696 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt; 697 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt; 698 1.65 scw 699 1.98 macallan extern pt_entry_t pte_l1_s_wc_mode; 700 1.98 macallan extern pt_entry_t pte_l2_l_wc_mode; 701 1.98 macallan extern pt_entry_t pte_l2_s_wc_mode; 702 1.98 macallan 703 1.161 skrll extern pt_entry_t pte_l1_s_cache_mask; 704 1.161 skrll extern pt_entry_t pte_l2_l_cache_mask; 705 1.161 skrll extern pt_entry_t pte_l2_s_cache_mask; 706 1.161 skrll 707 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_u; 708 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_w; 709 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_ro; 710 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_mask; 711 1.95 jmcneill 712 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u; 713 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w; 714 1.95 jmcneill extern pt_entry_t pte_l2_s_prot_ro; 715 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask; 716 1.95 jmcneill 717 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_u; 718 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_w; 719 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_ro; 720 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_mask; 721 1.95 jmcneill 722 1.103 matt extern pt_entry_t pte_l1_ss_proto; 723 1.46 thorpej extern pt_entry_t pte_l1_s_proto; 724 1.46 thorpej extern pt_entry_t pte_l1_c_proto; 725 1.46 thorpej extern pt_entry_t pte_l2_s_proto; 726 1.46 thorpej 727 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t); 728 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t); 729 1.75 bsh 730 1.177 skrll /* 731 1.177 skrll * Global varaiables in cpufunc_asm_xscale.S supporting the Xscale 732 1.177 skrll * cache clean/purge functions. 733 1.177 skrll */ 734 1.177 skrll extern vaddr_t xscale_minidata_clean_addr; 735 1.177 skrll extern vsize_t xscale_minidata_clean_size; 736 1.177 skrll extern vaddr_t xscale_cache_clean_addr; 737 1.177 skrll extern vsize_t xscale_cache_clean_size; 738 1.177 skrll 739 1.75 bsh #endif /* !_LOCORE */ 740 1.51 thorpej 741 1.46 thorpej /*****************************************************************************/ 742 1.46 thorpej 743 1.124 matt #define KERNEL_PID 0 /* The kernel uses ASID 0 */ 744 1.124 matt 745 1.20 chs /* 746 1.65 scw * Definitions for MMU domains 747 1.65 scw */ 748 1.103 matt #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */ 749 1.124 matt #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */ 750 1.156 skrll 751 1.124 matt #ifdef ARM_MMU_EXTENDED 752 1.124 matt #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */ 753 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2))) 754 1.156 skrll #else 755 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))) 756 1.124 matt #endif 757 1.45 thorpej 758 1.45 thorpej /* 759 1.45 thorpej * These macros define the various bit masks in the PTE. 760 1.45 thorpej * 761 1.45 thorpej * We use these macros since we use different bits on different processor 762 1.45 thorpej * models. 763 1.45 thorpej */ 764 1.95 jmcneill #define L1_S_PROT_U_generic (L1_S_AP(AP_U)) 765 1.95 jmcneill #define L1_S_PROT_W_generic (L1_S_AP(AP_W)) 766 1.152 skrll #define L1_S_PROT_RO_generic (0) 767 1.95 jmcneill #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 768 1.95 jmcneill 769 1.95 jmcneill #define L1_S_PROT_U_xscale (L1_S_AP(AP_U)) 770 1.95 jmcneill #define L1_S_PROT_W_xscale (L1_S_AP(AP_W)) 771 1.152 skrll #define L1_S_PROT_RO_xscale (0) 772 1.95 jmcneill #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 773 1.95 jmcneill 774 1.99 bsh #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 775 1.99 bsh #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W)) 776 1.99 bsh #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 777 1.99 bsh #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 778 1.99 bsh 779 1.95 jmcneill #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 780 1.95 jmcneill #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W)) 781 1.95 jmcneill #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 782 1.95 jmcneill #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 783 1.45 thorpej 784 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 785 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X)) 786 1.99 bsh #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)) 787 1.134 skrll #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) 788 1.111 matt #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) 789 1.45 thorpej 790 1.95 jmcneill #define L2_L_PROT_U_generic (L2_AP(AP_U)) 791 1.95 jmcneill #define L2_L_PROT_W_generic (L2_AP(AP_W)) 792 1.152 skrll #define L2_L_PROT_RO_generic (0) 793 1.95 jmcneill #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 794 1.95 jmcneill 795 1.95 jmcneill #define L2_L_PROT_U_xscale (L2_AP(AP_U)) 796 1.95 jmcneill #define L2_L_PROT_W_xscale (L2_AP(AP_W)) 797 1.152 skrll #define L2_L_PROT_RO_xscale (0) 798 1.95 jmcneill #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 799 1.95 jmcneill 800 1.99 bsh #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) 801 1.99 bsh #define L2_L_PROT_W_armv6n (L2_AP0(AP_W)) 802 1.99 bsh #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) 803 1.99 bsh #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 804 1.99 bsh 805 1.95 jmcneill #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 806 1.95 jmcneill #define L2_L_PROT_W_armv7 (L2_AP0(AP_W)) 807 1.95 jmcneill #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 808 1.95 jmcneill #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 809 1.45 thorpej 810 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 811 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X)) 812 1.99 bsh #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)) 813 1.134 skrll #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) 814 1.111 matt #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) 815 1.49 thorpej 816 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U)) 817 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W)) 818 1.152 skrll #define L2_S_PROT_RO_generic (0) 819 1.95 jmcneill #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 820 1.46 thorpej 821 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 822 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 823 1.152 skrll #define L2_S_PROT_RO_xscale (0) 824 1.95 jmcneill #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 825 1.95 jmcneill 826 1.99 bsh #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) 827 1.99 bsh #define L2_S_PROT_W_armv6n (L2_AP0(AP_W)) 828 1.99 bsh #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) 829 1.99 bsh #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 830 1.99 bsh 831 1.95 jmcneill #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 832 1.95 jmcneill #define L2_S_PROT_W_armv7 (L2_AP0(AP_W)) 833 1.95 jmcneill #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 834 1.95 jmcneill #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 835 1.46 thorpej 836 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 837 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X)) 838 1.99 bsh #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)) 839 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE 840 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6 841 1.99 bsh #else 842 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic 843 1.99 bsh #endif 844 1.142 skrll #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) 845 1.111 matt #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) 846 1.46 thorpej 847 1.99 bsh 848 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 849 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S) 850 1.99 bsh #define L1_S_PROTO_armv6 (L1_TYPE_S) 851 1.95 jmcneill #define L1_S_PROTO_armv7 (L1_TYPE_S) 852 1.46 thorpej 853 1.103 matt #define L1_SS_PROTO_generic 0 854 1.103 matt #define L1_SS_PROTO_xscale 0 855 1.103 matt #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS) 856 1.103 matt #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS) 857 1.103 matt 858 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 859 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C) 860 1.99 bsh #define L1_C_PROTO_armv6 (L1_TYPE_C) 861 1.95 jmcneill #define L1_C_PROTO_armv7 (L1_TYPE_C) 862 1.46 thorpej 863 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L) 864 1.46 thorpej 865 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S) 866 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS) 867 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE 868 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */ 869 1.99 bsh #else 870 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */ 871 1.99 bsh #endif 872 1.134 skrll #ifdef ARM_MMU_EXTENDED 873 1.134 skrll #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN) 874 1.134 skrll #else 875 1.99 bsh #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */ 876 1.134 skrll #endif 877 1.124 matt #ifdef ARM_MMU_EXTENDED 878 1.124 matt #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN) 879 1.124 matt #else 880 1.95 jmcneill #define L2_S_PROTO_armv7 (L2_TYPE_S) 881 1.124 matt #endif 882 1.45 thorpej 883 1.46 thorpej /* 884 1.46 thorpej * User-visible names for the ones that vary with MMU class. 885 1.46 thorpej */ 886 1.46 thorpej 887 1.46 thorpej #if ARM_NMMUS > 1 888 1.46 thorpej /* More than one MMU class configured; use variables. */ 889 1.95 jmcneill #define L1_S_PROT_U pte_l1_s_prot_u 890 1.95 jmcneill #define L1_S_PROT_W pte_l1_s_prot_w 891 1.95 jmcneill #define L1_S_PROT_RO pte_l1_s_prot_ro 892 1.95 jmcneill #define L1_S_PROT_MASK pte_l1_s_prot_mask 893 1.95 jmcneill 894 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u 895 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w 896 1.95 jmcneill #define L2_S_PROT_RO pte_l2_s_prot_ro 897 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask 898 1.46 thorpej 899 1.95 jmcneill #define L2_L_PROT_U pte_l2_l_prot_u 900 1.95 jmcneill #define L2_L_PROT_W pte_l2_l_prot_w 901 1.95 jmcneill #define L2_L_PROT_RO pte_l2_l_prot_ro 902 1.95 jmcneill #define L2_L_PROT_MASK pte_l2_l_prot_mask 903 1.95 jmcneill 904 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask 905 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask 906 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask 907 1.49 thorpej 908 1.103 matt #define L1_SS_PROTO pte_l1_ss_proto 909 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto 910 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto 911 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto 912 1.51 thorpej 913 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) 914 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) 915 1.99 bsh #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 916 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_generic 917 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_generic 918 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_generic 919 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 920 1.99 bsh 921 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_generic 922 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_generic 923 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_generic 924 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 925 1.99 bsh 926 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_generic 927 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_generic 928 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_generic 929 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 930 1.99 bsh 931 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 932 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 933 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 934 1.99 bsh 935 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic 936 1.99 bsh #define L1_S_PROTO L1_S_PROTO_generic 937 1.99 bsh #define L1_C_PROTO L1_C_PROTO_generic 938 1.99 bsh #define L2_S_PROTO L2_S_PROTO_generic 939 1.99 bsh 940 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 941 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d)) 942 1.99 bsh #elif ARM_MMU_V6N != 0 943 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_armv6 944 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_armv6 945 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_armv6 946 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6 947 1.99 bsh 948 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_armv6n 949 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_armv6n 950 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_armv6n 951 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n 952 1.99 bsh 953 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_armv6n 954 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_armv6n 955 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_armv6n 956 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n 957 1.99 bsh 958 1.134 skrll #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n 959 1.134 skrll #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n 960 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n 961 1.99 bsh 962 1.150 skrll /* 963 1.150 skrll * These prototypes make writeable mappings, while the other MMU types 964 1.150 skrll * make read-only mappings. 965 1.150 skrll */ 966 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv6 967 1.99 bsh #define L1_S_PROTO L1_S_PROTO_armv6 968 1.99 bsh #define L1_C_PROTO L1_C_PROTO_armv6 969 1.99 bsh #define L2_S_PROTO L2_S_PROTO_armv6n 970 1.99 bsh 971 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 972 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d)) 973 1.99 bsh #elif ARM_MMU_V6C != 0 974 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic 975 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic 976 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic 977 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 978 1.95 jmcneill 979 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic 980 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic 981 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_generic 982 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 983 1.46 thorpej 984 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic 985 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic 986 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic 987 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 988 1.95 jmcneill 989 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 990 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 991 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 992 1.49 thorpej 993 1.130 matt #define L1_SS_PROTO L1_SS_PROTO_armv6 994 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic 995 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic 996 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic 997 1.51 thorpej 998 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 999 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d)) 1000 1.46 thorpej #elif ARM_MMU_XSCALE == 1 1001 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic 1002 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic 1003 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic 1004 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 1005 1.95 jmcneill 1006 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale 1007 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale 1008 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_xscale 1009 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 1010 1.49 thorpej 1011 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic 1012 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic 1013 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic 1014 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 1015 1.95 jmcneill 1016 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 1017 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 1018 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 1019 1.46 thorpej 1020 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_xscale 1021 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale 1022 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale 1023 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale 1024 1.51 thorpej 1025 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) 1026 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d)) 1027 1.95 jmcneill #elif ARM_MMU_V7 == 1 1028 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_armv7 1029 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_armv7 1030 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_armv7 1031 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7 1032 1.95 jmcneill 1033 1.95 jmcneill #define L2_S_PROT_U L2_S_PROT_U_armv7 1034 1.95 jmcneill #define L2_S_PROT_W L2_S_PROT_W_armv7 1035 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_armv7 1036 1.95 jmcneill #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7 1037 1.95 jmcneill 1038 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_armv7 1039 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_armv7 1040 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_armv7 1041 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7 1042 1.95 jmcneill 1043 1.95 jmcneill #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7 1044 1.95 jmcneill #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7 1045 1.95 jmcneill #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7 1046 1.95 jmcneill 1047 1.150 skrll /* 1048 1.150 skrll * These prototypes make writeable mappings, while the other MMU types 1049 1.150 skrll * make read-only mappings. 1050 1.150 skrll */ 1051 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv7 1052 1.95 jmcneill #define L1_S_PROTO L1_S_PROTO_armv7 1053 1.95 jmcneill #define L1_C_PROTO L1_C_PROTO_armv7 1054 1.95 jmcneill #define L2_S_PROTO L2_S_PROTO_armv7 1055 1.95 jmcneill 1056 1.95 jmcneill #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 1057 1.95 jmcneill #define pmap_zero_page(d) pmap_zero_page_generic((d)) 1058 1.46 thorpej #endif /* ARM_NMMUS > 1 */ 1059 1.20 chs 1060 1.45 thorpej /* 1061 1.95 jmcneill * Macros to set and query the write permission on page descriptors. 1062 1.95 jmcneill */ 1063 1.168 skrll #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W) 1064 1.168 skrll #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO) 1065 1.149 skrll 1066 1.168 skrll #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W) 1067 1.168 skrll #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO) 1068 1.95 jmcneill 1069 1.168 skrll #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \ 1070 1.152 skrll (L2_S_PROT_RO == 0 || \ 1071 1.95 jmcneill ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO)) 1072 1.95 jmcneill 1073 1.95 jmcneill /* 1074 1.45 thorpej * These macros return various bits based on kernel/user and protection. 1075 1.45 thorpej * Note that the compiler will usually fold these at compile time. 1076 1.45 thorpej */ 1077 1.152 skrll 1078 1.152 skrll #define L1_S_PROT(ku, pr) ( \ 1079 1.152 skrll (((ku) == PTE_USER) ? \ 1080 1.152 skrll L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \ 1081 1.152 skrll : \ 1082 1.152 skrll (((L1_S_PROT_RO && \ 1083 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1084 1.152 skrll L1_S_PROT_RO : L1_S_PROT_W))) \ 1085 1.152 skrll ) 1086 1.152 skrll 1087 1.152 skrll #define L2_L_PROT(ku, pr) ( \ 1088 1.152 skrll (((ku) == PTE_USER) ? \ 1089 1.152 skrll L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \ 1090 1.152 skrll : \ 1091 1.152 skrll (((L2_L_PROT_RO && \ 1092 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1093 1.152 skrll L2_L_PROT_RO : L2_L_PROT_W))) \ 1094 1.152 skrll ) 1095 1.152 skrll 1096 1.152 skrll #define L2_S_PROT(ku, pr) ( \ 1097 1.152 skrll (((ku) == PTE_USER) ? \ 1098 1.152 skrll L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \ 1099 1.152 skrll : \ 1100 1.152 skrll (((L2_S_PROT_RO && \ 1101 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1102 1.152 skrll L2_S_PROT_RO : L2_S_PROT_W))) \ 1103 1.152 skrll ) 1104 1.66 thorpej 1105 1.66 thorpej /* 1106 1.103 matt * Macros to test if a mapping is mappable with an L1 SuperSection, 1107 1.103 matt * L1 Section, or an L2 Large Page mapping. 1108 1.66 thorpej */ 1109 1.103 matt #define L1_SS_MAPPABLE_P(va, pa, size) \ 1110 1.103 matt ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE) 1111 1.103 matt 1112 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \ 1113 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 1114 1.66 thorpej 1115 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \ 1116 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 1117 1.64 thorpej 1118 1.155 ryo #define PMAP_MAPSIZE1 L2_L_SIZE 1119 1.155 ryo #define PMAP_MAPSIZE2 L1_S_SIZE 1120 1.155 ryo #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 1121 1.155 ryo #define PMAP_MAPSIZE3 L1_SS_SIZE 1122 1.155 ryo #endif 1123 1.155 ryo 1124 1.119 matt #ifndef _LOCORE 1125 1.64 thorpej /* 1126 1.64 thorpej * Hooks for the pool allocator. 1127 1.64 thorpej */ 1128 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 1129 1.117 matt extern paddr_t physical_start, physical_end; 1130 1.113 matt #ifdef PMAP_NEED_ALLOC_POOLPAGE 1131 1.114 matt struct vm_page *arm_pmap_alloc_poolpage(int); 1132 1.113 matt #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage 1133 1.118 matt #endif 1134 1.118 matt #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 1135 1.131 matt vaddr_t pmap_map_poolpage(paddr_t); 1136 1.131 matt paddr_t pmap_unmap_poolpage(vaddr_t); 1137 1.131 matt #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa) 1138 1.168 skrll #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va) 1139 1.113 matt #endif 1140 1.18 thorpej 1141 1.168 skrll #define __HAVE_PMAP_PV_TRACK 1 1142 1.143 skrll 1143 1.143 skrll void pmap_pv_protect(paddr_t, vm_prot_t); 1144 1.143 skrll 1145 1.143 skrll struct pmap_page { 1146 1.97 uebayasi SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */ 1147 1.97 uebayasi int pvh_attrs; /* page attributes */ 1148 1.97 uebayasi u_int uro_mappings; 1149 1.97 uebayasi u_int urw_mappings; 1150 1.97 uebayasi union { 1151 1.97 uebayasi u_short s_mappings[2]; /* Assume kernel count <= 65535 */ 1152 1.97 uebayasi u_int i_mappings; 1153 1.97 uebayasi } k_u; 1154 1.97 uebayasi }; 1155 1.97 uebayasi 1156 1.97 uebayasi /* 1157 1.143 skrll * pmap-specific data store in the vm_page structure. 1158 1.143 skrll */ 1159 1.143 skrll #define __HAVE_VM_PAGE_MD 1160 1.143 skrll struct vm_page_md { 1161 1.143 skrll struct pmap_page pp; 1162 1.143 skrll #define pvh_list pp.pvh_list 1163 1.143 skrll #define pvh_attrs pp.pvh_attrs 1164 1.143 skrll #define uro_mappings pp.uro_mappings 1165 1.143 skrll #define urw_mappings pp.urw_mappings 1166 1.143 skrll #define kro_mappings pp.k_u.s_mappings[0] 1167 1.143 skrll #define krw_mappings pp.k_u.s_mappings[1] 1168 1.143 skrll #define k_mappings pp.k_u.i_mappings 1169 1.143 skrll }; 1170 1.143 skrll 1171 1.168 skrll #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp) 1172 1.143 skrll 1173 1.143 skrll /* 1174 1.97 uebayasi * Set the default color of each page. 1175 1.97 uebayasi */ 1176 1.97 uebayasi #if ARM_MMU_V6 > 0 1177 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 1178 1.157 ad (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask 1179 1.97 uebayasi #else 1180 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 1181 1.97 uebayasi (pg)->mdpage.pvh_attrs = 0 1182 1.97 uebayasi #endif 1183 1.135 skrll 1184 1.97 uebayasi #define VM_MDPAGE_INIT(pg) \ 1185 1.97 uebayasi do { \ 1186 1.97 uebayasi SLIST_INIT(&(pg)->mdpage.pvh_list); \ 1187 1.97 uebayasi VM_MDPAGE_PVH_ATTRS_INIT(pg); \ 1188 1.97 uebayasi (pg)->mdpage.uro_mappings = 0; \ 1189 1.97 uebayasi (pg)->mdpage.urw_mappings = 0; \ 1190 1.97 uebayasi (pg)->mdpage.k_mappings = 0; \ 1191 1.97 uebayasi } while (/*CONSTCOND*/0) 1192 1.97 uebayasi 1193 1.165 skrll #ifndef __BSD_PTENTRY_T__ 1194 1.165 skrll #define __BSD_PTENTRY_T__ 1195 1.165 skrll typedef uint32_t pt_entry_t; 1196 1.168 skrll #define PRIxPTE PRIx32 1197 1.165 skrll #endif 1198 1.165 skrll 1199 1.166 skrll #endif /* !_LOCORE */ 1200 1.166 skrll 1201 1.18 thorpej #endif /* _KERNEL */ 1202 1.1 reinoud 1203 1.1 reinoud #endif /* _ARM32_PMAP_H_ */ 1204