pmap.h revision 1.122 1 1.122 matt /* $NetBSD: pmap.h,v 1.122 2013/08/18 05:01:47 matt Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.85 matt #if defined(_KERNEL_OPT)
77 1.85 matt #include "opt_arm32_pmap.h"
78 1.85 matt #endif
79 1.19 thorpej #include <arm/cpufunc.h>
80 1.12 chris #include <uvm/uvm_object.h>
81 1.75 bsh #endif
82 1.1 reinoud
83 1.1 reinoud /*
84 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
85 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
86 1.38 thorpej * are described by L1 PTEs in the L1 table.
87 1.11 chris *
88 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
89 1.38 thorpej * changes when the VM context is switched. Everything above that line
90 1.38 thorpej * is the same no matter which VM context is running. This is achieved
91 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
92 1.38 thorpej * kernel L2 tables.
93 1.11 chris *
94 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
95 1.38 thorpej *
96 1.38 thorpej * 0xffffffff
97 1.38 thorpej * .
98 1.38 thorpej * .
99 1.38 thorpej * .
100 1.38 thorpej * KERNEL_BASE
101 1.38 thorpej * --------------------
102 1.38 thorpej * .
103 1.38 thorpej * .
104 1.38 thorpej * .
105 1.38 thorpej * 0x00000000
106 1.11 chris */
107 1.11 chris
108 1.65 scw /*
109 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
110 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
111 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
112 1.65 scw * three of these to map their whole working set.
113 1.65 scw */
114 1.65 scw #define L2_BUCKET_LOG2 4
115 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
116 1.65 scw
117 1.65 scw /*
118 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
119 1.65 scw * of l2_dtable structures required to track all possible page descriptors
120 1.65 scw * mappable by an L1 translation table is given by the following constants:
121 1.65 scw */
122 1.65 scw #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
123 1.65 scw #define L2_SIZE (1 << L2_LOG2)
124 1.65 scw
125 1.90 matt /*
126 1.90 matt * tell MI code that the cache is virtually-indexed.
127 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged.
128 1.90 matt */
129 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
130 1.90 matt #define PMAP_CACHE_VIPT
131 1.90 matt #else
132 1.90 matt #define PMAP_CACHE_VIVT
133 1.90 matt #endif
134 1.90 matt
135 1.75 bsh #ifndef _LOCORE
136 1.75 bsh
137 1.65 scw struct l1_ttable;
138 1.65 scw struct l2_dtable;
139 1.65 scw
140 1.65 scw /*
141 1.65 scw * Track cache/tlb occupancy using the following structure
142 1.65 scw */
143 1.65 scw union pmap_cache_state {
144 1.65 scw struct {
145 1.65 scw union {
146 1.115 skrll uint8_t csu_cache_b[2];
147 1.115 skrll uint16_t csu_cache;
148 1.65 scw } cs_cache_u;
149 1.65 scw
150 1.65 scw union {
151 1.115 skrll uint8_t csu_tlb_b[2];
152 1.115 skrll uint16_t csu_tlb;
153 1.65 scw } cs_tlb_u;
154 1.65 scw } cs_s;
155 1.115 skrll uint32_t cs_all;
156 1.65 scw };
157 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
158 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
159 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
160 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
161 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
162 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
163 1.65 scw
164 1.65 scw /*
165 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
166 1.65 scw */
167 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
168 1.65 scw
169 1.65 scw /*
170 1.73 thorpej * This structure is used by machine-dependent code to describe
171 1.73 thorpej * static mappings of devices, created at bootstrap time.
172 1.73 thorpej */
173 1.73 thorpej struct pmap_devmap {
174 1.73 thorpej vaddr_t pd_va; /* virtual address */
175 1.73 thorpej paddr_t pd_pa; /* physical address */
176 1.73 thorpej psize_t pd_size; /* size of region */
177 1.73 thorpej vm_prot_t pd_prot; /* protection code */
178 1.73 thorpej int pd_cache; /* cache attributes */
179 1.73 thorpej };
180 1.73 thorpej
181 1.73 thorpej /*
182 1.65 scw * The pmap structure itself
183 1.65 scw */
184 1.65 scw struct pmap {
185 1.115 skrll uint8_t pm_domain;
186 1.80 thorpej bool pm_remove_all;
187 1.82 scw bool pm_activated;
188 1.65 scw struct l1_ttable *pm_l1;
189 1.120 matt #ifndef ARM_HAS_VBAR
190 1.82 scw pd_entry_t *pm_pl1vec;
191 1.120 matt #endif
192 1.82 scw pd_entry_t pm_l1vec;
193 1.65 scw union pmap_cache_state pm_cstate;
194 1.65 scw struct uvm_object pm_obj;
195 1.100 rmind kmutex_t pm_obj_lock;
196 1.65 scw #define pm_lock pm_obj.vmobjlock
197 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
198 1.65 scw struct pmap_statistics pm_stats;
199 1.65 scw LIST_ENTRY(pmap) pm_list;
200 1.65 scw };
201 1.65 scw
202 1.106 martin /*
203 1.106 martin * Physical / virtual address structure. In a number of places (particularly
204 1.106 martin * during bootstrapping) we need to keep track of the physical and virtual
205 1.106 martin * addresses of various pages
206 1.106 martin */
207 1.106 martin typedef struct pv_addr {
208 1.106 martin SLIST_ENTRY(pv_addr) pv_list;
209 1.106 martin paddr_t pv_pa;
210 1.106 martin vaddr_t pv_va;
211 1.106 martin vsize_t pv_size;
212 1.106 martin uint8_t pv_cache;
213 1.106 martin uint8_t pv_prot;
214 1.106 martin } pv_addr_t;
215 1.106 martin typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
216 1.106 martin
217 1.85 matt extern pv_addrqh_t pmap_freeq;
218 1.102 matt extern pv_addr_t kernelstack;
219 1.102 matt extern pv_addr_t abtstack;
220 1.102 matt extern pv_addr_t fiqstack;
221 1.102 matt extern pv_addr_t irqstack;
222 1.102 matt extern pv_addr_t undstack;
223 1.103 matt extern pv_addr_t idlestack;
224 1.85 matt extern pv_addr_t systempage;
225 1.85 matt extern pv_addr_t kernel_l1pt;
226 1.1 reinoud
227 1.1 reinoud /*
228 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
229 1.24 thorpej * vs. non-cacheable).
230 1.24 thorpej */
231 1.24 thorpej #define PTE_KERNEL 0
232 1.24 thorpej #define PTE_USER 1
233 1.24 thorpej #define PTE_NOCACHE 0
234 1.24 thorpej #define PTE_CACHE 1
235 1.65 scw #define PTE_PAGETABLE 2
236 1.24 thorpej
237 1.24 thorpej /*
238 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
239 1.43 thorpej *
240 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
241 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
242 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
243 1.43 thorpej * that we can clear multiple attributes at a time.
244 1.43 thorpej *
245 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
246 1.43 thorpej * multiple mappings in a given address space.
247 1.43 thorpej */
248 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
249 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
250 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
251 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
252 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
253 1.90 matt #ifdef PMAP_CACHE_VIVT
254 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
255 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
256 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC)
257 1.90 matt #endif
258 1.90 matt #ifdef PMAP_CACHE_VIPT
259 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
260 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
261 1.90 matt #endif
262 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */
263 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
264 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */
265 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
266 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */
267 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
268 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
269 1.43 thorpej
270 1.43 thorpej /*
271 1.1 reinoud * Commonly referenced structures
272 1.1 reinoud */
273 1.4 matt extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
274 1.113 matt extern int arm_poolpage_vmfreelist;
275 1.1 reinoud
276 1.1 reinoud /*
277 1.1 reinoud * Macros that we need to export
278 1.1 reinoud */
279 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
280 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
281 1.31 thorpej
282 1.43 thorpej #define pmap_is_modified(pg) \
283 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
284 1.43 thorpej #define pmap_is_referenced(pg) \
285 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
286 1.96 uebayasi #define pmap_is_page_colored_p(md) \
287 1.96 uebayasi (((md)->pvh_attrs & PVF_COLORED) != 0)
288 1.41 thorpej
289 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
290 1.60 chs
291 1.35 thorpej #define pmap_phys_address(ppn) (arm_ptob((ppn)))
292 1.98 macallan u_int arm32_mmap_flags(paddr_t);
293 1.98 macallan #define ARM32_MMAP_WRITECOMBINE 0x40000000
294 1.98 macallan #define ARM32_MMAP_CACHEABLE 0x20000000
295 1.98 macallan #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
296 1.1 reinoud
297 1.1 reinoud /*
298 1.1 reinoud * Functions that we need to export
299 1.1 reinoud */
300 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
301 1.65 scw void pmap_remove_all(pmap_t);
302 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
303 1.39 thorpej
304 1.1 reinoud #define PMAP_NEED_PROCWR
305 1.29 chris #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
306 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
307 1.4 matt
308 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
309 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
310 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int);
311 1.85 matt #endif
312 1.85 matt
313 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
314 1.85 matt
315 1.39 thorpej /* Functions we use internally. */
316 1.85 matt #ifdef PMAP_STEAL_MEMORY
317 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
318 1.85 matt void pmap_boot_pageadd(pv_addr_t *);
319 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
320 1.85 matt #endif
321 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t);
322 1.65 scw
323 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
324 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
325 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
326 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
327 1.122 matt struct pcb;
328 1.65 scw void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
329 1.65 scw
330 1.65 scw void pmap_debug(int);
331 1.39 thorpej void pmap_postinit(void);
332 1.42 thorpej
333 1.42 thorpej void vector_page_setprot(int);
334 1.24 thorpej
335 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
336 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
337 1.73 thorpej
338 1.24 thorpej /* Bootstrapping routines. */
339 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
340 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
341 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
342 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
343 1.73 thorpej void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
344 1.74 thorpej void pmap_devmap_register(const struct pmap_devmap *);
345 1.13 chris
346 1.13 chris /*
347 1.13 chris * Special page zero routine for use by the idle loop (no cache cleans).
348 1.13 chris */
349 1.80 thorpej bool pmap_pageidlezero(paddr_t);
350 1.13 chris #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
351 1.1 reinoud
352 1.29 chris /*
353 1.84 chris * used by dumpsys to record the PA of the L1 table
354 1.84 chris */
355 1.84 chris uint32_t pmap_kernel_L1_addr(void);
356 1.84 chris /*
357 1.29 chris * The current top of kernel VM
358 1.29 chris */
359 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
360 1.1 reinoud
361 1.1 reinoud /*
362 1.1 reinoud * Useful macros and constants
363 1.1 reinoud */
364 1.59 thorpej
365 1.65 scw /* Virtual address to page table entry */
366 1.79 perry static inline pt_entry_t *
367 1.65 scw vtopte(vaddr_t va)
368 1.65 scw {
369 1.65 scw pd_entry_t *pdep;
370 1.65 scw pt_entry_t *ptep;
371 1.65 scw
372 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
373 1.65 scw return (NULL);
374 1.65 scw return (ptep);
375 1.65 scw }
376 1.65 scw
377 1.65 scw /*
378 1.65 scw * Virtual address to physical address
379 1.65 scw */
380 1.79 perry static inline paddr_t
381 1.65 scw vtophys(vaddr_t va)
382 1.65 scw {
383 1.65 scw paddr_t pa;
384 1.65 scw
385 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
386 1.65 scw return (0); /* XXXSCW: Panic? */
387 1.65 scw
388 1.65 scw return (pa);
389 1.65 scw }
390 1.65 scw
391 1.65 scw /*
392 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
393 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
394 1.65 scw * on every change.
395 1.65 scw *
396 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
397 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
398 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
399 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
400 1.69 thorpej * the code.
401 1.69 thorpej */
402 1.69 thorpej extern int pmap_needs_pte_sync;
403 1.69 thorpej #if defined(_KERNEL_OPT)
404 1.69 thorpej /*
405 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
406 1.69 thorpej * we need to do PTE syncs. If only SA-1 is configured, then evaluate
407 1.69 thorpej * this at compile time.
408 1.69 thorpej */
409 1.112 matt #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
410 1.104 matt #define PMAP_INCLUDE_PTE_SYNC
411 1.112 matt #if (ARM_MMU_V6 > 0)
412 1.109 matt #define PMAP_NEEDS_PTE_SYNC 1
413 1.69 thorpej #elif (ARM_MMU_SA1 == 0)
414 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
415 1.69 thorpej #endif
416 1.112 matt #endif
417 1.69 thorpej #endif /* _KERNEL_OPT */
418 1.69 thorpej
419 1.69 thorpej /*
420 1.69 thorpej * Provide a fallback in case we were not able to determine it at
421 1.69 thorpej * compile-time.
422 1.65 scw */
423 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
424 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
425 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
426 1.69 thorpej #endif
427 1.65 scw
428 1.104 matt static inline void
429 1.104 matt pmap_ptesync(pt_entry_t *ptep, size_t cnt)
430 1.104 matt {
431 1.104 matt if (PMAP_NEEDS_PTE_SYNC)
432 1.104 matt cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
433 1.104 matt #if ARM_MMU_V7 > 0
434 1.104 matt __asm("dsb");
435 1.104 matt #endif
436 1.104 matt }
437 1.69 thorpej
438 1.104 matt #define PTE_SYNC(ptep) pmap_ptesync((ptep), 1)
439 1.104 matt #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
440 1.65 scw
441 1.36 thorpej #define l1pte_valid(pde) ((pde) != 0)
442 1.44 thorpej #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
443 1.104 matt #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
444 1.104 matt && ((pde) & L1_S_V6_SUPER) != 0)
445 1.44 thorpej #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
446 1.44 thorpej #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
447 1.36 thorpej
448 1.65 scw #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
449 1.85 matt #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
450 1.44 thorpej #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
451 1.77 scw #define l2pte_minidata(pte) (((pte) & \
452 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
453 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
454 1.35 thorpej
455 1.121 matt static inline void
456 1.121 matt l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
457 1.121 matt {
458 1.121 matt KASSERT(*ptep == opte);
459 1.121 matt *ptep = pte;
460 1.121 matt for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
461 1.121 matt KASSERT(ptep[k] == opte ? opte + k * L2_S_SIZE : 0);
462 1.121 matt pte += L2_S_SIZE;
463 1.121 matt ptep[k] = pte;
464 1.121 matt }
465 1.121 matt }
466 1.121 matt
467 1.121 matt static inline void
468 1.121 matt l2pte_reset(pt_entry_t *ptep)
469 1.121 matt {
470 1.121 matt *ptep = 0;
471 1.121 matt for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
472 1.121 matt ptep[k] = 0;
473 1.121 matt }
474 1.121 matt }
475 1.121 matt
476 1.1 reinoud /* L1 and L2 page table macros */
477 1.36 thorpej #define pmap_pde_v(pde) l1pte_valid(*(pde))
478 1.36 thorpej #define pmap_pde_section(pde) l1pte_section_p(*(pde))
479 1.107 matt #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
480 1.36 thorpej #define pmap_pde_page(pde) l1pte_page_p(*(pde))
481 1.36 thorpej #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
482 1.16 rearnsha
483 1.36 thorpej #define pmap_pte_v(pte) l2pte_valid(*(pte))
484 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
485 1.35 thorpej
486 1.1 reinoud /* Size of the kernel part of the L1 page table */
487 1.1 reinoud #define KERNEL_PD_SIZE \
488 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
489 1.20 chs
490 1.117 matt void bzero_page(vaddr_t);
491 1.117 matt void bcopy_page(vaddr_t, vaddr_t);
492 1.46 thorpej
493 1.116 matt #ifdef FPU_VFP
494 1.117 matt void bzero_page_vfp(vaddr_t);
495 1.117 matt void bcopy_page_vfp(vaddr_t, vaddr_t);
496 1.116 matt #endif
497 1.116 matt
498 1.117 matt /************************* ARM MMU configuration *****************************/
499 1.117 matt
500 1.95 jmcneill #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
501 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
502 1.51 thorpej void pmap_zero_page_generic(paddr_t);
503 1.51 thorpej
504 1.46 thorpej void pmap_pte_init_generic(void);
505 1.69 thorpej #if defined(CPU_ARM8)
506 1.69 thorpej void pmap_pte_init_arm8(void);
507 1.69 thorpej #endif
508 1.46 thorpej #if defined(CPU_ARM9)
509 1.46 thorpej void pmap_pte_init_arm9(void);
510 1.46 thorpej #endif /* CPU_ARM9 */
511 1.76 rearnsha #if defined(CPU_ARM10)
512 1.76 rearnsha void pmap_pte_init_arm10(void);
513 1.76 rearnsha #endif /* CPU_ARM10 */
514 1.103 matt #if defined(CPU_ARM11) /* ARM_MMU_V6 */
515 1.94 uebayasi void pmap_pte_init_arm11(void);
516 1.94 uebayasi #endif /* CPU_ARM11 */
517 1.103 matt #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
518 1.99 bsh void pmap_pte_init_arm11mpcore(void);
519 1.99 bsh #endif
520 1.103 matt #if ARM_MMU_V7 == 1
521 1.103 matt void pmap_pte_init_armv7(void);
522 1.103 matt #endif /* ARM_MMU_V7 */
523 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
524 1.69 thorpej
525 1.69 thorpej #if ARM_MMU_SA1 == 1
526 1.69 thorpej void pmap_pte_init_sa1(void);
527 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
528 1.46 thorpej
529 1.52 thorpej #if ARM_MMU_XSCALE == 1
530 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
531 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
532 1.51 thorpej
533 1.46 thorpej void pmap_pte_init_xscale(void);
534 1.50 thorpej
535 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
536 1.77 scw
537 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
538 1.77 scw void pmap_uarea(vaddr_t);
539 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
540 1.46 thorpej
541 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
542 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mask;
543 1.49 thorpej
544 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
545 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mask;
546 1.49 thorpej
547 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
548 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mask;
549 1.46 thorpej
550 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
551 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
552 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
553 1.65 scw
554 1.98 macallan extern pt_entry_t pte_l1_s_wc_mode;
555 1.98 macallan extern pt_entry_t pte_l2_l_wc_mode;
556 1.98 macallan extern pt_entry_t pte_l2_s_wc_mode;
557 1.98 macallan
558 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_u;
559 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_w;
560 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_ro;
561 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_mask;
562 1.95 jmcneill
563 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
564 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
565 1.95 jmcneill extern pt_entry_t pte_l2_s_prot_ro;
566 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
567 1.95 jmcneill
568 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_u;
569 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_w;
570 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_ro;
571 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_mask;
572 1.95 jmcneill
573 1.103 matt extern pt_entry_t pte_l1_ss_proto;
574 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
575 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
576 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
577 1.46 thorpej
578 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
579 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
580 1.75 bsh
581 1.75 bsh #endif /* !_LOCORE */
582 1.51 thorpej
583 1.46 thorpej /*****************************************************************************/
584 1.46 thorpej
585 1.20 chs /*
586 1.65 scw * Definitions for MMU domains
587 1.65 scw */
588 1.103 matt #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
589 1.103 matt #define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */
590 1.45 thorpej
591 1.45 thorpej /*
592 1.45 thorpej * These macros define the various bit masks in the PTE.
593 1.45 thorpej *
594 1.45 thorpej * We use these macros since we use different bits on different processor
595 1.45 thorpej * models.
596 1.45 thorpej */
597 1.95 jmcneill #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
598 1.95 jmcneill #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
599 1.95 jmcneill #define L1_S_PROT_RO_generic (0)
600 1.95 jmcneill #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
601 1.95 jmcneill
602 1.95 jmcneill #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
603 1.95 jmcneill #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
604 1.95 jmcneill #define L1_S_PROT_RO_xscale (0)
605 1.95 jmcneill #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
606 1.95 jmcneill
607 1.99 bsh #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
608 1.99 bsh #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
609 1.99 bsh #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
610 1.99 bsh #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
611 1.99 bsh
612 1.95 jmcneill #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
613 1.95 jmcneill #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
614 1.95 jmcneill #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
615 1.95 jmcneill #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
616 1.45 thorpej
617 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
618 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
619 1.99 bsh #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
620 1.111 matt #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
621 1.45 thorpej
622 1.95 jmcneill #define L2_L_PROT_U_generic (L2_AP(AP_U))
623 1.95 jmcneill #define L2_L_PROT_W_generic (L2_AP(AP_W))
624 1.95 jmcneill #define L2_L_PROT_RO_generic (0)
625 1.95 jmcneill #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
626 1.95 jmcneill
627 1.95 jmcneill #define L2_L_PROT_U_xscale (L2_AP(AP_U))
628 1.95 jmcneill #define L2_L_PROT_W_xscale (L2_AP(AP_W))
629 1.95 jmcneill #define L2_L_PROT_RO_xscale (0)
630 1.95 jmcneill #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
631 1.95 jmcneill
632 1.99 bsh #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
633 1.99 bsh #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
634 1.99 bsh #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
635 1.99 bsh #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
636 1.99 bsh
637 1.95 jmcneill #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
638 1.95 jmcneill #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
639 1.95 jmcneill #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
640 1.95 jmcneill #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
641 1.45 thorpej
642 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
643 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
644 1.99 bsh #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
645 1.111 matt #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
646 1.49 thorpej
647 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
648 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
649 1.95 jmcneill #define L2_S_PROT_RO_generic (0)
650 1.95 jmcneill #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
651 1.46 thorpej
652 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
653 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
654 1.95 jmcneill #define L2_S_PROT_RO_xscale (0)
655 1.95 jmcneill #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
656 1.95 jmcneill
657 1.99 bsh #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
658 1.99 bsh #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
659 1.99 bsh #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
660 1.99 bsh #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
661 1.99 bsh
662 1.95 jmcneill #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
663 1.95 jmcneill #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
664 1.95 jmcneill #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
665 1.95 jmcneill #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
666 1.46 thorpej
667 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
668 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
669 1.99 bsh #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
670 1.99 bsh #define L2_S_CACHE_MASK_armv6n L2_XS_CACHE_MASK_armv6
671 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
672 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
673 1.99 bsh #else
674 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
675 1.99 bsh #endif
676 1.111 matt #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
677 1.46 thorpej
678 1.99 bsh
679 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
680 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
681 1.99 bsh #define L1_S_PROTO_armv6 (L1_TYPE_S)
682 1.95 jmcneill #define L1_S_PROTO_armv7 (L1_TYPE_S)
683 1.46 thorpej
684 1.103 matt #define L1_SS_PROTO_generic 0
685 1.103 matt #define L1_SS_PROTO_xscale 0
686 1.103 matt #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
687 1.103 matt #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
688 1.103 matt
689 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
690 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
691 1.99 bsh #define L1_C_PROTO_armv6 (L1_TYPE_C)
692 1.95 jmcneill #define L1_C_PROTO_armv7 (L1_TYPE_C)
693 1.46 thorpej
694 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
695 1.46 thorpej
696 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
697 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS)
698 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
699 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
700 1.99 bsh #else
701 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
702 1.99 bsh #endif
703 1.99 bsh #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
704 1.95 jmcneill #define L2_S_PROTO_armv7 (L2_TYPE_S)
705 1.45 thorpej
706 1.46 thorpej /*
707 1.46 thorpej * User-visible names for the ones that vary with MMU class.
708 1.46 thorpej */
709 1.46 thorpej
710 1.46 thorpej #if ARM_NMMUS > 1
711 1.46 thorpej /* More than one MMU class configured; use variables. */
712 1.95 jmcneill #define L1_S_PROT_U pte_l1_s_prot_u
713 1.95 jmcneill #define L1_S_PROT_W pte_l1_s_prot_w
714 1.95 jmcneill #define L1_S_PROT_RO pte_l1_s_prot_ro
715 1.95 jmcneill #define L1_S_PROT_MASK pte_l1_s_prot_mask
716 1.95 jmcneill
717 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
718 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
719 1.95 jmcneill #define L2_S_PROT_RO pte_l2_s_prot_ro
720 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
721 1.46 thorpej
722 1.95 jmcneill #define L2_L_PROT_U pte_l2_l_prot_u
723 1.95 jmcneill #define L2_L_PROT_W pte_l2_l_prot_w
724 1.95 jmcneill #define L2_L_PROT_RO pte_l2_l_prot_ro
725 1.95 jmcneill #define L2_L_PROT_MASK pte_l2_l_prot_mask
726 1.95 jmcneill
727 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
728 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
729 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
730 1.49 thorpej
731 1.103 matt #define L1_SS_PROTO pte_l1_ss_proto
732 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
733 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
734 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
735 1.51 thorpej
736 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
737 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
738 1.99 bsh #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
739 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_generic
740 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_generic
741 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_generic
742 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
743 1.99 bsh
744 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_generic
745 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_generic
746 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_generic
747 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
748 1.99 bsh
749 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_generic
750 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_generic
751 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_generic
752 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
753 1.99 bsh
754 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
755 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
756 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
757 1.99 bsh
758 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
759 1.99 bsh #define L1_S_PROTO L1_S_PROTO_generic
760 1.99 bsh #define L1_C_PROTO L1_C_PROTO_generic
761 1.99 bsh #define L2_S_PROTO L2_S_PROTO_generic
762 1.99 bsh
763 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
764 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
765 1.99 bsh #elif ARM_MMU_V6N != 0
766 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_armv6
767 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_armv6
768 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_armv6
769 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
770 1.99 bsh
771 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_armv6n
772 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_armv6n
773 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
774 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
775 1.99 bsh
776 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_armv6n
777 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_armv6n
778 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
779 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
780 1.99 bsh
781 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6
782 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6
783 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
784 1.99 bsh
785 1.99 bsh /* These prototypes make writeable mappings, while the other MMU types
786 1.99 bsh * make read-only mappings. */
787 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
788 1.99 bsh #define L1_S_PROTO L1_S_PROTO_armv6
789 1.99 bsh #define L1_C_PROTO L1_C_PROTO_armv6
790 1.99 bsh #define L2_S_PROTO L2_S_PROTO_armv6n
791 1.99 bsh
792 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
793 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
794 1.99 bsh #elif ARM_MMU_V6C != 0
795 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
796 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
797 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
798 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
799 1.95 jmcneill
800 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
801 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
802 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_generic
803 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
804 1.46 thorpej
805 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
806 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
807 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
808 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
809 1.95 jmcneill
810 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
811 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
812 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
813 1.49 thorpej
814 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
815 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
816 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
817 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
818 1.51 thorpej
819 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
820 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
821 1.46 thorpej #elif ARM_MMU_XSCALE == 1
822 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
823 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
824 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
825 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
826 1.95 jmcneill
827 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
828 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
829 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_xscale
830 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
831 1.49 thorpej
832 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
833 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
834 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
835 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
836 1.95 jmcneill
837 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
838 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
839 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
840 1.46 thorpej
841 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_xscale
842 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
843 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
844 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
845 1.51 thorpej
846 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
847 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
848 1.95 jmcneill #elif ARM_MMU_V7 == 1
849 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_armv7
850 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_armv7
851 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_armv7
852 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
853 1.95 jmcneill
854 1.95 jmcneill #define L2_S_PROT_U L2_S_PROT_U_armv7
855 1.95 jmcneill #define L2_S_PROT_W L2_S_PROT_W_armv7
856 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_armv7
857 1.95 jmcneill #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
858 1.95 jmcneill
859 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_armv7
860 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_armv7
861 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_armv7
862 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
863 1.95 jmcneill
864 1.95 jmcneill #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
865 1.95 jmcneill #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
866 1.95 jmcneill #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
867 1.95 jmcneill
868 1.95 jmcneill /* These prototypes make writeable mappings, while the other MMU types
869 1.95 jmcneill * make read-only mappings. */
870 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv7
871 1.95 jmcneill #define L1_S_PROTO L1_S_PROTO_armv7
872 1.95 jmcneill #define L1_C_PROTO L1_C_PROTO_armv7
873 1.95 jmcneill #define L2_S_PROTO L2_S_PROTO_armv7
874 1.95 jmcneill
875 1.95 jmcneill #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
876 1.95 jmcneill #define pmap_zero_page(d) pmap_zero_page_generic((d))
877 1.46 thorpej #endif /* ARM_NMMUS > 1 */
878 1.20 chs
879 1.45 thorpej /*
880 1.95 jmcneill * Macros to set and query the write permission on page descriptors.
881 1.95 jmcneill */
882 1.95 jmcneill #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
883 1.95 jmcneill #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
884 1.95 jmcneill #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
885 1.95 jmcneill #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
886 1.95 jmcneill
887 1.95 jmcneill #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
888 1.95 jmcneill (L2_S_PROT_RO == 0 || \
889 1.95 jmcneill ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
890 1.95 jmcneill
891 1.95 jmcneill /*
892 1.45 thorpej * These macros return various bits based on kernel/user and protection.
893 1.45 thorpej * Note that the compiler will usually fold these at compile time.
894 1.45 thorpej */
895 1.45 thorpej #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
896 1.95 jmcneill (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
897 1.45 thorpej
898 1.45 thorpej #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
899 1.95 jmcneill (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
900 1.45 thorpej
901 1.45 thorpej #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
902 1.95 jmcneill (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
903 1.66 thorpej
904 1.66 thorpej /*
905 1.103 matt * Macros to test if a mapping is mappable with an L1 SuperSection,
906 1.103 matt * L1 Section, or an L2 Large Page mapping.
907 1.66 thorpej */
908 1.103 matt #define L1_SS_MAPPABLE_P(va, pa, size) \
909 1.103 matt ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
910 1.103 matt
911 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
912 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
913 1.66 thorpej
914 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
915 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
916 1.64 thorpej
917 1.119 matt #ifndef _LOCORE
918 1.64 thorpej /*
919 1.64 thorpej * Hooks for the pool allocator.
920 1.64 thorpej */
921 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
922 1.117 matt extern paddr_t physical_start, physical_end;
923 1.113 matt #ifdef PMAP_NEED_ALLOC_POOLPAGE
924 1.114 matt struct vm_page *arm_pmap_alloc_poolpage(int);
925 1.113 matt #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
926 1.118 matt #endif
927 1.118 matt #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
928 1.114 matt #define PMAP_MAP_POOLPAGE(pa) \
929 1.114 matt ((vaddr_t)((paddr_t)(pa) - physical_start + KERNEL_BASE))
930 1.114 matt #define PMAP_UNMAP_POOLPAGE(va) \
931 1.114 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + physical_start))
932 1.113 matt #endif
933 1.18 thorpej
934 1.97 uebayasi /*
935 1.97 uebayasi * pmap-specific data store in the vm_page structure.
936 1.97 uebayasi */
937 1.97 uebayasi #define __HAVE_VM_PAGE_MD
938 1.97 uebayasi struct vm_page_md {
939 1.97 uebayasi SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
940 1.97 uebayasi int pvh_attrs; /* page attributes */
941 1.97 uebayasi u_int uro_mappings;
942 1.97 uebayasi u_int urw_mappings;
943 1.97 uebayasi union {
944 1.97 uebayasi u_short s_mappings[2]; /* Assume kernel count <= 65535 */
945 1.97 uebayasi u_int i_mappings;
946 1.97 uebayasi } k_u;
947 1.97 uebayasi #define kro_mappings k_u.s_mappings[0]
948 1.97 uebayasi #define krw_mappings k_u.s_mappings[1]
949 1.97 uebayasi #define k_mappings k_u.i_mappings
950 1.97 uebayasi };
951 1.97 uebayasi
952 1.97 uebayasi /*
953 1.97 uebayasi * Set the default color of each page.
954 1.97 uebayasi */
955 1.97 uebayasi #if ARM_MMU_V6 > 0
956 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
957 1.97 uebayasi (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
958 1.97 uebayasi #else
959 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
960 1.97 uebayasi (pg)->mdpage.pvh_attrs = 0
961 1.97 uebayasi #endif
962 1.97 uebayasi
963 1.97 uebayasi #define VM_MDPAGE_INIT(pg) \
964 1.97 uebayasi do { \
965 1.97 uebayasi SLIST_INIT(&(pg)->mdpage.pvh_list); \
966 1.97 uebayasi VM_MDPAGE_PVH_ATTRS_INIT(pg); \
967 1.97 uebayasi (pg)->mdpage.uro_mappings = 0; \
968 1.97 uebayasi (pg)->mdpage.urw_mappings = 0; \
969 1.97 uebayasi (pg)->mdpage.k_mappings = 0; \
970 1.97 uebayasi } while (/*CONSTCOND*/0)
971 1.97 uebayasi
972 1.97 uebayasi #endif /* !_LOCORE */
973 1.97 uebayasi
974 1.18 thorpej #endif /* _KERNEL */
975 1.1 reinoud
976 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
977