pmap.h revision 1.125 1 1.125 matt /* $NetBSD: pmap.h,v 1.125 2014/02/26 01:51:51 matt Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.85 matt #if defined(_KERNEL_OPT)
77 1.85 matt #include "opt_arm32_pmap.h"
78 1.85 matt #endif
79 1.19 thorpej #include <arm/cpufunc.h>
80 1.12 chris #include <uvm/uvm_object.h>
81 1.75 bsh #endif
82 1.1 reinoud
83 1.124 matt #ifdef ARM_MMU_EXTENDED
84 1.124 matt #define PMAP_TLB_MAX 1
85 1.124 matt #define PMAP_TLB_HWPAGEWALKER 1
86 1.124 matt #define PMAP_TLB_NUM_PIDS 256
87 1.124 matt #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
88 1.124 matt #if PMAP_TLB_MAX > 1
89 1.124 matt #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
90 1.124 matt #else
91 1.124 matt #define cpu_tlb_info(ci) (&pmap_tlb0_info)
92 1.124 matt #endif
93 1.124 matt #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
94 1.124 matt #include <uvm/pmap/tlb.h>
95 1.124 matt #include <uvm/pmap/pmap_tlb.h>
96 1.124 matt
97 1.124 matt /*
98 1.124 matt * If we have an EXTENDED MMU and the address space is split evenly between
99 1.124 matt * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
100 1.124 matt * user and kernel address spaces.
101 1.124 matt */
102 1.124 matt #if KERNEL_BASE != 0x80000000
103 1.124 matt #error ARMv6 or later systems must have a KERNEL_BASE of 0x8000000
104 1.124 matt #endif
105 1.124 matt #endif /* ARM_MMU_EXTENDED */
106 1.124 matt
107 1.1 reinoud /*
108 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
109 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
110 1.38 thorpej * are described by L1 PTEs in the L1 table.
111 1.11 chris *
112 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
113 1.38 thorpej * changes when the VM context is switched. Everything above that line
114 1.38 thorpej * is the same no matter which VM context is running. This is achieved
115 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
116 1.38 thorpej * kernel L2 tables.
117 1.11 chris *
118 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
119 1.38 thorpej *
120 1.38 thorpej * 0xffffffff
121 1.38 thorpej * .
122 1.38 thorpej * .
123 1.38 thorpej * .
124 1.38 thorpej * KERNEL_BASE
125 1.38 thorpej * --------------------
126 1.38 thorpej * .
127 1.38 thorpej * .
128 1.38 thorpej * .
129 1.38 thorpej * 0x00000000
130 1.11 chris */
131 1.11 chris
132 1.65 scw /*
133 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
134 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
135 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
136 1.65 scw * three of these to map their whole working set.
137 1.65 scw */
138 1.124 matt #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
139 1.124 matt #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
140 1.65 scw #define L2_BUCKET_LOG2 4
141 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
142 1.65 scw
143 1.65 scw /*
144 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
145 1.65 scw * of l2_dtable structures required to track all possible page descriptors
146 1.65 scw * mappable by an L1 translation table is given by the following constants:
147 1.65 scw */
148 1.124 matt #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
149 1.65 scw #define L2_SIZE (1 << L2_LOG2)
150 1.65 scw
151 1.90 matt /*
152 1.90 matt * tell MI code that the cache is virtually-indexed.
153 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged.
154 1.90 matt */
155 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
156 1.90 matt #define PMAP_CACHE_VIPT
157 1.90 matt #else
158 1.90 matt #define PMAP_CACHE_VIVT
159 1.90 matt #endif
160 1.90 matt
161 1.75 bsh #ifndef _LOCORE
162 1.75 bsh
163 1.124 matt #ifndef PMAP_MMU_EXTENDED
164 1.65 scw struct l1_ttable;
165 1.65 scw struct l2_dtable;
166 1.65 scw
167 1.65 scw /*
168 1.65 scw * Track cache/tlb occupancy using the following structure
169 1.65 scw */
170 1.65 scw union pmap_cache_state {
171 1.65 scw struct {
172 1.65 scw union {
173 1.115 skrll uint8_t csu_cache_b[2];
174 1.115 skrll uint16_t csu_cache;
175 1.65 scw } cs_cache_u;
176 1.65 scw
177 1.65 scw union {
178 1.115 skrll uint8_t csu_tlb_b[2];
179 1.115 skrll uint16_t csu_tlb;
180 1.65 scw } cs_tlb_u;
181 1.65 scw } cs_s;
182 1.115 skrll uint32_t cs_all;
183 1.65 scw };
184 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
185 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
186 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
187 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
188 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
189 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
190 1.65 scw
191 1.65 scw /*
192 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
193 1.65 scw */
194 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
195 1.124 matt #endif /* !ARM_MMU_EXTENDED */
196 1.65 scw
197 1.65 scw /*
198 1.73 thorpej * This structure is used by machine-dependent code to describe
199 1.73 thorpej * static mappings of devices, created at bootstrap time.
200 1.73 thorpej */
201 1.73 thorpej struct pmap_devmap {
202 1.73 thorpej vaddr_t pd_va; /* virtual address */
203 1.73 thorpej paddr_t pd_pa; /* physical address */
204 1.73 thorpej psize_t pd_size; /* size of region */
205 1.73 thorpej vm_prot_t pd_prot; /* protection code */
206 1.73 thorpej int pd_cache; /* cache attributes */
207 1.73 thorpej };
208 1.73 thorpej
209 1.73 thorpej /*
210 1.65 scw * The pmap structure itself
211 1.65 scw */
212 1.65 scw struct pmap {
213 1.124 matt struct uvm_object pm_obj;
214 1.124 matt kmutex_t pm_obj_lock;
215 1.124 matt #define pm_lock pm_obj.vmobjlock
216 1.120 matt #ifndef ARM_HAS_VBAR
217 1.82 scw pd_entry_t *pm_pl1vec;
218 1.124 matt pd_entry_t pm_l1vec;
219 1.120 matt #endif
220 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
221 1.65 scw struct pmap_statistics pm_stats;
222 1.65 scw LIST_ENTRY(pmap) pm_list;
223 1.124 matt #ifdef ARM_MMU_EXTENDED
224 1.124 matt pd_entry_t *pm_l1;
225 1.124 matt paddr_t pm_l1_pa;
226 1.124 matt bool pm_remove_all;
227 1.124 matt #ifdef MULTIPROCESSOR
228 1.124 matt kcpuset_t *pm_onproc;
229 1.124 matt kcpuset_t *pm_active;
230 1.124 matt struct pmap_asid_info pm_pai[2];
231 1.124 matt #else
232 1.124 matt struct pmap_asid_info pm_pai[1];
233 1.124 matt #endif
234 1.124 matt #else
235 1.124 matt struct l1_ttable *pm_l1;
236 1.124 matt union pmap_cache_state pm_cstate;
237 1.124 matt uint8_t pm_domain;
238 1.124 matt bool pm_activated;
239 1.124 matt bool pm_remove_all;
240 1.124 matt #endif
241 1.124 matt };
242 1.124 matt
243 1.124 matt struct pmap_kernel {
244 1.124 matt struct pmap kernel_pmap;
245 1.65 scw };
246 1.65 scw
247 1.106 martin /*
248 1.106 martin * Physical / virtual address structure. In a number of places (particularly
249 1.106 martin * during bootstrapping) we need to keep track of the physical and virtual
250 1.106 martin * addresses of various pages
251 1.106 martin */
252 1.106 martin typedef struct pv_addr {
253 1.106 martin SLIST_ENTRY(pv_addr) pv_list;
254 1.106 martin paddr_t pv_pa;
255 1.106 martin vaddr_t pv_va;
256 1.106 martin vsize_t pv_size;
257 1.106 martin uint8_t pv_cache;
258 1.106 martin uint8_t pv_prot;
259 1.106 martin } pv_addr_t;
260 1.106 martin typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
261 1.106 martin
262 1.85 matt extern pv_addrqh_t pmap_freeq;
263 1.102 matt extern pv_addr_t kernelstack;
264 1.102 matt extern pv_addr_t abtstack;
265 1.102 matt extern pv_addr_t fiqstack;
266 1.102 matt extern pv_addr_t irqstack;
267 1.102 matt extern pv_addr_t undstack;
268 1.103 matt extern pv_addr_t idlestack;
269 1.85 matt extern pv_addr_t systempage;
270 1.85 matt extern pv_addr_t kernel_l1pt;
271 1.1 reinoud
272 1.1 reinoud /*
273 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
274 1.24 thorpej * vs. non-cacheable).
275 1.24 thorpej */
276 1.24 thorpej #define PTE_KERNEL 0
277 1.24 thorpej #define PTE_USER 1
278 1.24 thorpej #define PTE_NOCACHE 0
279 1.24 thorpej #define PTE_CACHE 1
280 1.65 scw #define PTE_PAGETABLE 2
281 1.24 thorpej
282 1.24 thorpej /*
283 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
284 1.43 thorpej *
285 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
286 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
287 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
288 1.43 thorpej * that we can clear multiple attributes at a time.
289 1.43 thorpej *
290 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
291 1.43 thorpej * multiple mappings in a given address space.
292 1.43 thorpej */
293 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
294 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
295 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
296 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
297 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
298 1.90 matt #ifdef PMAP_CACHE_VIVT
299 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
300 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
301 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC)
302 1.90 matt #endif
303 1.90 matt #ifdef PMAP_CACHE_VIPT
304 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
305 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
306 1.90 matt #endif
307 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */
308 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
309 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */
310 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
311 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */
312 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
313 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
314 1.43 thorpej
315 1.43 thorpej /*
316 1.1 reinoud * Commonly referenced structures
317 1.1 reinoud */
318 1.4 matt extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
319 1.113 matt extern int arm_poolpage_vmfreelist;
320 1.1 reinoud
321 1.1 reinoud /*
322 1.1 reinoud * Macros that we need to export
323 1.1 reinoud */
324 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
325 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
326 1.31 thorpej
327 1.43 thorpej #define pmap_is_modified(pg) \
328 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
329 1.43 thorpej #define pmap_is_referenced(pg) \
330 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
331 1.96 uebayasi #define pmap_is_page_colored_p(md) \
332 1.96 uebayasi (((md)->pvh_attrs & PVF_COLORED) != 0)
333 1.41 thorpej
334 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
335 1.60 chs
336 1.35 thorpej #define pmap_phys_address(ppn) (arm_ptob((ppn)))
337 1.98 macallan u_int arm32_mmap_flags(paddr_t);
338 1.98 macallan #define ARM32_MMAP_WRITECOMBINE 0x40000000
339 1.98 macallan #define ARM32_MMAP_CACHEABLE 0x20000000
340 1.98 macallan #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
341 1.1 reinoud
342 1.123 matt #define PMAP_PTE 0x10000000 /* kenter_pa */
343 1.123 matt
344 1.1 reinoud /*
345 1.1 reinoud * Functions that we need to export
346 1.1 reinoud */
347 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
348 1.65 scw void pmap_remove_all(pmap_t);
349 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
350 1.39 thorpej
351 1.1 reinoud #define PMAP_NEED_PROCWR
352 1.29 chris #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
353 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
354 1.4 matt
355 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
356 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
357 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int);
358 1.85 matt #endif
359 1.85 matt
360 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
361 1.85 matt
362 1.39 thorpej /* Functions we use internally. */
363 1.85 matt #ifdef PMAP_STEAL_MEMORY
364 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
365 1.85 matt void pmap_boot_pageadd(pv_addr_t *);
366 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
367 1.85 matt #endif
368 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t);
369 1.65 scw
370 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
371 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
372 1.124 matt int pmap_prefetchabt_fixup(void *);
373 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
374 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
375 1.122 matt struct pcb;
376 1.65 scw void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
377 1.65 scw
378 1.65 scw void pmap_debug(int);
379 1.39 thorpej void pmap_postinit(void);
380 1.42 thorpej
381 1.42 thorpej void vector_page_setprot(int);
382 1.24 thorpej
383 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
384 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
385 1.73 thorpej
386 1.24 thorpej /* Bootstrapping routines. */
387 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
388 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
389 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
390 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
391 1.73 thorpej void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
392 1.74 thorpej void pmap_devmap_register(const struct pmap_devmap *);
393 1.13 chris
394 1.13 chris /*
395 1.13 chris * Special page zero routine for use by the idle loop (no cache cleans).
396 1.13 chris */
397 1.80 thorpej bool pmap_pageidlezero(paddr_t);
398 1.13 chris #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
399 1.1 reinoud
400 1.29 chris /*
401 1.84 chris * used by dumpsys to record the PA of the L1 table
402 1.84 chris */
403 1.84 chris uint32_t pmap_kernel_L1_addr(void);
404 1.84 chris /*
405 1.29 chris * The current top of kernel VM
406 1.29 chris */
407 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
408 1.1 reinoud
409 1.1 reinoud /*
410 1.1 reinoud * Useful macros and constants
411 1.1 reinoud */
412 1.59 thorpej
413 1.65 scw /* Virtual address to page table entry */
414 1.79 perry static inline pt_entry_t *
415 1.65 scw vtopte(vaddr_t va)
416 1.65 scw {
417 1.65 scw pd_entry_t *pdep;
418 1.65 scw pt_entry_t *ptep;
419 1.65 scw
420 1.124 matt KASSERT(trunc_page(va) == va);
421 1.124 matt
422 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
423 1.65 scw return (NULL);
424 1.65 scw return (ptep);
425 1.65 scw }
426 1.65 scw
427 1.65 scw /*
428 1.65 scw * Virtual address to physical address
429 1.65 scw */
430 1.79 perry static inline paddr_t
431 1.65 scw vtophys(vaddr_t va)
432 1.65 scw {
433 1.65 scw paddr_t pa;
434 1.65 scw
435 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
436 1.65 scw return (0); /* XXXSCW: Panic? */
437 1.65 scw
438 1.65 scw return (pa);
439 1.65 scw }
440 1.65 scw
441 1.65 scw /*
442 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
443 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
444 1.65 scw * on every change.
445 1.65 scw *
446 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
447 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
448 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
449 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
450 1.69 thorpej * the code.
451 1.69 thorpej */
452 1.69 thorpej extern int pmap_needs_pte_sync;
453 1.69 thorpej #if defined(_KERNEL_OPT)
454 1.69 thorpej /*
455 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
456 1.69 thorpej * we need to do PTE syncs. If only SA-1 is configured, then evaluate
457 1.69 thorpej * this at compile time.
458 1.69 thorpej */
459 1.112 matt #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
460 1.104 matt #define PMAP_INCLUDE_PTE_SYNC
461 1.112 matt #if (ARM_MMU_V6 > 0)
462 1.109 matt #define PMAP_NEEDS_PTE_SYNC 1
463 1.69 thorpej #elif (ARM_MMU_SA1 == 0)
464 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
465 1.69 thorpej #endif
466 1.112 matt #endif
467 1.69 thorpej #endif /* _KERNEL_OPT */
468 1.69 thorpej
469 1.69 thorpej /*
470 1.69 thorpej * Provide a fallback in case we were not able to determine it at
471 1.69 thorpej * compile-time.
472 1.65 scw */
473 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
474 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
475 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
476 1.69 thorpej #endif
477 1.65 scw
478 1.104 matt static inline void
479 1.104 matt pmap_ptesync(pt_entry_t *ptep, size_t cnt)
480 1.104 matt {
481 1.104 matt if (PMAP_NEEDS_PTE_SYNC)
482 1.104 matt cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
483 1.104 matt #if ARM_MMU_V7 > 0
484 1.104 matt __asm("dsb");
485 1.104 matt #endif
486 1.104 matt }
487 1.69 thorpej
488 1.124 matt #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
489 1.124 matt #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
490 1.124 matt #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
491 1.104 matt #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
492 1.65 scw
493 1.124 matt #define l1pte_valid_p(pde) ((pde) != 0)
494 1.124 matt #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
495 1.124 matt #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
496 1.104 matt && ((pde) & L1_S_V6_SUPER) != 0)
497 1.124 matt #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
498 1.124 matt #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
499 1.124 matt #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
500 1.124 matt #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
501 1.124 matt #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \
502 1.124 matt & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
503 1.124 matt
504 1.124 matt static inline void
505 1.124 matt l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
506 1.124 matt {
507 1.124 matt *pdep = pde;
508 1.124 matt }
509 1.36 thorpej
510 1.124 matt static inline void
511 1.124 matt l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
512 1.124 matt {
513 1.124 matt *pdep = pde;
514 1.124 matt if (l1pte_page_p(pde)) {
515 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
516 1.124 matt for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
517 1.124 matt pde += L2_T_SIZE;
518 1.124 matt pdep[k] = pde;
519 1.124 matt }
520 1.124 matt } else if (l1pte_supersection_p(pde)) {
521 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
522 1.124 matt for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
523 1.124 matt pdep[k] = pde;
524 1.124 matt }
525 1.124 matt }
526 1.124 matt }
527 1.124 matt
528 1.124 matt #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
529 1.124 matt #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
530 1.124 matt #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
531 1.124 matt #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
532 1.124 matt #define l2pte_minidata_p(pte) (((pte) & \
533 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
534 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
535 1.35 thorpej
536 1.121 matt static inline void
537 1.121 matt l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
538 1.121 matt {
539 1.124 matt for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
540 1.124 matt KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
541 1.124 matt *ptep++ = pte;
542 1.121 matt pte += L2_S_SIZE;
543 1.124 matt if (opte)
544 1.124 matt opte += L2_S_SIZE;
545 1.121 matt }
546 1.121 matt }
547 1.121 matt
548 1.121 matt static inline void
549 1.121 matt l2pte_reset(pt_entry_t *ptep)
550 1.121 matt {
551 1.121 matt *ptep = 0;
552 1.121 matt for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
553 1.121 matt ptep[k] = 0;
554 1.121 matt }
555 1.121 matt }
556 1.121 matt
557 1.1 reinoud /* L1 and L2 page table macros */
558 1.36 thorpej #define pmap_pde_v(pde) l1pte_valid(*(pde))
559 1.36 thorpej #define pmap_pde_section(pde) l1pte_section_p(*(pde))
560 1.107 matt #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
561 1.36 thorpej #define pmap_pde_page(pde) l1pte_page_p(*(pde))
562 1.36 thorpej #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
563 1.16 rearnsha
564 1.124 matt #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
565 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
566 1.35 thorpej
567 1.1 reinoud /* Size of the kernel part of the L1 page table */
568 1.1 reinoud #define KERNEL_PD_SIZE \
569 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
570 1.20 chs
571 1.117 matt void bzero_page(vaddr_t);
572 1.117 matt void bcopy_page(vaddr_t, vaddr_t);
573 1.46 thorpej
574 1.116 matt #ifdef FPU_VFP
575 1.117 matt void bzero_page_vfp(vaddr_t);
576 1.117 matt void bcopy_page_vfp(vaddr_t, vaddr_t);
577 1.116 matt #endif
578 1.116 matt
579 1.117 matt /************************* ARM MMU configuration *****************************/
580 1.117 matt
581 1.95 jmcneill #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
582 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
583 1.51 thorpej void pmap_zero_page_generic(paddr_t);
584 1.51 thorpej
585 1.46 thorpej void pmap_pte_init_generic(void);
586 1.69 thorpej #if defined(CPU_ARM8)
587 1.69 thorpej void pmap_pte_init_arm8(void);
588 1.69 thorpej #endif
589 1.46 thorpej #if defined(CPU_ARM9)
590 1.46 thorpej void pmap_pte_init_arm9(void);
591 1.46 thorpej #endif /* CPU_ARM9 */
592 1.76 rearnsha #if defined(CPU_ARM10)
593 1.76 rearnsha void pmap_pte_init_arm10(void);
594 1.76 rearnsha #endif /* CPU_ARM10 */
595 1.103 matt #if defined(CPU_ARM11) /* ARM_MMU_V6 */
596 1.94 uebayasi void pmap_pte_init_arm11(void);
597 1.94 uebayasi #endif /* CPU_ARM11 */
598 1.103 matt #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
599 1.99 bsh void pmap_pte_init_arm11mpcore(void);
600 1.99 bsh #endif
601 1.103 matt #if ARM_MMU_V7 == 1
602 1.103 matt void pmap_pte_init_armv7(void);
603 1.103 matt #endif /* ARM_MMU_V7 */
604 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
605 1.69 thorpej
606 1.69 thorpej #if ARM_MMU_SA1 == 1
607 1.69 thorpej void pmap_pte_init_sa1(void);
608 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
609 1.46 thorpej
610 1.52 thorpej #if ARM_MMU_XSCALE == 1
611 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
612 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
613 1.51 thorpej
614 1.46 thorpej void pmap_pte_init_xscale(void);
615 1.50 thorpej
616 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
617 1.77 scw
618 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
619 1.77 scw void pmap_uarea(vaddr_t);
620 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
621 1.46 thorpej
622 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
623 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mask;
624 1.49 thorpej
625 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
626 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mask;
627 1.49 thorpej
628 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
629 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mask;
630 1.46 thorpej
631 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
632 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
633 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
634 1.65 scw
635 1.98 macallan extern pt_entry_t pte_l1_s_wc_mode;
636 1.98 macallan extern pt_entry_t pte_l2_l_wc_mode;
637 1.98 macallan extern pt_entry_t pte_l2_s_wc_mode;
638 1.98 macallan
639 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_u;
640 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_w;
641 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_ro;
642 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_mask;
643 1.95 jmcneill
644 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
645 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
646 1.95 jmcneill extern pt_entry_t pte_l2_s_prot_ro;
647 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
648 1.95 jmcneill
649 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_u;
650 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_w;
651 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_ro;
652 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_mask;
653 1.95 jmcneill
654 1.103 matt extern pt_entry_t pte_l1_ss_proto;
655 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
656 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
657 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
658 1.46 thorpej
659 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
660 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
661 1.75 bsh
662 1.75 bsh #endif /* !_LOCORE */
663 1.51 thorpej
664 1.46 thorpej /*****************************************************************************/
665 1.46 thorpej
666 1.124 matt #define KERNEL_PID 0 /* The kernel uses ASID 0 */
667 1.124 matt
668 1.20 chs /*
669 1.65 scw * Definitions for MMU domains
670 1.65 scw */
671 1.103 matt #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
672 1.124 matt #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
673 1.124 matt #ifdef ARM_MMU_EXTENDED
674 1.124 matt #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
675 1.124 matt #endif
676 1.45 thorpej
677 1.45 thorpej /*
678 1.45 thorpej * These macros define the various bit masks in the PTE.
679 1.45 thorpej *
680 1.45 thorpej * We use these macros since we use different bits on different processor
681 1.45 thorpej * models.
682 1.45 thorpej */
683 1.95 jmcneill #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
684 1.95 jmcneill #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
685 1.95 jmcneill #define L1_S_PROT_RO_generic (0)
686 1.95 jmcneill #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
687 1.95 jmcneill
688 1.95 jmcneill #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
689 1.95 jmcneill #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
690 1.95 jmcneill #define L1_S_PROT_RO_xscale (0)
691 1.95 jmcneill #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
692 1.95 jmcneill
693 1.99 bsh #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
694 1.99 bsh #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
695 1.99 bsh #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
696 1.99 bsh #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
697 1.99 bsh
698 1.95 jmcneill #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
699 1.95 jmcneill #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
700 1.95 jmcneill #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
701 1.95 jmcneill #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
702 1.45 thorpej
703 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
704 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
705 1.99 bsh #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
706 1.111 matt #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
707 1.45 thorpej
708 1.95 jmcneill #define L2_L_PROT_U_generic (L2_AP(AP_U))
709 1.95 jmcneill #define L2_L_PROT_W_generic (L2_AP(AP_W))
710 1.95 jmcneill #define L2_L_PROT_RO_generic (0)
711 1.95 jmcneill #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
712 1.95 jmcneill
713 1.95 jmcneill #define L2_L_PROT_U_xscale (L2_AP(AP_U))
714 1.95 jmcneill #define L2_L_PROT_W_xscale (L2_AP(AP_W))
715 1.95 jmcneill #define L2_L_PROT_RO_xscale (0)
716 1.95 jmcneill #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
717 1.95 jmcneill
718 1.99 bsh #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
719 1.99 bsh #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
720 1.99 bsh #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
721 1.99 bsh #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
722 1.99 bsh
723 1.95 jmcneill #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
724 1.95 jmcneill #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
725 1.95 jmcneill #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
726 1.95 jmcneill #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
727 1.45 thorpej
728 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
729 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
730 1.99 bsh #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
731 1.111 matt #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
732 1.49 thorpej
733 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
734 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
735 1.95 jmcneill #define L2_S_PROT_RO_generic (0)
736 1.95 jmcneill #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
737 1.46 thorpej
738 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
739 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
740 1.95 jmcneill #define L2_S_PROT_RO_xscale (0)
741 1.95 jmcneill #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
742 1.95 jmcneill
743 1.99 bsh #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
744 1.99 bsh #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
745 1.99 bsh #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
746 1.99 bsh #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
747 1.99 bsh
748 1.95 jmcneill #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
749 1.95 jmcneill #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
750 1.95 jmcneill #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
751 1.95 jmcneill #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
752 1.46 thorpej
753 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
754 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
755 1.99 bsh #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
756 1.99 bsh #define L2_S_CACHE_MASK_armv6n L2_XS_CACHE_MASK_armv6
757 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
758 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
759 1.99 bsh #else
760 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
761 1.99 bsh #endif
762 1.111 matt #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
763 1.46 thorpej
764 1.99 bsh
765 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
766 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
767 1.99 bsh #define L1_S_PROTO_armv6 (L1_TYPE_S)
768 1.95 jmcneill #define L1_S_PROTO_armv7 (L1_TYPE_S)
769 1.46 thorpej
770 1.103 matt #define L1_SS_PROTO_generic 0
771 1.103 matt #define L1_SS_PROTO_xscale 0
772 1.103 matt #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
773 1.103 matt #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
774 1.103 matt
775 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
776 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
777 1.99 bsh #define L1_C_PROTO_armv6 (L1_TYPE_C)
778 1.95 jmcneill #define L1_C_PROTO_armv7 (L1_TYPE_C)
779 1.46 thorpej
780 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
781 1.46 thorpej
782 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
783 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS)
784 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
785 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
786 1.99 bsh #else
787 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
788 1.99 bsh #endif
789 1.99 bsh #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
790 1.124 matt #ifdef ARM_MMU_EXTENDED
791 1.124 matt #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
792 1.124 matt #else
793 1.95 jmcneill #define L2_S_PROTO_armv7 (L2_TYPE_S)
794 1.124 matt #endif
795 1.45 thorpej
796 1.46 thorpej /*
797 1.46 thorpej * User-visible names for the ones that vary with MMU class.
798 1.46 thorpej */
799 1.46 thorpej
800 1.46 thorpej #if ARM_NMMUS > 1
801 1.46 thorpej /* More than one MMU class configured; use variables. */
802 1.95 jmcneill #define L1_S_PROT_U pte_l1_s_prot_u
803 1.95 jmcneill #define L1_S_PROT_W pte_l1_s_prot_w
804 1.95 jmcneill #define L1_S_PROT_RO pte_l1_s_prot_ro
805 1.95 jmcneill #define L1_S_PROT_MASK pte_l1_s_prot_mask
806 1.95 jmcneill
807 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
808 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
809 1.95 jmcneill #define L2_S_PROT_RO pte_l2_s_prot_ro
810 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
811 1.46 thorpej
812 1.95 jmcneill #define L2_L_PROT_U pte_l2_l_prot_u
813 1.95 jmcneill #define L2_L_PROT_W pte_l2_l_prot_w
814 1.95 jmcneill #define L2_L_PROT_RO pte_l2_l_prot_ro
815 1.95 jmcneill #define L2_L_PROT_MASK pte_l2_l_prot_mask
816 1.95 jmcneill
817 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
818 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
819 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
820 1.49 thorpej
821 1.103 matt #define L1_SS_PROTO pte_l1_ss_proto
822 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
823 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
824 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
825 1.51 thorpej
826 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
827 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
828 1.99 bsh #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
829 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_generic
830 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_generic
831 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_generic
832 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
833 1.99 bsh
834 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_generic
835 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_generic
836 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_generic
837 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
838 1.99 bsh
839 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_generic
840 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_generic
841 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_generic
842 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
843 1.99 bsh
844 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
845 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
846 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
847 1.99 bsh
848 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
849 1.99 bsh #define L1_S_PROTO L1_S_PROTO_generic
850 1.99 bsh #define L1_C_PROTO L1_C_PROTO_generic
851 1.99 bsh #define L2_S_PROTO L2_S_PROTO_generic
852 1.99 bsh
853 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
854 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
855 1.99 bsh #elif ARM_MMU_V6N != 0
856 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_armv6
857 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_armv6
858 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_armv6
859 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
860 1.99 bsh
861 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_armv6n
862 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_armv6n
863 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
864 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
865 1.99 bsh
866 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_armv6n
867 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_armv6n
868 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
869 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
870 1.99 bsh
871 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6
872 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6
873 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
874 1.99 bsh
875 1.99 bsh /* These prototypes make writeable mappings, while the other MMU types
876 1.99 bsh * make read-only mappings. */
877 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
878 1.99 bsh #define L1_S_PROTO L1_S_PROTO_armv6
879 1.99 bsh #define L1_C_PROTO L1_C_PROTO_armv6
880 1.99 bsh #define L2_S_PROTO L2_S_PROTO_armv6n
881 1.99 bsh
882 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
883 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
884 1.99 bsh #elif ARM_MMU_V6C != 0
885 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
886 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
887 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
888 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
889 1.95 jmcneill
890 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
891 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
892 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_generic
893 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
894 1.46 thorpej
895 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
896 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
897 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
898 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
899 1.95 jmcneill
900 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
901 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
902 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
903 1.49 thorpej
904 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
905 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
906 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
907 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
908 1.51 thorpej
909 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
910 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
911 1.46 thorpej #elif ARM_MMU_XSCALE == 1
912 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
913 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
914 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
915 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
916 1.95 jmcneill
917 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
918 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
919 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_xscale
920 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
921 1.49 thorpej
922 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
923 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
924 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
925 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
926 1.95 jmcneill
927 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
928 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
929 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
930 1.46 thorpej
931 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_xscale
932 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
933 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
934 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
935 1.51 thorpej
936 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
937 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
938 1.95 jmcneill #elif ARM_MMU_V7 == 1
939 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_armv7
940 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_armv7
941 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_armv7
942 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
943 1.95 jmcneill
944 1.95 jmcneill #define L2_S_PROT_U L2_S_PROT_U_armv7
945 1.95 jmcneill #define L2_S_PROT_W L2_S_PROT_W_armv7
946 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_armv7
947 1.95 jmcneill #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
948 1.95 jmcneill
949 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_armv7
950 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_armv7
951 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_armv7
952 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
953 1.95 jmcneill
954 1.95 jmcneill #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
955 1.95 jmcneill #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
956 1.95 jmcneill #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
957 1.95 jmcneill
958 1.95 jmcneill /* These prototypes make writeable mappings, while the other MMU types
959 1.95 jmcneill * make read-only mappings. */
960 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv7
961 1.95 jmcneill #define L1_S_PROTO L1_S_PROTO_armv7
962 1.95 jmcneill #define L1_C_PROTO L1_C_PROTO_armv7
963 1.95 jmcneill #define L2_S_PROTO L2_S_PROTO_armv7
964 1.95 jmcneill
965 1.95 jmcneill #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
966 1.95 jmcneill #define pmap_zero_page(d) pmap_zero_page_generic((d))
967 1.46 thorpej #endif /* ARM_NMMUS > 1 */
968 1.20 chs
969 1.45 thorpej /*
970 1.95 jmcneill * Macros to set and query the write permission on page descriptors.
971 1.95 jmcneill */
972 1.95 jmcneill #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
973 1.95 jmcneill #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
974 1.95 jmcneill #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
975 1.95 jmcneill #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
976 1.95 jmcneill
977 1.95 jmcneill #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
978 1.95 jmcneill (L2_S_PROT_RO == 0 || \
979 1.95 jmcneill ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
980 1.95 jmcneill
981 1.95 jmcneill /*
982 1.45 thorpej * These macros return various bits based on kernel/user and protection.
983 1.45 thorpej * Note that the compiler will usually fold these at compile time.
984 1.45 thorpej */
985 1.45 thorpej #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
986 1.95 jmcneill (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
987 1.45 thorpej
988 1.45 thorpej #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
989 1.95 jmcneill (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
990 1.45 thorpej
991 1.45 thorpej #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
992 1.95 jmcneill (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
993 1.66 thorpej
994 1.66 thorpej /*
995 1.103 matt * Macros to test if a mapping is mappable with an L1 SuperSection,
996 1.103 matt * L1 Section, or an L2 Large Page mapping.
997 1.66 thorpej */
998 1.103 matt #define L1_SS_MAPPABLE_P(va, pa, size) \
999 1.103 matt ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1000 1.103 matt
1001 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
1002 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1003 1.66 thorpej
1004 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
1005 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1006 1.64 thorpej
1007 1.119 matt #ifndef _LOCORE
1008 1.64 thorpej /*
1009 1.64 thorpej * Hooks for the pool allocator.
1010 1.64 thorpej */
1011 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1012 1.117 matt extern paddr_t physical_start, physical_end;
1013 1.113 matt #ifdef PMAP_NEED_ALLOC_POOLPAGE
1014 1.114 matt struct vm_page *arm_pmap_alloc_poolpage(int);
1015 1.113 matt #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1016 1.118 matt #endif
1017 1.118 matt #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1018 1.114 matt #define PMAP_MAP_POOLPAGE(pa) \
1019 1.114 matt ((vaddr_t)((paddr_t)(pa) - physical_start + KERNEL_BASE))
1020 1.114 matt #define PMAP_UNMAP_POOLPAGE(va) \
1021 1.114 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + physical_start))
1022 1.113 matt #endif
1023 1.18 thorpej
1024 1.97 uebayasi /*
1025 1.97 uebayasi * pmap-specific data store in the vm_page structure.
1026 1.97 uebayasi */
1027 1.97 uebayasi #define __HAVE_VM_PAGE_MD
1028 1.97 uebayasi struct vm_page_md {
1029 1.97 uebayasi SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1030 1.97 uebayasi int pvh_attrs; /* page attributes */
1031 1.97 uebayasi u_int uro_mappings;
1032 1.97 uebayasi u_int urw_mappings;
1033 1.97 uebayasi union {
1034 1.97 uebayasi u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1035 1.97 uebayasi u_int i_mappings;
1036 1.97 uebayasi } k_u;
1037 1.97 uebayasi #define kro_mappings k_u.s_mappings[0]
1038 1.97 uebayasi #define krw_mappings k_u.s_mappings[1]
1039 1.97 uebayasi #define k_mappings k_u.i_mappings
1040 1.97 uebayasi };
1041 1.97 uebayasi
1042 1.97 uebayasi /*
1043 1.97 uebayasi * Set the default color of each page.
1044 1.97 uebayasi */
1045 1.97 uebayasi #if ARM_MMU_V6 > 0
1046 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1047 1.97 uebayasi (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
1048 1.97 uebayasi #else
1049 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1050 1.97 uebayasi (pg)->mdpage.pvh_attrs = 0
1051 1.97 uebayasi #endif
1052 1.97 uebayasi
1053 1.97 uebayasi #define VM_MDPAGE_INIT(pg) \
1054 1.97 uebayasi do { \
1055 1.97 uebayasi SLIST_INIT(&(pg)->mdpage.pvh_list); \
1056 1.97 uebayasi VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1057 1.97 uebayasi (pg)->mdpage.uro_mappings = 0; \
1058 1.97 uebayasi (pg)->mdpage.urw_mappings = 0; \
1059 1.97 uebayasi (pg)->mdpage.k_mappings = 0; \
1060 1.97 uebayasi } while (/*CONSTCOND*/0)
1061 1.97 uebayasi
1062 1.97 uebayasi #endif /* !_LOCORE */
1063 1.97 uebayasi
1064 1.18 thorpej #endif /* _KERNEL */
1065 1.1 reinoud
1066 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
1067