pmap.h revision 1.155 1 1.155 ryo /* $NetBSD: pmap.h,v 1.155 2018/04/01 04:35:04 ryo Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.85 matt #if defined(_KERNEL_OPT)
77 1.85 matt #include "opt_arm32_pmap.h"
78 1.136 skrll #include "opt_multiprocessor.h"
79 1.85 matt #endif
80 1.19 thorpej #include <arm/cpufunc.h>
81 1.138 joerg #include <arm/locore.h>
82 1.12 chris #include <uvm/uvm_object.h>
83 1.143 skrll #include <uvm/pmap/pmap_pvt.h>
84 1.75 bsh #endif
85 1.1 reinoud
86 1.124 matt #ifdef ARM_MMU_EXTENDED
87 1.147 skrll #define PMAP_HWPAGEWALKER 1
88 1.124 matt #define PMAP_TLB_MAX 1
89 1.126 matt #if PMAP_TLB_MAX > 1
90 1.144 skrll #define PMAP_TLB_NEED_SHOOTDOWN 1
91 1.126 matt #endif
92 1.126 matt #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
93 1.124 matt #define PMAP_TLB_NUM_PIDS 256
94 1.124 matt #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
95 1.124 matt #if PMAP_TLB_MAX > 1
96 1.124 matt #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
97 1.124 matt #else
98 1.124 matt #define cpu_tlb_info(ci) (&pmap_tlb0_info)
99 1.124 matt #endif
100 1.124 matt #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
101 1.124 matt #include <uvm/pmap/tlb.h>
102 1.124 matt #include <uvm/pmap/pmap_tlb.h>
103 1.124 matt
104 1.135 skrll /*
105 1.124 matt * If we have an EXTENDED MMU and the address space is split evenly between
106 1.124 matt * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
107 1.124 matt * user and kernel address spaces.
108 1.135 skrll */
109 1.128 matt #if (KERNEL_BASE & 0x80000000) == 0
110 1.128 matt #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
111 1.135 skrll #endif
112 1.124 matt #endif /* ARM_MMU_EXTENDED */
113 1.124 matt
114 1.1 reinoud /*
115 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
116 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
117 1.38 thorpej * are described by L1 PTEs in the L1 table.
118 1.11 chris *
119 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
120 1.38 thorpej * changes when the VM context is switched. Everything above that line
121 1.38 thorpej * is the same no matter which VM context is running. This is achieved
122 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
123 1.38 thorpej * kernel L2 tables.
124 1.11 chris *
125 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
126 1.38 thorpej *
127 1.38 thorpej * 0xffffffff
128 1.38 thorpej * .
129 1.38 thorpej * .
130 1.38 thorpej * .
131 1.38 thorpej * KERNEL_BASE
132 1.38 thorpej * --------------------
133 1.38 thorpej * .
134 1.38 thorpej * .
135 1.38 thorpej * .
136 1.38 thorpej * 0x00000000
137 1.11 chris */
138 1.11 chris
139 1.65 scw /*
140 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
142 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
143 1.65 scw * three of these to map their whole working set.
144 1.65 scw */
145 1.124 matt #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
146 1.124 matt #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
147 1.65 scw #define L2_BUCKET_LOG2 4
148 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
149 1.65 scw
150 1.65 scw /*
151 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152 1.65 scw * of l2_dtable structures required to track all possible page descriptors
153 1.65 scw * mappable by an L1 translation table is given by the following constants:
154 1.65 scw */
155 1.124 matt #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
156 1.65 scw #define L2_SIZE (1 << L2_LOG2)
157 1.65 scw
158 1.90 matt /*
159 1.90 matt * tell MI code that the cache is virtually-indexed.
160 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged.
161 1.90 matt */
162 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
163 1.90 matt #define PMAP_CACHE_VIPT
164 1.90 matt #else
165 1.90 matt #define PMAP_CACHE_VIVT
166 1.90 matt #endif
167 1.90 matt
168 1.75 bsh #ifndef _LOCORE
169 1.75 bsh
170 1.146 skrll #ifndef ARM_MMU_EXTENDED
171 1.65 scw struct l1_ttable;
172 1.65 scw struct l2_dtable;
173 1.65 scw
174 1.65 scw /*
175 1.65 scw * Track cache/tlb occupancy using the following structure
176 1.65 scw */
177 1.65 scw union pmap_cache_state {
178 1.65 scw struct {
179 1.65 scw union {
180 1.115 skrll uint8_t csu_cache_b[2];
181 1.115 skrll uint16_t csu_cache;
182 1.65 scw } cs_cache_u;
183 1.65 scw
184 1.65 scw union {
185 1.115 skrll uint8_t csu_tlb_b[2];
186 1.115 skrll uint16_t csu_tlb;
187 1.65 scw } cs_tlb_u;
188 1.65 scw } cs_s;
189 1.115 skrll uint32_t cs_all;
190 1.65 scw };
191 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
192 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
193 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
194 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
195 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
196 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
197 1.65 scw
198 1.65 scw /*
199 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
200 1.65 scw */
201 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
202 1.124 matt #endif /* !ARM_MMU_EXTENDED */
203 1.65 scw
204 1.65 scw /*
205 1.73 thorpej * This structure is used by machine-dependent code to describe
206 1.73 thorpej * static mappings of devices, created at bootstrap time.
207 1.73 thorpej */
208 1.73 thorpej struct pmap_devmap {
209 1.73 thorpej vaddr_t pd_va; /* virtual address */
210 1.73 thorpej paddr_t pd_pa; /* physical address */
211 1.73 thorpej psize_t pd_size; /* size of region */
212 1.73 thorpej vm_prot_t pd_prot; /* protection code */
213 1.73 thorpej int pd_cache; /* cache attributes */
214 1.73 thorpej };
215 1.73 thorpej
216 1.153 skrll #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
217 1.153 skrll #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
218 1.153 skrll #define DEVMAP_ENTRY(va, pa, sz) \
219 1.153 skrll { \
220 1.153 skrll .pd_va = DEVMAP_ALIGN(va), \
221 1.153 skrll .pd_pa = DEVMAP_ALIGN(pa), \
222 1.153 skrll .pd_size = DEVMAP_SIZE(sz), \
223 1.153 skrll .pd_prot = VM_PROT_READ|VM_PROT_WRITE, \
224 1.153 skrll .pd_cache = PTE_NOCACHE \
225 1.153 skrll }
226 1.153 skrll #define DEVMAP_ENTRY_END { 0 }
227 1.153 skrll
228 1.73 thorpej /*
229 1.65 scw * The pmap structure itself
230 1.65 scw */
231 1.65 scw struct pmap {
232 1.124 matt struct uvm_object pm_obj;
233 1.124 matt kmutex_t pm_obj_lock;
234 1.124 matt #define pm_lock pm_obj.vmobjlock
235 1.120 matt #ifndef ARM_HAS_VBAR
236 1.82 scw pd_entry_t *pm_pl1vec;
237 1.124 matt pd_entry_t pm_l1vec;
238 1.120 matt #endif
239 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
240 1.65 scw struct pmap_statistics pm_stats;
241 1.65 scw LIST_ENTRY(pmap) pm_list;
242 1.124 matt #ifdef ARM_MMU_EXTENDED
243 1.124 matt pd_entry_t *pm_l1;
244 1.124 matt paddr_t pm_l1_pa;
245 1.124 matt bool pm_remove_all;
246 1.124 matt #ifdef MULTIPROCESSOR
247 1.124 matt kcpuset_t *pm_onproc;
248 1.124 matt kcpuset_t *pm_active;
249 1.126 matt #if PMAP_TLB_MAX > 1
250 1.126 matt u_int pm_shootdown_pending;
251 1.126 matt #endif
252 1.124 matt #endif
253 1.126 matt struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
254 1.124 matt #else
255 1.124 matt struct l1_ttable *pm_l1;
256 1.124 matt union pmap_cache_state pm_cstate;
257 1.124 matt uint8_t pm_domain;
258 1.124 matt bool pm_activated;
259 1.124 matt bool pm_remove_all;
260 1.124 matt #endif
261 1.124 matt };
262 1.124 matt
263 1.124 matt struct pmap_kernel {
264 1.124 matt struct pmap kernel_pmap;
265 1.65 scw };
266 1.65 scw
267 1.106 martin /*
268 1.106 martin * Physical / virtual address structure. In a number of places (particularly
269 1.106 martin * during bootstrapping) we need to keep track of the physical and virtual
270 1.106 martin * addresses of various pages
271 1.106 martin */
272 1.106 martin typedef struct pv_addr {
273 1.106 martin SLIST_ENTRY(pv_addr) pv_list;
274 1.106 martin paddr_t pv_pa;
275 1.106 martin vaddr_t pv_va;
276 1.106 martin vsize_t pv_size;
277 1.106 martin uint8_t pv_cache;
278 1.106 martin uint8_t pv_prot;
279 1.106 martin } pv_addr_t;
280 1.106 martin typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
281 1.106 martin
282 1.85 matt extern pv_addrqh_t pmap_freeq;
283 1.102 matt extern pv_addr_t kernelstack;
284 1.102 matt extern pv_addr_t abtstack;
285 1.102 matt extern pv_addr_t fiqstack;
286 1.102 matt extern pv_addr_t irqstack;
287 1.102 matt extern pv_addr_t undstack;
288 1.103 matt extern pv_addr_t idlestack;
289 1.85 matt extern pv_addr_t systempage;
290 1.85 matt extern pv_addr_t kernel_l1pt;
291 1.1 reinoud
292 1.126 matt #ifdef ARM_MMU_EXTENDED
293 1.126 matt extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
294 1.126 matt #endif
295 1.126 matt
296 1.1 reinoud /*
297 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
298 1.24 thorpej * vs. non-cacheable).
299 1.24 thorpej */
300 1.24 thorpej #define PTE_KERNEL 0
301 1.24 thorpej #define PTE_USER 1
302 1.24 thorpej #define PTE_NOCACHE 0
303 1.24 thorpej #define PTE_CACHE 1
304 1.65 scw #define PTE_PAGETABLE 2
305 1.24 thorpej
306 1.24 thorpej /*
307 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
308 1.43 thorpej *
309 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
310 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
311 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
312 1.43 thorpej * that we can clear multiple attributes at a time.
313 1.43 thorpej *
314 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
315 1.43 thorpej * multiple mappings in a given address space.
316 1.43 thorpej */
317 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
318 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
319 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
320 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
321 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
322 1.90 matt #ifdef PMAP_CACHE_VIVT
323 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
324 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
325 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC)
326 1.90 matt #endif
327 1.90 matt #ifdef PMAP_CACHE_VIPT
328 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
329 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
330 1.90 matt #endif
331 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */
332 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
333 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */
334 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
335 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */
336 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
337 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
338 1.43 thorpej
339 1.43 thorpej /*
340 1.1 reinoud * Commonly referenced structures
341 1.1 reinoud */
342 1.4 matt extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
343 1.113 matt extern int arm_poolpage_vmfreelist;
344 1.1 reinoud
345 1.1 reinoud /*
346 1.1 reinoud * Macros that we need to export
347 1.1 reinoud */
348 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
349 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
350 1.31 thorpej
351 1.43 thorpej #define pmap_is_modified(pg) \
352 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
353 1.43 thorpej #define pmap_is_referenced(pg) \
354 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
355 1.96 uebayasi #define pmap_is_page_colored_p(md) \
356 1.96 uebayasi (((md)->pvh_attrs & PVF_COLORED) != 0)
357 1.41 thorpej
358 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
359 1.60 chs
360 1.35 thorpej #define pmap_phys_address(ppn) (arm_ptob((ppn)))
361 1.98 macallan u_int arm32_mmap_flags(paddr_t);
362 1.137 skrll #define ARM32_MMAP_WRITECOMBINE 0x40000000
363 1.98 macallan #define ARM32_MMAP_CACHEABLE 0x20000000
364 1.155 ryo #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
365 1.155 ryo #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
366 1.137 skrll #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
367 1.1 reinoud
368 1.123 matt #define PMAP_PTE 0x10000000 /* kenter_pa */
369 1.123 matt
370 1.1 reinoud /*
371 1.1 reinoud * Functions that we need to export
372 1.1 reinoud */
373 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
374 1.65 scw void pmap_remove_all(pmap_t);
375 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
376 1.39 thorpej
377 1.1 reinoud #define PMAP_NEED_PROCWR
378 1.29 chris #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
379 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
380 1.4 matt
381 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
382 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
383 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int);
384 1.85 matt #endif
385 1.85 matt
386 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
387 1.85 matt
388 1.39 thorpej /* Functions we use internally. */
389 1.85 matt #ifdef PMAP_STEAL_MEMORY
390 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
391 1.85 matt void pmap_boot_pageadd(pv_addr_t *);
392 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
393 1.85 matt #endif
394 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t);
395 1.65 scw
396 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
397 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
398 1.124 matt int pmap_prefetchabt_fixup(void *);
399 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
400 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
401 1.155 ryo bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
402 1.65 scw
403 1.65 scw void pmap_debug(int);
404 1.39 thorpej void pmap_postinit(void);
405 1.42 thorpej
406 1.42 thorpej void vector_page_setprot(int);
407 1.24 thorpej
408 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
409 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
410 1.73 thorpej
411 1.24 thorpej /* Bootstrapping routines. */
412 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
413 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
414 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
415 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
416 1.73 thorpej void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
417 1.74 thorpej void pmap_devmap_register(const struct pmap_devmap *);
418 1.13 chris
419 1.13 chris /*
420 1.135 skrll * Special page zero routine for use by the idle loop (no cache cleans).
421 1.13 chris */
422 1.80 thorpej bool pmap_pageidlezero(paddr_t);
423 1.13 chris #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
424 1.1 reinoud
425 1.131 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
426 1.131 matt /*
427 1.131 matt * For the pmap, this is a more useful way to map a direct mapped page.
428 1.131 matt * It returns either the direct-mapped VA or the VA supplied if it can't
429 1.131 matt * be direct mapped.
430 1.131 matt */
431 1.131 matt vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
432 1.131 matt #endif
433 1.131 matt
434 1.29 chris /*
435 1.84 chris * used by dumpsys to record the PA of the L1 table
436 1.84 chris */
437 1.84 chris uint32_t pmap_kernel_L1_addr(void);
438 1.84 chris /*
439 1.29 chris * The current top of kernel VM
440 1.29 chris */
441 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
442 1.1 reinoud
443 1.131 matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
444 1.131 matt /*
445 1.141 matt * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
446 1.131 matt */
447 1.140 matt extern vaddr_t pmap_directlimit;
448 1.131 matt #endif
449 1.131 matt
450 1.1 reinoud /*
451 1.135 skrll * Useful macros and constants
452 1.1 reinoud */
453 1.59 thorpej
454 1.65 scw /* Virtual address to page table entry */
455 1.79 perry static inline pt_entry_t *
456 1.65 scw vtopte(vaddr_t va)
457 1.65 scw {
458 1.65 scw pd_entry_t *pdep;
459 1.65 scw pt_entry_t *ptep;
460 1.65 scw
461 1.124 matt KASSERT(trunc_page(va) == va);
462 1.124 matt
463 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
464 1.65 scw return (NULL);
465 1.65 scw return (ptep);
466 1.65 scw }
467 1.65 scw
468 1.65 scw /*
469 1.65 scw * Virtual address to physical address
470 1.65 scw */
471 1.79 perry static inline paddr_t
472 1.65 scw vtophys(vaddr_t va)
473 1.65 scw {
474 1.65 scw paddr_t pa;
475 1.65 scw
476 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
477 1.65 scw return (0); /* XXXSCW: Panic? */
478 1.65 scw
479 1.65 scw return (pa);
480 1.65 scw }
481 1.65 scw
482 1.65 scw /*
483 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
484 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
485 1.65 scw * on every change.
486 1.65 scw *
487 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
488 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
489 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
490 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
491 1.69 thorpej * the code.
492 1.69 thorpej */
493 1.69 thorpej extern int pmap_needs_pte_sync;
494 1.69 thorpej #if defined(_KERNEL_OPT)
495 1.69 thorpej /*
496 1.145 skrll * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
497 1.145 skrll * single MMU type is selected.
498 1.145 skrll *
499 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
500 1.145 skrll * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
501 1.145 skrll * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
502 1.145 skrll *
503 1.145 skrll * Use run time evaluation for all other cases.
504 1.148 skrll *
505 1.69 thorpej */
506 1.145 skrll #if (ARM_NMMUS == 1)
507 1.145 skrll #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
508 1.104 matt #define PMAP_INCLUDE_PTE_SYNC
509 1.109 matt #define PMAP_NEEDS_PTE_SYNC 1
510 1.145 skrll #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
511 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
512 1.69 thorpej #endif
513 1.112 matt #endif
514 1.69 thorpej #endif /* _KERNEL_OPT */
515 1.69 thorpej
516 1.69 thorpej /*
517 1.69 thorpej * Provide a fallback in case we were not able to determine it at
518 1.69 thorpej * compile-time.
519 1.65 scw */
520 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
521 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
522 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
523 1.69 thorpej #endif
524 1.65 scw
525 1.104 matt static inline void
526 1.104 matt pmap_ptesync(pt_entry_t *ptep, size_t cnt)
527 1.104 matt {
528 1.132 matt if (PMAP_NEEDS_PTE_SYNC) {
529 1.104 matt cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
530 1.132 matt #ifdef SHEEVA_L2_CACHE
531 1.132 matt cpu_sdcache_wb_range((vaddr_t)ptep, -1,
532 1.132 matt cnt * sizeof(pt_entry_t));
533 1.132 matt #endif
534 1.132 matt }
535 1.138 joerg arm_dsb();
536 1.104 matt }
537 1.69 thorpej
538 1.124 matt #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
539 1.124 matt #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
540 1.124 matt #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
541 1.104 matt #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
542 1.65 scw
543 1.124 matt #define l1pte_valid_p(pde) ((pde) != 0)
544 1.124 matt #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
545 1.124 matt #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
546 1.104 matt && ((pde) & L1_S_V6_SUPER) != 0)
547 1.124 matt #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
548 1.124 matt #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
549 1.124 matt #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
550 1.124 matt #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
551 1.124 matt #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \
552 1.124 matt & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
553 1.124 matt
554 1.124 matt static inline void
555 1.124 matt l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
556 1.124 matt {
557 1.124 matt *pdep = pde;
558 1.124 matt }
559 1.36 thorpej
560 1.124 matt static inline void
561 1.124 matt l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
562 1.124 matt {
563 1.124 matt *pdep = pde;
564 1.124 matt if (l1pte_page_p(pde)) {
565 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
566 1.124 matt for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
567 1.124 matt pde += L2_T_SIZE;
568 1.124 matt pdep[k] = pde;
569 1.124 matt }
570 1.124 matt } else if (l1pte_supersection_p(pde)) {
571 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
572 1.124 matt for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
573 1.124 matt pdep[k] = pde;
574 1.124 matt }
575 1.124 matt }
576 1.124 matt }
577 1.124 matt
578 1.124 matt #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
579 1.124 matt #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
580 1.124 matt #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
581 1.124 matt #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
582 1.124 matt #define l2pte_minidata_p(pte) (((pte) & \
583 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
584 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
585 1.35 thorpej
586 1.121 matt static inline void
587 1.121 matt l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
588 1.121 matt {
589 1.129 skrll if (l1pte_lpage_p(pte)) {
590 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
591 1.129 skrll for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
592 1.129 skrll *ptep++ = pte;
593 1.129 skrll }
594 1.129 skrll } else {
595 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
596 1.129 skrll for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
597 1.129 skrll KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
598 1.129 skrll *ptep++ = pte;
599 1.129 skrll pte += L2_S_SIZE;
600 1.129 skrll if (opte)
601 1.129 skrll opte += L2_S_SIZE;
602 1.129 skrll }
603 1.121 matt }
604 1.129 skrll }
605 1.121 matt
606 1.121 matt static inline void
607 1.121 matt l2pte_reset(pt_entry_t *ptep)
608 1.121 matt {
609 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
610 1.121 matt *ptep = 0;
611 1.121 matt for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
612 1.121 matt ptep[k] = 0;
613 1.121 matt }
614 1.135 skrll }
615 1.121 matt
616 1.1 reinoud /* L1 and L2 page table macros */
617 1.36 thorpej #define pmap_pde_v(pde) l1pte_valid(*(pde))
618 1.36 thorpej #define pmap_pde_section(pde) l1pte_section_p(*(pde))
619 1.107 matt #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
620 1.36 thorpej #define pmap_pde_page(pde) l1pte_page_p(*(pde))
621 1.36 thorpej #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
622 1.16 rearnsha
623 1.124 matt #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
624 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
625 1.35 thorpej
626 1.1 reinoud /* Size of the kernel part of the L1 page table */
627 1.1 reinoud #define KERNEL_PD_SIZE \
628 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
629 1.20 chs
630 1.117 matt void bzero_page(vaddr_t);
631 1.117 matt void bcopy_page(vaddr_t, vaddr_t);
632 1.46 thorpej
633 1.116 matt #ifdef FPU_VFP
634 1.117 matt void bzero_page_vfp(vaddr_t);
635 1.117 matt void bcopy_page_vfp(vaddr_t, vaddr_t);
636 1.116 matt #endif
637 1.116 matt
638 1.117 matt /************************* ARM MMU configuration *****************************/
639 1.117 matt
640 1.95 jmcneill #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
641 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
642 1.51 thorpej void pmap_zero_page_generic(paddr_t);
643 1.51 thorpej
644 1.46 thorpej void pmap_pte_init_generic(void);
645 1.69 thorpej #if defined(CPU_ARM8)
646 1.69 thorpej void pmap_pte_init_arm8(void);
647 1.69 thorpej #endif
648 1.46 thorpej #if defined(CPU_ARM9)
649 1.46 thorpej void pmap_pte_init_arm9(void);
650 1.46 thorpej #endif /* CPU_ARM9 */
651 1.76 rearnsha #if defined(CPU_ARM10)
652 1.76 rearnsha void pmap_pte_init_arm10(void);
653 1.76 rearnsha #endif /* CPU_ARM10 */
654 1.103 matt #if defined(CPU_ARM11) /* ARM_MMU_V6 */
655 1.94 uebayasi void pmap_pte_init_arm11(void);
656 1.94 uebayasi #endif /* CPU_ARM11 */
657 1.103 matt #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
658 1.99 bsh void pmap_pte_init_arm11mpcore(void);
659 1.99 bsh #endif
660 1.103 matt #if ARM_MMU_V7 == 1
661 1.103 matt void pmap_pte_init_armv7(void);
662 1.103 matt #endif /* ARM_MMU_V7 */
663 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
664 1.69 thorpej
665 1.69 thorpej #if ARM_MMU_SA1 == 1
666 1.69 thorpej void pmap_pte_init_sa1(void);
667 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
668 1.46 thorpej
669 1.52 thorpej #if ARM_MMU_XSCALE == 1
670 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
671 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
672 1.51 thorpej
673 1.46 thorpej void pmap_pte_init_xscale(void);
674 1.50 thorpej
675 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
676 1.77 scw
677 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
678 1.77 scw void pmap_uarea(vaddr_t);
679 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
680 1.46 thorpej
681 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
682 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mask;
683 1.49 thorpej
684 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
685 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mask;
686 1.49 thorpej
687 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
688 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mask;
689 1.46 thorpej
690 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
691 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
692 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
693 1.65 scw
694 1.98 macallan extern pt_entry_t pte_l1_s_wc_mode;
695 1.98 macallan extern pt_entry_t pte_l2_l_wc_mode;
696 1.98 macallan extern pt_entry_t pte_l2_s_wc_mode;
697 1.98 macallan
698 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_u;
699 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_w;
700 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_ro;
701 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_mask;
702 1.95 jmcneill
703 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
704 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
705 1.95 jmcneill extern pt_entry_t pte_l2_s_prot_ro;
706 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
707 1.95 jmcneill
708 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_u;
709 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_w;
710 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_ro;
711 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_mask;
712 1.95 jmcneill
713 1.103 matt extern pt_entry_t pte_l1_ss_proto;
714 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
715 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
716 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
717 1.46 thorpej
718 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
719 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
720 1.75 bsh
721 1.75 bsh #endif /* !_LOCORE */
722 1.51 thorpej
723 1.46 thorpej /*****************************************************************************/
724 1.46 thorpej
725 1.124 matt #define KERNEL_PID 0 /* The kernel uses ASID 0 */
726 1.124 matt
727 1.20 chs /*
728 1.65 scw * Definitions for MMU domains
729 1.65 scw */
730 1.103 matt #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
731 1.124 matt #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
732 1.124 matt #ifdef ARM_MMU_EXTENDED
733 1.124 matt #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
734 1.124 matt #endif
735 1.45 thorpej
736 1.45 thorpej /*
737 1.45 thorpej * These macros define the various bit masks in the PTE.
738 1.45 thorpej *
739 1.45 thorpej * We use these macros since we use different bits on different processor
740 1.45 thorpej * models.
741 1.45 thorpej */
742 1.95 jmcneill #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
743 1.95 jmcneill #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
744 1.152 skrll #define L1_S_PROT_RO_generic (0)
745 1.95 jmcneill #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
746 1.95 jmcneill
747 1.95 jmcneill #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
748 1.95 jmcneill #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
749 1.152 skrll #define L1_S_PROT_RO_xscale (0)
750 1.95 jmcneill #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
751 1.95 jmcneill
752 1.99 bsh #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
753 1.99 bsh #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
754 1.99 bsh #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
755 1.99 bsh #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
756 1.99 bsh
757 1.95 jmcneill #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
758 1.95 jmcneill #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
759 1.95 jmcneill #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
760 1.95 jmcneill #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
761 1.45 thorpej
762 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
763 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
764 1.99 bsh #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
765 1.134 skrll #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
766 1.111 matt #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
767 1.45 thorpej
768 1.95 jmcneill #define L2_L_PROT_U_generic (L2_AP(AP_U))
769 1.95 jmcneill #define L2_L_PROT_W_generic (L2_AP(AP_W))
770 1.152 skrll #define L2_L_PROT_RO_generic (0)
771 1.95 jmcneill #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
772 1.95 jmcneill
773 1.95 jmcneill #define L2_L_PROT_U_xscale (L2_AP(AP_U))
774 1.95 jmcneill #define L2_L_PROT_W_xscale (L2_AP(AP_W))
775 1.152 skrll #define L2_L_PROT_RO_xscale (0)
776 1.95 jmcneill #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
777 1.95 jmcneill
778 1.99 bsh #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
779 1.99 bsh #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
780 1.99 bsh #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
781 1.99 bsh #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
782 1.99 bsh
783 1.95 jmcneill #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
784 1.95 jmcneill #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
785 1.95 jmcneill #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
786 1.95 jmcneill #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
787 1.45 thorpej
788 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
789 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
790 1.99 bsh #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
791 1.134 skrll #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
792 1.111 matt #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
793 1.49 thorpej
794 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
795 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
796 1.152 skrll #define L2_S_PROT_RO_generic (0)
797 1.95 jmcneill #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
798 1.46 thorpej
799 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
800 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
801 1.152 skrll #define L2_S_PROT_RO_xscale (0)
802 1.95 jmcneill #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
803 1.95 jmcneill
804 1.99 bsh #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
805 1.99 bsh #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
806 1.99 bsh #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
807 1.99 bsh #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
808 1.99 bsh
809 1.95 jmcneill #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
810 1.95 jmcneill #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
811 1.95 jmcneill #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
812 1.95 jmcneill #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
813 1.46 thorpej
814 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
815 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
816 1.99 bsh #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
817 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
818 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
819 1.99 bsh #else
820 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
821 1.99 bsh #endif
822 1.142 skrll #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
823 1.111 matt #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
824 1.46 thorpej
825 1.99 bsh
826 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
827 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
828 1.99 bsh #define L1_S_PROTO_armv6 (L1_TYPE_S)
829 1.95 jmcneill #define L1_S_PROTO_armv7 (L1_TYPE_S)
830 1.46 thorpej
831 1.103 matt #define L1_SS_PROTO_generic 0
832 1.103 matt #define L1_SS_PROTO_xscale 0
833 1.103 matt #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
834 1.103 matt #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
835 1.103 matt
836 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
837 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
838 1.99 bsh #define L1_C_PROTO_armv6 (L1_TYPE_C)
839 1.95 jmcneill #define L1_C_PROTO_armv7 (L1_TYPE_C)
840 1.46 thorpej
841 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
842 1.46 thorpej
843 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
844 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS)
845 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
846 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
847 1.99 bsh #else
848 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
849 1.99 bsh #endif
850 1.134 skrll #ifdef ARM_MMU_EXTENDED
851 1.134 skrll #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
852 1.134 skrll #else
853 1.99 bsh #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
854 1.134 skrll #endif
855 1.124 matt #ifdef ARM_MMU_EXTENDED
856 1.124 matt #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
857 1.124 matt #else
858 1.95 jmcneill #define L2_S_PROTO_armv7 (L2_TYPE_S)
859 1.124 matt #endif
860 1.45 thorpej
861 1.46 thorpej /*
862 1.46 thorpej * User-visible names for the ones that vary with MMU class.
863 1.46 thorpej */
864 1.46 thorpej
865 1.46 thorpej #if ARM_NMMUS > 1
866 1.46 thorpej /* More than one MMU class configured; use variables. */
867 1.95 jmcneill #define L1_S_PROT_U pte_l1_s_prot_u
868 1.95 jmcneill #define L1_S_PROT_W pte_l1_s_prot_w
869 1.95 jmcneill #define L1_S_PROT_RO pte_l1_s_prot_ro
870 1.95 jmcneill #define L1_S_PROT_MASK pte_l1_s_prot_mask
871 1.95 jmcneill
872 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
873 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
874 1.95 jmcneill #define L2_S_PROT_RO pte_l2_s_prot_ro
875 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
876 1.46 thorpej
877 1.95 jmcneill #define L2_L_PROT_U pte_l2_l_prot_u
878 1.95 jmcneill #define L2_L_PROT_W pte_l2_l_prot_w
879 1.95 jmcneill #define L2_L_PROT_RO pte_l2_l_prot_ro
880 1.95 jmcneill #define L2_L_PROT_MASK pte_l2_l_prot_mask
881 1.95 jmcneill
882 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
883 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
884 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
885 1.49 thorpej
886 1.103 matt #define L1_SS_PROTO pte_l1_ss_proto
887 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
888 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
889 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
890 1.51 thorpej
891 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
892 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
893 1.99 bsh #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
894 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_generic
895 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_generic
896 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_generic
897 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
898 1.99 bsh
899 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_generic
900 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_generic
901 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_generic
902 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
903 1.99 bsh
904 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_generic
905 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_generic
906 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_generic
907 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
908 1.99 bsh
909 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
910 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
911 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
912 1.99 bsh
913 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
914 1.99 bsh #define L1_S_PROTO L1_S_PROTO_generic
915 1.99 bsh #define L1_C_PROTO L1_C_PROTO_generic
916 1.99 bsh #define L2_S_PROTO L2_S_PROTO_generic
917 1.99 bsh
918 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
919 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
920 1.99 bsh #elif ARM_MMU_V6N != 0
921 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_armv6
922 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_armv6
923 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_armv6
924 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
925 1.99 bsh
926 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_armv6n
927 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_armv6n
928 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
929 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
930 1.99 bsh
931 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_armv6n
932 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_armv6n
933 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
934 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
935 1.99 bsh
936 1.134 skrll #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
937 1.134 skrll #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
938 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
939 1.99 bsh
940 1.150 skrll /*
941 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
942 1.150 skrll * make read-only mappings.
943 1.150 skrll */
944 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
945 1.99 bsh #define L1_S_PROTO L1_S_PROTO_armv6
946 1.99 bsh #define L1_C_PROTO L1_C_PROTO_armv6
947 1.99 bsh #define L2_S_PROTO L2_S_PROTO_armv6n
948 1.99 bsh
949 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
950 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
951 1.99 bsh #elif ARM_MMU_V6C != 0
952 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
953 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
954 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
955 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
956 1.95 jmcneill
957 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
958 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
959 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_generic
960 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
961 1.46 thorpej
962 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
963 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
964 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
965 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
966 1.95 jmcneill
967 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
968 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
969 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
970 1.49 thorpej
971 1.130 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
972 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
973 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
974 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
975 1.51 thorpej
976 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
977 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
978 1.46 thorpej #elif ARM_MMU_XSCALE == 1
979 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
980 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
981 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
982 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
983 1.95 jmcneill
984 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
985 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
986 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_xscale
987 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
988 1.49 thorpej
989 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
990 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
991 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
992 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
993 1.95 jmcneill
994 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
995 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
996 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
997 1.46 thorpej
998 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_xscale
999 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
1000 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
1001 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
1002 1.51 thorpej
1003 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
1004 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
1005 1.95 jmcneill #elif ARM_MMU_V7 == 1
1006 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_armv7
1007 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_armv7
1008 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_armv7
1009 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
1010 1.95 jmcneill
1011 1.95 jmcneill #define L2_S_PROT_U L2_S_PROT_U_armv7
1012 1.95 jmcneill #define L2_S_PROT_W L2_S_PROT_W_armv7
1013 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_armv7
1014 1.95 jmcneill #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1015 1.95 jmcneill
1016 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_armv7
1017 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_armv7
1018 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1019 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1020 1.95 jmcneill
1021 1.95 jmcneill #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1022 1.95 jmcneill #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1023 1.95 jmcneill #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1024 1.95 jmcneill
1025 1.150 skrll /*
1026 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
1027 1.150 skrll * make read-only mappings.
1028 1.150 skrll */
1029 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv7
1030 1.95 jmcneill #define L1_S_PROTO L1_S_PROTO_armv7
1031 1.95 jmcneill #define L1_C_PROTO L1_C_PROTO_armv7
1032 1.95 jmcneill #define L2_S_PROTO L2_S_PROTO_armv7
1033 1.95 jmcneill
1034 1.95 jmcneill #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1035 1.95 jmcneill #define pmap_zero_page(d) pmap_zero_page_generic((d))
1036 1.46 thorpej #endif /* ARM_NMMUS > 1 */
1037 1.20 chs
1038 1.45 thorpej /*
1039 1.95 jmcneill * Macros to set and query the write permission on page descriptors.
1040 1.95 jmcneill */
1041 1.95 jmcneill #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1042 1.95 jmcneill #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1043 1.149 skrll
1044 1.152 skrll #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1045 1.152 skrll #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1046 1.95 jmcneill
1047 1.95 jmcneill #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1048 1.152 skrll (L2_S_PROT_RO == 0 || \
1049 1.95 jmcneill ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1050 1.95 jmcneill
1051 1.95 jmcneill /*
1052 1.45 thorpej * These macros return various bits based on kernel/user and protection.
1053 1.45 thorpej * Note that the compiler will usually fold these at compile time.
1054 1.45 thorpej */
1055 1.152 skrll
1056 1.152 skrll #define L1_S_PROT(ku, pr) ( \
1057 1.152 skrll (((ku) == PTE_USER) ? \
1058 1.152 skrll L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
1059 1.152 skrll : \
1060 1.152 skrll (((L1_S_PROT_RO && \
1061 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1062 1.152 skrll L1_S_PROT_RO : L1_S_PROT_W))) \
1063 1.152 skrll )
1064 1.152 skrll
1065 1.152 skrll #define L2_L_PROT(ku, pr) ( \
1066 1.152 skrll (((ku) == PTE_USER) ? \
1067 1.152 skrll L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
1068 1.152 skrll : \
1069 1.152 skrll (((L2_L_PROT_RO && \
1070 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1071 1.152 skrll L2_L_PROT_RO : L2_L_PROT_W))) \
1072 1.152 skrll )
1073 1.152 skrll
1074 1.152 skrll #define L2_S_PROT(ku, pr) ( \
1075 1.152 skrll (((ku) == PTE_USER) ? \
1076 1.152 skrll L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
1077 1.152 skrll : \
1078 1.152 skrll (((L2_S_PROT_RO && \
1079 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1080 1.152 skrll L2_S_PROT_RO : L2_S_PROT_W))) \
1081 1.152 skrll )
1082 1.66 thorpej
1083 1.66 thorpej /*
1084 1.103 matt * Macros to test if a mapping is mappable with an L1 SuperSection,
1085 1.103 matt * L1 Section, or an L2 Large Page mapping.
1086 1.66 thorpej */
1087 1.103 matt #define L1_SS_MAPPABLE_P(va, pa, size) \
1088 1.103 matt ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1089 1.103 matt
1090 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
1091 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1092 1.66 thorpej
1093 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
1094 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1095 1.64 thorpej
1096 1.155 ryo #define PMAP_MAPSIZE1 L2_L_SIZE
1097 1.155 ryo #define PMAP_MAPSIZE2 L1_S_SIZE
1098 1.155 ryo #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1099 1.155 ryo #define PMAP_MAPSIZE3 L1_SS_SIZE
1100 1.155 ryo #endif
1101 1.155 ryo
1102 1.119 matt #ifndef _LOCORE
1103 1.64 thorpej /*
1104 1.64 thorpej * Hooks for the pool allocator.
1105 1.64 thorpej */
1106 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1107 1.117 matt extern paddr_t physical_start, physical_end;
1108 1.113 matt #ifdef PMAP_NEED_ALLOC_POOLPAGE
1109 1.114 matt struct vm_page *arm_pmap_alloc_poolpage(int);
1110 1.113 matt #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1111 1.118 matt #endif
1112 1.118 matt #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1113 1.131 matt vaddr_t pmap_map_poolpage(paddr_t);
1114 1.131 matt paddr_t pmap_unmap_poolpage(vaddr_t);
1115 1.131 matt #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1116 1.131 matt #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1117 1.113 matt #endif
1118 1.18 thorpej
1119 1.143 skrll #define __HAVE_PMAP_PV_TRACK 1
1120 1.143 skrll
1121 1.143 skrll void pmap_pv_protect(paddr_t, vm_prot_t);
1122 1.143 skrll
1123 1.143 skrll struct pmap_page {
1124 1.97 uebayasi SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1125 1.97 uebayasi int pvh_attrs; /* page attributes */
1126 1.97 uebayasi u_int uro_mappings;
1127 1.97 uebayasi u_int urw_mappings;
1128 1.97 uebayasi union {
1129 1.97 uebayasi u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1130 1.97 uebayasi u_int i_mappings;
1131 1.97 uebayasi } k_u;
1132 1.97 uebayasi };
1133 1.97 uebayasi
1134 1.97 uebayasi /*
1135 1.143 skrll * pmap-specific data store in the vm_page structure.
1136 1.143 skrll */
1137 1.143 skrll #define __HAVE_VM_PAGE_MD
1138 1.143 skrll struct vm_page_md {
1139 1.143 skrll struct pmap_page pp;
1140 1.143 skrll #define pvh_list pp.pvh_list
1141 1.143 skrll #define pvh_attrs pp.pvh_attrs
1142 1.143 skrll #define uro_mappings pp.uro_mappings
1143 1.143 skrll #define urw_mappings pp.urw_mappings
1144 1.143 skrll #define kro_mappings pp.k_u.s_mappings[0]
1145 1.143 skrll #define krw_mappings pp.k_u.s_mappings[1]
1146 1.143 skrll #define k_mappings pp.k_u.i_mappings
1147 1.143 skrll };
1148 1.143 skrll
1149 1.143 skrll #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1150 1.143 skrll
1151 1.143 skrll /*
1152 1.97 uebayasi * Set the default color of each page.
1153 1.97 uebayasi */
1154 1.97 uebayasi #if ARM_MMU_V6 > 0
1155 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1156 1.97 uebayasi (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
1157 1.97 uebayasi #else
1158 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1159 1.97 uebayasi (pg)->mdpage.pvh_attrs = 0
1160 1.97 uebayasi #endif
1161 1.135 skrll
1162 1.97 uebayasi #define VM_MDPAGE_INIT(pg) \
1163 1.97 uebayasi do { \
1164 1.97 uebayasi SLIST_INIT(&(pg)->mdpage.pvh_list); \
1165 1.97 uebayasi VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1166 1.97 uebayasi (pg)->mdpage.uro_mappings = 0; \
1167 1.97 uebayasi (pg)->mdpage.urw_mappings = 0; \
1168 1.97 uebayasi (pg)->mdpage.k_mappings = 0; \
1169 1.97 uebayasi } while (/*CONSTCOND*/0)
1170 1.97 uebayasi
1171 1.97 uebayasi #endif /* !_LOCORE */
1172 1.97 uebayasi
1173 1.18 thorpej #endif /* _KERNEL */
1174 1.1 reinoud
1175 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
1176