pmap.h revision 1.160 1 1.160 skrll /* $NetBSD: pmap.h,v 1.160 2020/01/20 22:13:58 skrll Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.85 matt #if defined(_KERNEL_OPT)
77 1.85 matt #include "opt_arm32_pmap.h"
78 1.136 skrll #include "opt_multiprocessor.h"
79 1.85 matt #endif
80 1.19 thorpej #include <arm/cpufunc.h>
81 1.138 joerg #include <arm/locore.h>
82 1.12 chris #include <uvm/uvm_object.h>
83 1.143 skrll #include <uvm/pmap/pmap_pvt.h>
84 1.75 bsh #endif
85 1.1 reinoud
86 1.124 matt #ifdef ARM_MMU_EXTENDED
87 1.147 skrll #define PMAP_HWPAGEWALKER 1
88 1.124 matt #define PMAP_TLB_MAX 1
89 1.126 matt #if PMAP_TLB_MAX > 1
90 1.144 skrll #define PMAP_TLB_NEED_SHOOTDOWN 1
91 1.126 matt #endif
92 1.126 matt #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
93 1.124 matt #define PMAP_TLB_NUM_PIDS 256
94 1.124 matt #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
95 1.124 matt #if PMAP_TLB_MAX > 1
96 1.124 matt #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
97 1.124 matt #else
98 1.124 matt #define cpu_tlb_info(ci) (&pmap_tlb0_info)
99 1.124 matt #endif
100 1.124 matt #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
101 1.124 matt #include <uvm/pmap/tlb.h>
102 1.124 matt #include <uvm/pmap/pmap_tlb.h>
103 1.124 matt
104 1.135 skrll /*
105 1.124 matt * If we have an EXTENDED MMU and the address space is split evenly between
106 1.124 matt * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
107 1.124 matt * user and kernel address spaces.
108 1.135 skrll */
109 1.128 matt #if (KERNEL_BASE & 0x80000000) == 0
110 1.128 matt #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
111 1.135 skrll #endif
112 1.124 matt #endif /* ARM_MMU_EXTENDED */
113 1.124 matt
114 1.1 reinoud /*
115 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
116 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
117 1.38 thorpej * are described by L1 PTEs in the L1 table.
118 1.11 chris *
119 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
120 1.38 thorpej * changes when the VM context is switched. Everything above that line
121 1.38 thorpej * is the same no matter which VM context is running. This is achieved
122 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
123 1.38 thorpej * kernel L2 tables.
124 1.11 chris *
125 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
126 1.38 thorpej *
127 1.38 thorpej * 0xffffffff
128 1.38 thorpej * .
129 1.38 thorpej * .
130 1.38 thorpej * .
131 1.38 thorpej * KERNEL_BASE
132 1.38 thorpej * --------------------
133 1.38 thorpej * .
134 1.38 thorpej * .
135 1.38 thorpej * .
136 1.38 thorpej * 0x00000000
137 1.11 chris */
138 1.11 chris
139 1.65 scw /*
140 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
142 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
143 1.65 scw * three of these to map their whole working set.
144 1.65 scw */
145 1.124 matt #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
146 1.124 matt #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
147 1.65 scw #define L2_BUCKET_LOG2 4
148 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
149 1.65 scw
150 1.65 scw /*
151 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152 1.65 scw * of l2_dtable structures required to track all possible page descriptors
153 1.65 scw * mappable by an L1 translation table is given by the following constants:
154 1.65 scw */
155 1.124 matt #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
156 1.65 scw #define L2_SIZE (1 << L2_LOG2)
157 1.65 scw
158 1.90 matt /*
159 1.90 matt * tell MI code that the cache is virtually-indexed.
160 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged.
161 1.90 matt */
162 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
163 1.90 matt #define PMAP_CACHE_VIPT
164 1.90 matt #else
165 1.90 matt #define PMAP_CACHE_VIVT
166 1.90 matt #endif
167 1.90 matt
168 1.75 bsh #ifndef _LOCORE
169 1.75 bsh
170 1.146 skrll #ifndef ARM_MMU_EXTENDED
171 1.65 scw struct l1_ttable;
172 1.65 scw struct l2_dtable;
173 1.65 scw
174 1.65 scw /*
175 1.65 scw * Track cache/tlb occupancy using the following structure
176 1.65 scw */
177 1.65 scw union pmap_cache_state {
178 1.65 scw struct {
179 1.65 scw union {
180 1.115 skrll uint8_t csu_cache_b[2];
181 1.115 skrll uint16_t csu_cache;
182 1.65 scw } cs_cache_u;
183 1.65 scw
184 1.65 scw union {
185 1.115 skrll uint8_t csu_tlb_b[2];
186 1.115 skrll uint16_t csu_tlb;
187 1.65 scw } cs_tlb_u;
188 1.65 scw } cs_s;
189 1.115 skrll uint32_t cs_all;
190 1.65 scw };
191 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
192 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
193 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
194 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
195 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
196 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
197 1.65 scw
198 1.65 scw /*
199 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
200 1.65 scw */
201 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
202 1.124 matt #endif /* !ARM_MMU_EXTENDED */
203 1.65 scw
204 1.65 scw /*
205 1.73 thorpej * This structure is used by machine-dependent code to describe
206 1.73 thorpej * static mappings of devices, created at bootstrap time.
207 1.73 thorpej */
208 1.73 thorpej struct pmap_devmap {
209 1.73 thorpej vaddr_t pd_va; /* virtual address */
210 1.73 thorpej paddr_t pd_pa; /* physical address */
211 1.73 thorpej psize_t pd_size; /* size of region */
212 1.73 thorpej vm_prot_t pd_prot; /* protection code */
213 1.73 thorpej int pd_cache; /* cache attributes */
214 1.73 thorpej };
215 1.73 thorpej
216 1.153 skrll #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
217 1.153 skrll #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
218 1.153 skrll #define DEVMAP_ENTRY(va, pa, sz) \
219 1.153 skrll { \
220 1.153 skrll .pd_va = DEVMAP_ALIGN(va), \
221 1.153 skrll .pd_pa = DEVMAP_ALIGN(pa), \
222 1.153 skrll .pd_size = DEVMAP_SIZE(sz), \
223 1.153 skrll .pd_prot = VM_PROT_READ|VM_PROT_WRITE, \
224 1.153 skrll .pd_cache = PTE_NOCACHE \
225 1.153 skrll }
226 1.153 skrll #define DEVMAP_ENTRY_END { 0 }
227 1.153 skrll
228 1.73 thorpej /*
229 1.65 scw * The pmap structure itself
230 1.65 scw */
231 1.65 scw struct pmap {
232 1.124 matt struct uvm_object pm_obj;
233 1.124 matt kmutex_t pm_obj_lock;
234 1.124 matt #define pm_lock pm_obj.vmobjlock
235 1.120 matt #ifndef ARM_HAS_VBAR
236 1.82 scw pd_entry_t *pm_pl1vec;
237 1.124 matt pd_entry_t pm_l1vec;
238 1.120 matt #endif
239 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
240 1.65 scw struct pmap_statistics pm_stats;
241 1.65 scw LIST_ENTRY(pmap) pm_list;
242 1.124 matt #ifdef ARM_MMU_EXTENDED
243 1.124 matt pd_entry_t *pm_l1;
244 1.124 matt paddr_t pm_l1_pa;
245 1.124 matt bool pm_remove_all;
246 1.124 matt #ifdef MULTIPROCESSOR
247 1.124 matt kcpuset_t *pm_onproc;
248 1.124 matt kcpuset_t *pm_active;
249 1.126 matt #if PMAP_TLB_MAX > 1
250 1.126 matt u_int pm_shootdown_pending;
251 1.126 matt #endif
252 1.124 matt #endif
253 1.126 matt struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
254 1.124 matt #else
255 1.124 matt struct l1_ttable *pm_l1;
256 1.124 matt union pmap_cache_state pm_cstate;
257 1.124 matt uint8_t pm_domain;
258 1.124 matt bool pm_activated;
259 1.124 matt bool pm_remove_all;
260 1.124 matt #endif
261 1.124 matt };
262 1.124 matt
263 1.124 matt struct pmap_kernel {
264 1.124 matt struct pmap kernel_pmap;
265 1.65 scw };
266 1.65 scw
267 1.106 martin /*
268 1.106 martin * Physical / virtual address structure. In a number of places (particularly
269 1.106 martin * during bootstrapping) we need to keep track of the physical and virtual
270 1.106 martin * addresses of various pages
271 1.106 martin */
272 1.106 martin typedef struct pv_addr {
273 1.106 martin SLIST_ENTRY(pv_addr) pv_list;
274 1.106 martin paddr_t pv_pa;
275 1.106 martin vaddr_t pv_va;
276 1.106 martin vsize_t pv_size;
277 1.106 martin uint8_t pv_cache;
278 1.106 martin uint8_t pv_prot;
279 1.106 martin } pv_addr_t;
280 1.106 martin typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
281 1.106 martin
282 1.85 matt extern pv_addrqh_t pmap_freeq;
283 1.102 matt extern pv_addr_t kernelstack;
284 1.102 matt extern pv_addr_t abtstack;
285 1.102 matt extern pv_addr_t fiqstack;
286 1.102 matt extern pv_addr_t irqstack;
287 1.102 matt extern pv_addr_t undstack;
288 1.103 matt extern pv_addr_t idlestack;
289 1.85 matt extern pv_addr_t systempage;
290 1.85 matt extern pv_addr_t kernel_l1pt;
291 1.1 reinoud
292 1.126 matt #ifdef ARM_MMU_EXTENDED
293 1.126 matt extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
294 1.126 matt #endif
295 1.126 matt
296 1.1 reinoud /*
297 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
298 1.24 thorpej * vs. non-cacheable).
299 1.24 thorpej */
300 1.24 thorpej #define PTE_KERNEL 0
301 1.24 thorpej #define PTE_USER 1
302 1.24 thorpej #define PTE_NOCACHE 0
303 1.24 thorpej #define PTE_CACHE 1
304 1.65 scw #define PTE_PAGETABLE 2
305 1.24 thorpej
306 1.24 thorpej /*
307 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
308 1.43 thorpej *
309 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
310 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
311 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
312 1.43 thorpej * that we can clear multiple attributes at a time.
313 1.43 thorpej *
314 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
315 1.43 thorpej * multiple mappings in a given address space.
316 1.43 thorpej */
317 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
318 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
319 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
320 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
321 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
322 1.90 matt #ifdef PMAP_CACHE_VIVT
323 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
324 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
325 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC)
326 1.90 matt #endif
327 1.90 matt #ifdef PMAP_CACHE_VIPT
328 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
329 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
330 1.90 matt #endif
331 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */
332 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
333 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */
334 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
335 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */
336 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
337 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
338 1.43 thorpej
339 1.43 thorpej /*
340 1.1 reinoud * Commonly referenced structures
341 1.1 reinoud */
342 1.4 matt extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
343 1.113 matt extern int arm_poolpage_vmfreelist;
344 1.1 reinoud
345 1.1 reinoud /*
346 1.1 reinoud * Macros that we need to export
347 1.1 reinoud */
348 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
349 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
350 1.31 thorpej
351 1.43 thorpej #define pmap_is_modified(pg) \
352 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
353 1.43 thorpej #define pmap_is_referenced(pg) \
354 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
355 1.96 uebayasi #define pmap_is_page_colored_p(md) \
356 1.96 uebayasi (((md)->pvh_attrs & PVF_COLORED) != 0)
357 1.41 thorpej
358 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
359 1.60 chs
360 1.35 thorpej #define pmap_phys_address(ppn) (arm_ptob((ppn)))
361 1.98 macallan u_int arm32_mmap_flags(paddr_t);
362 1.137 skrll #define ARM32_MMAP_WRITECOMBINE 0x40000000
363 1.98 macallan #define ARM32_MMAP_CACHEABLE 0x20000000
364 1.155 ryo #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
365 1.155 ryo #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
366 1.137 skrll #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
367 1.1 reinoud
368 1.123 matt #define PMAP_PTE 0x10000000 /* kenter_pa */
369 1.123 matt
370 1.1 reinoud /*
371 1.1 reinoud * Functions that we need to export
372 1.1 reinoud */
373 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
374 1.65 scw void pmap_remove_all(pmap_t);
375 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
376 1.39 thorpej
377 1.1 reinoud #define PMAP_NEED_PROCWR
378 1.29 chris #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
379 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
380 1.4 matt
381 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
382 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
383 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int);
384 1.85 matt #endif
385 1.85 matt
386 1.160 skrll #ifdef ARM_MMU_EXTENDED
387 1.159 skrll int pmap_maxproc_set(int);
388 1.159 skrll #endif
389 1.159 skrll
390 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
391 1.85 matt
392 1.39 thorpej /* Functions we use internally. */
393 1.85 matt #ifdef PMAP_STEAL_MEMORY
394 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
395 1.85 matt void pmap_boot_pageadd(pv_addr_t *);
396 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
397 1.85 matt #endif
398 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t);
399 1.65 scw
400 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
401 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
402 1.124 matt int pmap_prefetchabt_fixup(void *);
403 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
404 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
405 1.155 ryo bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
406 1.65 scw
407 1.65 scw void pmap_debug(int);
408 1.39 thorpej void pmap_postinit(void);
409 1.42 thorpej
410 1.42 thorpej void vector_page_setprot(int);
411 1.24 thorpej
412 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
413 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
414 1.73 thorpej
415 1.24 thorpej /* Bootstrapping routines. */
416 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
417 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
418 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
419 1.156 skrll void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
420 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
421 1.73 thorpej void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
422 1.74 thorpej void pmap_devmap_register(const struct pmap_devmap *);
423 1.13 chris
424 1.13 chris /*
425 1.135 skrll * Special page zero routine for use by the idle loop (no cache cleans).
426 1.13 chris */
427 1.80 thorpej bool pmap_pageidlezero(paddr_t);
428 1.13 chris #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
429 1.1 reinoud
430 1.131 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
431 1.131 matt /*
432 1.131 matt * For the pmap, this is a more useful way to map a direct mapped page.
433 1.131 matt * It returns either the direct-mapped VA or the VA supplied if it can't
434 1.131 matt * be direct mapped.
435 1.131 matt */
436 1.131 matt vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
437 1.131 matt #endif
438 1.131 matt
439 1.29 chris /*
440 1.84 chris * used by dumpsys to record the PA of the L1 table
441 1.84 chris */
442 1.84 chris uint32_t pmap_kernel_L1_addr(void);
443 1.84 chris /*
444 1.29 chris * The current top of kernel VM
445 1.29 chris */
446 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
447 1.1 reinoud
448 1.131 matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
449 1.131 matt /*
450 1.141 matt * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
451 1.131 matt */
452 1.140 matt extern vaddr_t pmap_directlimit;
453 1.131 matt #endif
454 1.131 matt
455 1.1 reinoud /*
456 1.135 skrll * Useful macros and constants
457 1.1 reinoud */
458 1.59 thorpej
459 1.65 scw /* Virtual address to page table entry */
460 1.79 perry static inline pt_entry_t *
461 1.65 scw vtopte(vaddr_t va)
462 1.65 scw {
463 1.65 scw pd_entry_t *pdep;
464 1.65 scw pt_entry_t *ptep;
465 1.65 scw
466 1.124 matt KASSERT(trunc_page(va) == va);
467 1.124 matt
468 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
469 1.65 scw return (NULL);
470 1.65 scw return (ptep);
471 1.65 scw }
472 1.65 scw
473 1.65 scw /*
474 1.65 scw * Virtual address to physical address
475 1.65 scw */
476 1.79 perry static inline paddr_t
477 1.65 scw vtophys(vaddr_t va)
478 1.65 scw {
479 1.65 scw paddr_t pa;
480 1.65 scw
481 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
482 1.65 scw return (0); /* XXXSCW: Panic? */
483 1.65 scw
484 1.65 scw return (pa);
485 1.65 scw }
486 1.65 scw
487 1.65 scw /*
488 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
489 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
490 1.65 scw * on every change.
491 1.65 scw *
492 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
493 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
494 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
495 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
496 1.69 thorpej * the code.
497 1.69 thorpej */
498 1.69 thorpej extern int pmap_needs_pte_sync;
499 1.69 thorpej #if defined(_KERNEL_OPT)
500 1.69 thorpej /*
501 1.145 skrll * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
502 1.145 skrll * single MMU type is selected.
503 1.145 skrll *
504 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
505 1.145 skrll * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
506 1.145 skrll * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
507 1.145 skrll *
508 1.145 skrll * Use run time evaluation for all other cases.
509 1.148 skrll *
510 1.69 thorpej */
511 1.145 skrll #if (ARM_NMMUS == 1)
512 1.145 skrll #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
513 1.104 matt #define PMAP_INCLUDE_PTE_SYNC
514 1.109 matt #define PMAP_NEEDS_PTE_SYNC 1
515 1.145 skrll #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
516 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
517 1.69 thorpej #endif
518 1.112 matt #endif
519 1.69 thorpej #endif /* _KERNEL_OPT */
520 1.69 thorpej
521 1.69 thorpej /*
522 1.69 thorpej * Provide a fallback in case we were not able to determine it at
523 1.69 thorpej * compile-time.
524 1.65 scw */
525 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
526 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
527 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
528 1.69 thorpej #endif
529 1.65 scw
530 1.104 matt static inline void
531 1.104 matt pmap_ptesync(pt_entry_t *ptep, size_t cnt)
532 1.104 matt {
533 1.132 matt if (PMAP_NEEDS_PTE_SYNC) {
534 1.104 matt cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
535 1.132 matt #ifdef SHEEVA_L2_CACHE
536 1.132 matt cpu_sdcache_wb_range((vaddr_t)ptep, -1,
537 1.132 matt cnt * sizeof(pt_entry_t));
538 1.132 matt #endif
539 1.132 matt }
540 1.138 joerg arm_dsb();
541 1.104 matt }
542 1.69 thorpej
543 1.124 matt #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
544 1.124 matt #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
545 1.124 matt #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
546 1.104 matt #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
547 1.65 scw
548 1.124 matt #define l1pte_valid_p(pde) ((pde) != 0)
549 1.124 matt #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
550 1.124 matt #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
551 1.104 matt && ((pde) & L1_S_V6_SUPER) != 0)
552 1.124 matt #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
553 1.124 matt #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
554 1.124 matt #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
555 1.124 matt #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
556 1.124 matt #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \
557 1.124 matt & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
558 1.124 matt
559 1.124 matt static inline void
560 1.124 matt l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
561 1.124 matt {
562 1.124 matt *pdep = pde;
563 1.124 matt }
564 1.36 thorpej
565 1.124 matt static inline void
566 1.124 matt l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
567 1.124 matt {
568 1.124 matt *pdep = pde;
569 1.124 matt if (l1pte_page_p(pde)) {
570 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
571 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
572 1.124 matt pde += L2_T_SIZE;
573 1.124 matt pdep[k] = pde;
574 1.124 matt }
575 1.124 matt } else if (l1pte_supersection_p(pde)) {
576 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
577 1.158 christos for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
578 1.124 matt pdep[k] = pde;
579 1.124 matt }
580 1.124 matt }
581 1.124 matt }
582 1.124 matt
583 1.124 matt #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
584 1.124 matt #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
585 1.124 matt #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
586 1.124 matt #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
587 1.124 matt #define l2pte_minidata_p(pte) (((pte) & \
588 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
589 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
590 1.35 thorpej
591 1.121 matt static inline void
592 1.121 matt l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
593 1.121 matt {
594 1.129 skrll if (l1pte_lpage_p(pte)) {
595 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
596 1.158 christos for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
597 1.129 skrll *ptep++ = pte;
598 1.129 skrll }
599 1.129 skrll } else {
600 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
601 1.158 christos for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
602 1.129 skrll KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
603 1.129 skrll *ptep++ = pte;
604 1.129 skrll pte += L2_S_SIZE;
605 1.129 skrll if (opte)
606 1.129 skrll opte += L2_S_SIZE;
607 1.129 skrll }
608 1.121 matt }
609 1.129 skrll }
610 1.121 matt
611 1.121 matt static inline void
612 1.121 matt l2pte_reset(pt_entry_t *ptep)
613 1.121 matt {
614 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
615 1.121 matt *ptep = 0;
616 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
617 1.121 matt ptep[k] = 0;
618 1.121 matt }
619 1.135 skrll }
620 1.121 matt
621 1.1 reinoud /* L1 and L2 page table macros */
622 1.36 thorpej #define pmap_pde_v(pde) l1pte_valid(*(pde))
623 1.36 thorpej #define pmap_pde_section(pde) l1pte_section_p(*(pde))
624 1.107 matt #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
625 1.36 thorpej #define pmap_pde_page(pde) l1pte_page_p(*(pde))
626 1.36 thorpej #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
627 1.16 rearnsha
628 1.124 matt #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
629 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
630 1.35 thorpej
631 1.1 reinoud /* Size of the kernel part of the L1 page table */
632 1.1 reinoud #define KERNEL_PD_SIZE \
633 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
634 1.20 chs
635 1.117 matt void bzero_page(vaddr_t);
636 1.117 matt void bcopy_page(vaddr_t, vaddr_t);
637 1.46 thorpej
638 1.116 matt #ifdef FPU_VFP
639 1.117 matt void bzero_page_vfp(vaddr_t);
640 1.117 matt void bcopy_page_vfp(vaddr_t, vaddr_t);
641 1.116 matt #endif
642 1.116 matt
643 1.117 matt /************************* ARM MMU configuration *****************************/
644 1.117 matt
645 1.95 jmcneill #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
646 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
647 1.51 thorpej void pmap_zero_page_generic(paddr_t);
648 1.51 thorpej
649 1.46 thorpej void pmap_pte_init_generic(void);
650 1.69 thorpej #if defined(CPU_ARM8)
651 1.69 thorpej void pmap_pte_init_arm8(void);
652 1.69 thorpej #endif
653 1.46 thorpej #if defined(CPU_ARM9)
654 1.46 thorpej void pmap_pte_init_arm9(void);
655 1.46 thorpej #endif /* CPU_ARM9 */
656 1.76 rearnsha #if defined(CPU_ARM10)
657 1.76 rearnsha void pmap_pte_init_arm10(void);
658 1.76 rearnsha #endif /* CPU_ARM10 */
659 1.103 matt #if defined(CPU_ARM11) /* ARM_MMU_V6 */
660 1.94 uebayasi void pmap_pte_init_arm11(void);
661 1.94 uebayasi #endif /* CPU_ARM11 */
662 1.103 matt #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
663 1.99 bsh void pmap_pte_init_arm11mpcore(void);
664 1.99 bsh #endif
665 1.103 matt #if ARM_MMU_V7 == 1
666 1.103 matt void pmap_pte_init_armv7(void);
667 1.103 matt #endif /* ARM_MMU_V7 */
668 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
669 1.69 thorpej
670 1.69 thorpej #if ARM_MMU_SA1 == 1
671 1.69 thorpej void pmap_pte_init_sa1(void);
672 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
673 1.46 thorpej
674 1.52 thorpej #if ARM_MMU_XSCALE == 1
675 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
676 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
677 1.51 thorpej
678 1.46 thorpej void pmap_pte_init_xscale(void);
679 1.50 thorpej
680 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
681 1.77 scw
682 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
683 1.77 scw void pmap_uarea(vaddr_t);
684 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
685 1.46 thorpej
686 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
687 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mask;
688 1.49 thorpej
689 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
690 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mask;
691 1.49 thorpej
692 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
693 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mask;
694 1.46 thorpej
695 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
696 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
697 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
698 1.65 scw
699 1.98 macallan extern pt_entry_t pte_l1_s_wc_mode;
700 1.98 macallan extern pt_entry_t pte_l2_l_wc_mode;
701 1.98 macallan extern pt_entry_t pte_l2_s_wc_mode;
702 1.98 macallan
703 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_u;
704 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_w;
705 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_ro;
706 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_mask;
707 1.95 jmcneill
708 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
709 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
710 1.95 jmcneill extern pt_entry_t pte_l2_s_prot_ro;
711 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
712 1.95 jmcneill
713 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_u;
714 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_w;
715 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_ro;
716 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_mask;
717 1.95 jmcneill
718 1.103 matt extern pt_entry_t pte_l1_ss_proto;
719 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
720 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
721 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
722 1.46 thorpej
723 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
724 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
725 1.75 bsh
726 1.75 bsh #endif /* !_LOCORE */
727 1.51 thorpej
728 1.46 thorpej /*****************************************************************************/
729 1.46 thorpej
730 1.124 matt #define KERNEL_PID 0 /* The kernel uses ASID 0 */
731 1.124 matt
732 1.20 chs /*
733 1.65 scw * Definitions for MMU domains
734 1.65 scw */
735 1.103 matt #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
736 1.124 matt #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
737 1.156 skrll
738 1.124 matt #ifdef ARM_MMU_EXTENDED
739 1.124 matt #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
740 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
741 1.156 skrll #else
742 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
743 1.124 matt #endif
744 1.45 thorpej
745 1.45 thorpej /*
746 1.45 thorpej * These macros define the various bit masks in the PTE.
747 1.45 thorpej *
748 1.45 thorpej * We use these macros since we use different bits on different processor
749 1.45 thorpej * models.
750 1.45 thorpej */
751 1.95 jmcneill #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
752 1.95 jmcneill #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
753 1.152 skrll #define L1_S_PROT_RO_generic (0)
754 1.95 jmcneill #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
755 1.95 jmcneill
756 1.95 jmcneill #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
757 1.95 jmcneill #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
758 1.152 skrll #define L1_S_PROT_RO_xscale (0)
759 1.95 jmcneill #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
760 1.95 jmcneill
761 1.99 bsh #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
762 1.99 bsh #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
763 1.99 bsh #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
764 1.99 bsh #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
765 1.99 bsh
766 1.95 jmcneill #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
767 1.95 jmcneill #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
768 1.95 jmcneill #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
769 1.95 jmcneill #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
770 1.45 thorpej
771 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
772 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
773 1.99 bsh #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
774 1.134 skrll #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
775 1.111 matt #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
776 1.45 thorpej
777 1.95 jmcneill #define L2_L_PROT_U_generic (L2_AP(AP_U))
778 1.95 jmcneill #define L2_L_PROT_W_generic (L2_AP(AP_W))
779 1.152 skrll #define L2_L_PROT_RO_generic (0)
780 1.95 jmcneill #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
781 1.95 jmcneill
782 1.95 jmcneill #define L2_L_PROT_U_xscale (L2_AP(AP_U))
783 1.95 jmcneill #define L2_L_PROT_W_xscale (L2_AP(AP_W))
784 1.152 skrll #define L2_L_PROT_RO_xscale (0)
785 1.95 jmcneill #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
786 1.95 jmcneill
787 1.99 bsh #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
788 1.99 bsh #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
789 1.99 bsh #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
790 1.99 bsh #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
791 1.99 bsh
792 1.95 jmcneill #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
793 1.95 jmcneill #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
794 1.95 jmcneill #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
795 1.95 jmcneill #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
796 1.45 thorpej
797 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
798 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
799 1.99 bsh #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
800 1.134 skrll #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
801 1.111 matt #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
802 1.49 thorpej
803 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
804 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
805 1.152 skrll #define L2_S_PROT_RO_generic (0)
806 1.95 jmcneill #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
807 1.46 thorpej
808 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
809 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
810 1.152 skrll #define L2_S_PROT_RO_xscale (0)
811 1.95 jmcneill #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
812 1.95 jmcneill
813 1.99 bsh #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
814 1.99 bsh #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
815 1.99 bsh #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
816 1.99 bsh #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
817 1.99 bsh
818 1.95 jmcneill #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
819 1.95 jmcneill #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
820 1.95 jmcneill #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
821 1.95 jmcneill #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
822 1.46 thorpej
823 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
824 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
825 1.99 bsh #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
826 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
827 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
828 1.99 bsh #else
829 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
830 1.99 bsh #endif
831 1.142 skrll #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
832 1.111 matt #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
833 1.46 thorpej
834 1.99 bsh
835 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
836 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
837 1.99 bsh #define L1_S_PROTO_armv6 (L1_TYPE_S)
838 1.95 jmcneill #define L1_S_PROTO_armv7 (L1_TYPE_S)
839 1.46 thorpej
840 1.103 matt #define L1_SS_PROTO_generic 0
841 1.103 matt #define L1_SS_PROTO_xscale 0
842 1.103 matt #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
843 1.103 matt #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
844 1.103 matt
845 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
846 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
847 1.99 bsh #define L1_C_PROTO_armv6 (L1_TYPE_C)
848 1.95 jmcneill #define L1_C_PROTO_armv7 (L1_TYPE_C)
849 1.46 thorpej
850 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
851 1.46 thorpej
852 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
853 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS)
854 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
855 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
856 1.99 bsh #else
857 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
858 1.99 bsh #endif
859 1.134 skrll #ifdef ARM_MMU_EXTENDED
860 1.134 skrll #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
861 1.134 skrll #else
862 1.99 bsh #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
863 1.134 skrll #endif
864 1.124 matt #ifdef ARM_MMU_EXTENDED
865 1.124 matt #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
866 1.124 matt #else
867 1.95 jmcneill #define L2_S_PROTO_armv7 (L2_TYPE_S)
868 1.124 matt #endif
869 1.45 thorpej
870 1.46 thorpej /*
871 1.46 thorpej * User-visible names for the ones that vary with MMU class.
872 1.46 thorpej */
873 1.46 thorpej
874 1.46 thorpej #if ARM_NMMUS > 1
875 1.46 thorpej /* More than one MMU class configured; use variables. */
876 1.95 jmcneill #define L1_S_PROT_U pte_l1_s_prot_u
877 1.95 jmcneill #define L1_S_PROT_W pte_l1_s_prot_w
878 1.95 jmcneill #define L1_S_PROT_RO pte_l1_s_prot_ro
879 1.95 jmcneill #define L1_S_PROT_MASK pte_l1_s_prot_mask
880 1.95 jmcneill
881 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
882 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
883 1.95 jmcneill #define L2_S_PROT_RO pte_l2_s_prot_ro
884 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
885 1.46 thorpej
886 1.95 jmcneill #define L2_L_PROT_U pte_l2_l_prot_u
887 1.95 jmcneill #define L2_L_PROT_W pte_l2_l_prot_w
888 1.95 jmcneill #define L2_L_PROT_RO pte_l2_l_prot_ro
889 1.95 jmcneill #define L2_L_PROT_MASK pte_l2_l_prot_mask
890 1.95 jmcneill
891 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
892 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
893 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
894 1.49 thorpej
895 1.103 matt #define L1_SS_PROTO pte_l1_ss_proto
896 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
897 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
898 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
899 1.51 thorpej
900 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
901 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
902 1.99 bsh #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
903 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_generic
904 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_generic
905 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_generic
906 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
907 1.99 bsh
908 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_generic
909 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_generic
910 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_generic
911 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
912 1.99 bsh
913 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_generic
914 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_generic
915 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_generic
916 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
917 1.99 bsh
918 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
919 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
920 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
921 1.99 bsh
922 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
923 1.99 bsh #define L1_S_PROTO L1_S_PROTO_generic
924 1.99 bsh #define L1_C_PROTO L1_C_PROTO_generic
925 1.99 bsh #define L2_S_PROTO L2_S_PROTO_generic
926 1.99 bsh
927 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
928 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
929 1.99 bsh #elif ARM_MMU_V6N != 0
930 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_armv6
931 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_armv6
932 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_armv6
933 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
934 1.99 bsh
935 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_armv6n
936 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_armv6n
937 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
938 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
939 1.99 bsh
940 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_armv6n
941 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_armv6n
942 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
943 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
944 1.99 bsh
945 1.134 skrll #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
946 1.134 skrll #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
947 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
948 1.99 bsh
949 1.150 skrll /*
950 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
951 1.150 skrll * make read-only mappings.
952 1.150 skrll */
953 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
954 1.99 bsh #define L1_S_PROTO L1_S_PROTO_armv6
955 1.99 bsh #define L1_C_PROTO L1_C_PROTO_armv6
956 1.99 bsh #define L2_S_PROTO L2_S_PROTO_armv6n
957 1.99 bsh
958 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
959 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
960 1.99 bsh #elif ARM_MMU_V6C != 0
961 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
962 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
963 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
964 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
965 1.95 jmcneill
966 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
967 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
968 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_generic
969 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
970 1.46 thorpej
971 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
972 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
973 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
974 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
975 1.95 jmcneill
976 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
977 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
978 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
979 1.49 thorpej
980 1.130 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
981 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
982 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
983 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
984 1.51 thorpej
985 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
986 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
987 1.46 thorpej #elif ARM_MMU_XSCALE == 1
988 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
989 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
990 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
991 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
992 1.95 jmcneill
993 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
994 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
995 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_xscale
996 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
997 1.49 thorpej
998 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
999 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
1000 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
1001 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
1002 1.95 jmcneill
1003 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
1004 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
1005 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
1006 1.46 thorpej
1007 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_xscale
1008 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
1009 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
1010 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
1011 1.51 thorpej
1012 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
1013 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
1014 1.95 jmcneill #elif ARM_MMU_V7 == 1
1015 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_armv7
1016 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_armv7
1017 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_armv7
1018 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
1019 1.95 jmcneill
1020 1.95 jmcneill #define L2_S_PROT_U L2_S_PROT_U_armv7
1021 1.95 jmcneill #define L2_S_PROT_W L2_S_PROT_W_armv7
1022 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_armv7
1023 1.95 jmcneill #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1024 1.95 jmcneill
1025 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_armv7
1026 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_armv7
1027 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1028 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1029 1.95 jmcneill
1030 1.95 jmcneill #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1031 1.95 jmcneill #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1032 1.95 jmcneill #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1033 1.95 jmcneill
1034 1.150 skrll /*
1035 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
1036 1.150 skrll * make read-only mappings.
1037 1.150 skrll */
1038 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv7
1039 1.95 jmcneill #define L1_S_PROTO L1_S_PROTO_armv7
1040 1.95 jmcneill #define L1_C_PROTO L1_C_PROTO_armv7
1041 1.95 jmcneill #define L2_S_PROTO L2_S_PROTO_armv7
1042 1.95 jmcneill
1043 1.95 jmcneill #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1044 1.95 jmcneill #define pmap_zero_page(d) pmap_zero_page_generic((d))
1045 1.46 thorpej #endif /* ARM_NMMUS > 1 */
1046 1.20 chs
1047 1.45 thorpej /*
1048 1.95 jmcneill * Macros to set and query the write permission on page descriptors.
1049 1.95 jmcneill */
1050 1.95 jmcneill #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1051 1.95 jmcneill #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1052 1.149 skrll
1053 1.152 skrll #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1054 1.152 skrll #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1055 1.95 jmcneill
1056 1.95 jmcneill #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1057 1.152 skrll (L2_S_PROT_RO == 0 || \
1058 1.95 jmcneill ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1059 1.95 jmcneill
1060 1.95 jmcneill /*
1061 1.45 thorpej * These macros return various bits based on kernel/user and protection.
1062 1.45 thorpej * Note that the compiler will usually fold these at compile time.
1063 1.45 thorpej */
1064 1.152 skrll
1065 1.152 skrll #define L1_S_PROT(ku, pr) ( \
1066 1.152 skrll (((ku) == PTE_USER) ? \
1067 1.152 skrll L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
1068 1.152 skrll : \
1069 1.152 skrll (((L1_S_PROT_RO && \
1070 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1071 1.152 skrll L1_S_PROT_RO : L1_S_PROT_W))) \
1072 1.152 skrll )
1073 1.152 skrll
1074 1.152 skrll #define L2_L_PROT(ku, pr) ( \
1075 1.152 skrll (((ku) == PTE_USER) ? \
1076 1.152 skrll L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
1077 1.152 skrll : \
1078 1.152 skrll (((L2_L_PROT_RO && \
1079 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1080 1.152 skrll L2_L_PROT_RO : L2_L_PROT_W))) \
1081 1.152 skrll )
1082 1.152 skrll
1083 1.152 skrll #define L2_S_PROT(ku, pr) ( \
1084 1.152 skrll (((ku) == PTE_USER) ? \
1085 1.152 skrll L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
1086 1.152 skrll : \
1087 1.152 skrll (((L2_S_PROT_RO && \
1088 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1089 1.152 skrll L2_S_PROT_RO : L2_S_PROT_W))) \
1090 1.152 skrll )
1091 1.66 thorpej
1092 1.66 thorpej /*
1093 1.103 matt * Macros to test if a mapping is mappable with an L1 SuperSection,
1094 1.103 matt * L1 Section, or an L2 Large Page mapping.
1095 1.66 thorpej */
1096 1.103 matt #define L1_SS_MAPPABLE_P(va, pa, size) \
1097 1.103 matt ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1098 1.103 matt
1099 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
1100 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1101 1.66 thorpej
1102 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
1103 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1104 1.64 thorpej
1105 1.155 ryo #define PMAP_MAPSIZE1 L2_L_SIZE
1106 1.155 ryo #define PMAP_MAPSIZE2 L1_S_SIZE
1107 1.155 ryo #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1108 1.155 ryo #define PMAP_MAPSIZE3 L1_SS_SIZE
1109 1.155 ryo #endif
1110 1.155 ryo
1111 1.119 matt #ifndef _LOCORE
1112 1.64 thorpej /*
1113 1.64 thorpej * Hooks for the pool allocator.
1114 1.64 thorpej */
1115 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1116 1.117 matt extern paddr_t physical_start, physical_end;
1117 1.113 matt #ifdef PMAP_NEED_ALLOC_POOLPAGE
1118 1.114 matt struct vm_page *arm_pmap_alloc_poolpage(int);
1119 1.113 matt #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1120 1.118 matt #endif
1121 1.118 matt #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1122 1.131 matt vaddr_t pmap_map_poolpage(paddr_t);
1123 1.131 matt paddr_t pmap_unmap_poolpage(vaddr_t);
1124 1.131 matt #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1125 1.131 matt #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1126 1.113 matt #endif
1127 1.18 thorpej
1128 1.143 skrll #define __HAVE_PMAP_PV_TRACK 1
1129 1.143 skrll
1130 1.143 skrll void pmap_pv_protect(paddr_t, vm_prot_t);
1131 1.143 skrll
1132 1.143 skrll struct pmap_page {
1133 1.97 uebayasi SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1134 1.97 uebayasi int pvh_attrs; /* page attributes */
1135 1.97 uebayasi u_int uro_mappings;
1136 1.97 uebayasi u_int urw_mappings;
1137 1.97 uebayasi union {
1138 1.97 uebayasi u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1139 1.97 uebayasi u_int i_mappings;
1140 1.97 uebayasi } k_u;
1141 1.97 uebayasi };
1142 1.97 uebayasi
1143 1.97 uebayasi /*
1144 1.143 skrll * pmap-specific data store in the vm_page structure.
1145 1.143 skrll */
1146 1.143 skrll #define __HAVE_VM_PAGE_MD
1147 1.143 skrll struct vm_page_md {
1148 1.143 skrll struct pmap_page pp;
1149 1.143 skrll #define pvh_list pp.pvh_list
1150 1.143 skrll #define pvh_attrs pp.pvh_attrs
1151 1.143 skrll #define uro_mappings pp.uro_mappings
1152 1.143 skrll #define urw_mappings pp.urw_mappings
1153 1.143 skrll #define kro_mappings pp.k_u.s_mappings[0]
1154 1.143 skrll #define krw_mappings pp.k_u.s_mappings[1]
1155 1.143 skrll #define k_mappings pp.k_u.i_mappings
1156 1.143 skrll };
1157 1.143 skrll
1158 1.143 skrll #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1159 1.143 skrll
1160 1.143 skrll /*
1161 1.97 uebayasi * Set the default color of each page.
1162 1.97 uebayasi */
1163 1.97 uebayasi #if ARM_MMU_V6 > 0
1164 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1165 1.157 ad (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
1166 1.97 uebayasi #else
1167 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1168 1.97 uebayasi (pg)->mdpage.pvh_attrs = 0
1169 1.97 uebayasi #endif
1170 1.135 skrll
1171 1.97 uebayasi #define VM_MDPAGE_INIT(pg) \
1172 1.97 uebayasi do { \
1173 1.97 uebayasi SLIST_INIT(&(pg)->mdpage.pvh_list); \
1174 1.97 uebayasi VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1175 1.97 uebayasi (pg)->mdpage.uro_mappings = 0; \
1176 1.97 uebayasi (pg)->mdpage.urw_mappings = 0; \
1177 1.97 uebayasi (pg)->mdpage.k_mappings = 0; \
1178 1.97 uebayasi } while (/*CONSTCOND*/0)
1179 1.97 uebayasi
1180 1.97 uebayasi #endif /* !_LOCORE */
1181 1.97 uebayasi
1182 1.18 thorpej #endif /* _KERNEL */
1183 1.1 reinoud
1184 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
1185