pmap.h revision 1.169 1 1.169 skrll /* $NetBSD: pmap.h,v 1.169 2020/10/30 18:54:36 skrll Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.85 matt #if defined(_KERNEL_OPT)
77 1.85 matt #include "opt_arm32_pmap.h"
78 1.136 skrll #include "opt_multiprocessor.h"
79 1.85 matt #endif
80 1.19 thorpej #include <arm/cpufunc.h>
81 1.138 joerg #include <arm/locore.h>
82 1.12 chris #include <uvm/uvm_object.h>
83 1.143 skrll #include <uvm/pmap/pmap_pvt.h>
84 1.75 bsh #endif
85 1.1 reinoud
86 1.124 matt #ifdef ARM_MMU_EXTENDED
87 1.168 skrll #define PMAP_HWPAGEWALKER 1
88 1.168 skrll #define PMAP_TLB_MAX 1
89 1.126 matt #if PMAP_TLB_MAX > 1
90 1.168 skrll #define PMAP_TLB_NEED_SHOOTDOWN 1
91 1.126 matt #endif
92 1.168 skrll #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
93 1.168 skrll #define PMAP_TLB_NUM_PIDS 256
94 1.168 skrll #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
95 1.124 matt #if PMAP_TLB_MAX > 1
96 1.168 skrll #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
97 1.124 matt #else
98 1.168 skrll #define cpu_tlb_info(ci) (&pmap_tlb0_info)
99 1.124 matt #endif
100 1.168 skrll #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
101 1.124 matt #include <uvm/pmap/tlb.h>
102 1.124 matt #include <uvm/pmap/pmap_tlb.h>
103 1.124 matt
104 1.135 skrll /*
105 1.124 matt * If we have an EXTENDED MMU and the address space is split evenly between
106 1.124 matt * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
107 1.124 matt * user and kernel address spaces.
108 1.135 skrll */
109 1.128 matt #if (KERNEL_BASE & 0x80000000) == 0
110 1.128 matt #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
111 1.135 skrll #endif
112 1.124 matt #endif /* ARM_MMU_EXTENDED */
113 1.124 matt
114 1.1 reinoud /*
115 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
116 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
117 1.38 thorpej * are described by L1 PTEs in the L1 table.
118 1.11 chris *
119 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
120 1.38 thorpej * changes when the VM context is switched. Everything above that line
121 1.38 thorpej * is the same no matter which VM context is running. This is achieved
122 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
123 1.38 thorpej * kernel L2 tables.
124 1.11 chris *
125 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
126 1.38 thorpej *
127 1.38 thorpej * 0xffffffff
128 1.38 thorpej * .
129 1.38 thorpej * .
130 1.38 thorpej * .
131 1.38 thorpej * KERNEL_BASE
132 1.38 thorpej * --------------------
133 1.38 thorpej * .
134 1.38 thorpej * .
135 1.38 thorpej * .
136 1.38 thorpej * 0x00000000
137 1.11 chris */
138 1.11 chris
139 1.65 scw /*
140 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
142 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
143 1.65 scw * three of these to map their whole working set.
144 1.65 scw */
145 1.124 matt #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
146 1.168 skrll #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
147 1.65 scw #define L2_BUCKET_LOG2 4
148 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
149 1.65 scw
150 1.65 scw /*
151 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152 1.65 scw * of l2_dtable structures required to track all possible page descriptors
153 1.65 scw * mappable by an L1 translation table is given by the following constants:
154 1.65 scw */
155 1.124 matt #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
156 1.65 scw #define L2_SIZE (1 << L2_LOG2)
157 1.65 scw
158 1.90 matt /*
159 1.90 matt * tell MI code that the cache is virtually-indexed.
160 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged.
161 1.90 matt */
162 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
163 1.168 skrll #define PMAP_CACHE_VIPT
164 1.90 matt #else
165 1.168 skrll #define PMAP_CACHE_VIVT
166 1.90 matt #endif
167 1.90 matt
168 1.75 bsh #ifndef _LOCORE
169 1.75 bsh
170 1.146 skrll #ifndef ARM_MMU_EXTENDED
171 1.65 scw struct l1_ttable;
172 1.65 scw struct l2_dtable;
173 1.65 scw
174 1.65 scw /*
175 1.65 scw * Track cache/tlb occupancy using the following structure
176 1.65 scw */
177 1.65 scw union pmap_cache_state {
178 1.65 scw struct {
179 1.65 scw union {
180 1.115 skrll uint8_t csu_cache_b[2];
181 1.115 skrll uint16_t csu_cache;
182 1.65 scw } cs_cache_u;
183 1.65 scw
184 1.65 scw union {
185 1.115 skrll uint8_t csu_tlb_b[2];
186 1.115 skrll uint16_t csu_tlb;
187 1.65 scw } cs_tlb_u;
188 1.65 scw } cs_s;
189 1.115 skrll uint32_t cs_all;
190 1.65 scw };
191 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
192 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
193 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
194 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
195 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
196 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
197 1.65 scw
198 1.65 scw /*
199 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
200 1.65 scw */
201 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
202 1.124 matt #endif /* !ARM_MMU_EXTENDED */
203 1.65 scw
204 1.65 scw /*
205 1.73 thorpej * This structure is used by machine-dependent code to describe
206 1.73 thorpej * static mappings of devices, created at bootstrap time.
207 1.73 thorpej */
208 1.73 thorpej struct pmap_devmap {
209 1.73 thorpej vaddr_t pd_va; /* virtual address */
210 1.73 thorpej paddr_t pd_pa; /* physical address */
211 1.73 thorpej psize_t pd_size; /* size of region */
212 1.73 thorpej vm_prot_t pd_prot; /* protection code */
213 1.73 thorpej int pd_cache; /* cache attributes */
214 1.73 thorpej };
215 1.73 thorpej
216 1.153 skrll #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
217 1.153 skrll #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
218 1.153 skrll #define DEVMAP_ENTRY(va, pa, sz) \
219 1.153 skrll { \
220 1.153 skrll .pd_va = DEVMAP_ALIGN(va), \
221 1.153 skrll .pd_pa = DEVMAP_ALIGN(pa), \
222 1.153 skrll .pd_size = DEVMAP_SIZE(sz), \
223 1.153 skrll .pd_prot = VM_PROT_READ|VM_PROT_WRITE, \
224 1.161 skrll .pd_cache = PTE_DEV \
225 1.153 skrll }
226 1.153 skrll #define DEVMAP_ENTRY_END { 0 }
227 1.153 skrll
228 1.73 thorpej /*
229 1.65 scw * The pmap structure itself
230 1.65 scw */
231 1.65 scw struct pmap {
232 1.163 ad kmutex_t pm_lock;
233 1.163 ad u_int pm_refs;
234 1.120 matt #ifndef ARM_HAS_VBAR
235 1.82 scw pd_entry_t *pm_pl1vec;
236 1.124 matt pd_entry_t pm_l1vec;
237 1.120 matt #endif
238 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
239 1.65 scw struct pmap_statistics pm_stats;
240 1.65 scw LIST_ENTRY(pmap) pm_list;
241 1.124 matt #ifdef ARM_MMU_EXTENDED
242 1.124 matt pd_entry_t *pm_l1;
243 1.124 matt paddr_t pm_l1_pa;
244 1.124 matt bool pm_remove_all;
245 1.124 matt #ifdef MULTIPROCESSOR
246 1.124 matt kcpuset_t *pm_onproc;
247 1.124 matt kcpuset_t *pm_active;
248 1.126 matt #if PMAP_TLB_MAX > 1
249 1.126 matt u_int pm_shootdown_pending;
250 1.126 matt #endif
251 1.124 matt #endif
252 1.126 matt struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
253 1.124 matt #else
254 1.124 matt struct l1_ttable *pm_l1;
255 1.124 matt union pmap_cache_state pm_cstate;
256 1.124 matt uint8_t pm_domain;
257 1.124 matt bool pm_activated;
258 1.124 matt bool pm_remove_all;
259 1.124 matt #endif
260 1.124 matt };
261 1.124 matt
262 1.124 matt struct pmap_kernel {
263 1.124 matt struct pmap kernel_pmap;
264 1.65 scw };
265 1.65 scw
266 1.106 martin /*
267 1.106 martin * Physical / virtual address structure. In a number of places (particularly
268 1.106 martin * during bootstrapping) we need to keep track of the physical and virtual
269 1.106 martin * addresses of various pages
270 1.106 martin */
271 1.106 martin typedef struct pv_addr {
272 1.106 martin SLIST_ENTRY(pv_addr) pv_list;
273 1.106 martin paddr_t pv_pa;
274 1.106 martin vaddr_t pv_va;
275 1.106 martin vsize_t pv_size;
276 1.106 martin uint8_t pv_cache;
277 1.106 martin uint8_t pv_prot;
278 1.106 martin } pv_addr_t;
279 1.106 martin typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
280 1.106 martin
281 1.85 matt extern pv_addrqh_t pmap_freeq;
282 1.102 matt extern pv_addr_t kernelstack;
283 1.102 matt extern pv_addr_t abtstack;
284 1.102 matt extern pv_addr_t fiqstack;
285 1.102 matt extern pv_addr_t irqstack;
286 1.102 matt extern pv_addr_t undstack;
287 1.103 matt extern pv_addr_t idlestack;
288 1.85 matt extern pv_addr_t systempage;
289 1.85 matt extern pv_addr_t kernel_l1pt;
290 1.1 reinoud
291 1.126 matt #ifdef ARM_MMU_EXTENDED
292 1.126 matt extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
293 1.126 matt #endif
294 1.126 matt
295 1.1 reinoud /*
296 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
297 1.24 thorpej * vs. non-cacheable).
298 1.24 thorpej */
299 1.24 thorpej #define PTE_KERNEL 0
300 1.24 thorpej #define PTE_USER 1
301 1.24 thorpej #define PTE_NOCACHE 0
302 1.24 thorpej #define PTE_CACHE 1
303 1.65 scw #define PTE_PAGETABLE 2
304 1.161 skrll #define PTE_DEV 3
305 1.24 thorpej
306 1.24 thorpej /*
307 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
308 1.43 thorpej *
309 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
310 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
311 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
312 1.43 thorpej * that we can clear multiple attributes at a time.
313 1.43 thorpej *
314 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
315 1.43 thorpej * multiple mappings in a given address space.
316 1.43 thorpej */
317 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
318 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
319 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
320 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
321 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
322 1.90 matt #ifdef PMAP_CACHE_VIVT
323 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
324 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
325 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC)
326 1.90 matt #endif
327 1.90 matt #ifdef PMAP_CACHE_VIPT
328 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
329 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
330 1.90 matt #endif
331 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */
332 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
333 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */
334 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
335 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */
336 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
337 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
338 1.43 thorpej
339 1.43 thorpej /*
340 1.1 reinoud * Commonly referenced structures
341 1.1 reinoud */
342 1.113 matt extern int arm_poolpage_vmfreelist;
343 1.1 reinoud
344 1.1 reinoud /*
345 1.1 reinoud * Macros that we need to export
346 1.1 reinoud */
347 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
348 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
349 1.31 thorpej
350 1.43 thorpej #define pmap_is_modified(pg) \
351 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
352 1.43 thorpej #define pmap_is_referenced(pg) \
353 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
354 1.96 uebayasi #define pmap_is_page_colored_p(md) \
355 1.96 uebayasi (((md)->pvh_attrs & PVF_COLORED) != 0)
356 1.41 thorpej
357 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
358 1.60 chs
359 1.168 skrll #define pmap_phys_address(ppn) (arm_ptob((ppn)))
360 1.98 macallan u_int arm32_mmap_flags(paddr_t);
361 1.168 skrll #define ARM32_MMAP_WRITECOMBINE 0x40000000
362 1.168 skrll #define ARM32_MMAP_CACHEABLE 0x20000000
363 1.168 skrll #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
364 1.168 skrll #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
365 1.168 skrll #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
366 1.1 reinoud
367 1.123 matt #define PMAP_PTE 0x10000000 /* kenter_pa */
368 1.161 skrll #define PMAP_DEV 0x20000000 /* kenter_pa */
369 1.161 skrll #define PMAP_DEV_SO 0x40000000 /* kenter_pa */
370 1.161 skrll #define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO)
371 1.123 matt
372 1.1 reinoud /*
373 1.1 reinoud * Functions that we need to export
374 1.1 reinoud */
375 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
376 1.164 ad bool pmap_remove_all(pmap_t);
377 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
378 1.39 thorpej
379 1.1 reinoud #define PMAP_NEED_PROCWR
380 1.168 skrll #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
381 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
382 1.4 matt
383 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
384 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
385 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int);
386 1.85 matt #endif
387 1.85 matt
388 1.160 skrll #ifdef ARM_MMU_EXTENDED
389 1.159 skrll int pmap_maxproc_set(int);
390 1.159 skrll #endif
391 1.159 skrll
392 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
393 1.85 matt
394 1.39 thorpej /* Functions we use internally. */
395 1.85 matt #ifdef PMAP_STEAL_MEMORY
396 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
397 1.85 matt void pmap_boot_pageadd(pv_addr_t *);
398 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
399 1.85 matt #endif
400 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t);
401 1.65 scw
402 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
403 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
404 1.124 matt int pmap_prefetchabt_fixup(void *);
405 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
406 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
407 1.155 ryo bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
408 1.65 scw
409 1.39 thorpej void pmap_postinit(void);
410 1.42 thorpej
411 1.42 thorpej void vector_page_setprot(int);
412 1.24 thorpej
413 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
414 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
415 1.73 thorpej
416 1.24 thorpej /* Bootstrapping routines. */
417 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
418 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
419 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
420 1.156 skrll void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
421 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
422 1.73 thorpej void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
423 1.74 thorpej void pmap_devmap_register(const struct pmap_devmap *);
424 1.13 chris
425 1.13 chris /*
426 1.135 skrll * Special page zero routine for use by the idle loop (no cache cleans).
427 1.13 chris */
428 1.80 thorpej bool pmap_pageidlezero(paddr_t);
429 1.168 skrll #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
430 1.1 reinoud
431 1.131 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
432 1.131 matt /*
433 1.131 matt * For the pmap, this is a more useful way to map a direct mapped page.
434 1.131 matt * It returns either the direct-mapped VA or the VA supplied if it can't
435 1.131 matt * be direct mapped.
436 1.131 matt */
437 1.131 matt vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
438 1.131 matt #endif
439 1.131 matt
440 1.29 chris /*
441 1.84 chris * used by dumpsys to record the PA of the L1 table
442 1.84 chris */
443 1.84 chris uint32_t pmap_kernel_L1_addr(void);
444 1.84 chris /*
445 1.29 chris * The current top of kernel VM
446 1.29 chris */
447 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
448 1.1 reinoud
449 1.131 matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
450 1.131 matt /*
451 1.141 matt * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
452 1.131 matt */
453 1.140 matt extern vaddr_t pmap_directlimit;
454 1.131 matt #endif
455 1.131 matt
456 1.1 reinoud /*
457 1.135 skrll * Useful macros and constants
458 1.1 reinoud */
459 1.59 thorpej
460 1.65 scw /* Virtual address to page table entry */
461 1.79 perry static inline pt_entry_t *
462 1.65 scw vtopte(vaddr_t va)
463 1.65 scw {
464 1.65 scw pd_entry_t *pdep;
465 1.65 scw pt_entry_t *ptep;
466 1.65 scw
467 1.124 matt KASSERT(trunc_page(va) == va);
468 1.124 matt
469 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
470 1.65 scw return (NULL);
471 1.65 scw return (ptep);
472 1.65 scw }
473 1.65 scw
474 1.65 scw /*
475 1.65 scw * Virtual address to physical address
476 1.65 scw */
477 1.79 perry static inline paddr_t
478 1.65 scw vtophys(vaddr_t va)
479 1.65 scw {
480 1.65 scw paddr_t pa;
481 1.65 scw
482 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
483 1.65 scw return (0); /* XXXSCW: Panic? */
484 1.65 scw
485 1.65 scw return (pa);
486 1.65 scw }
487 1.65 scw
488 1.65 scw /*
489 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
490 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
491 1.65 scw * on every change.
492 1.65 scw *
493 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
494 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
495 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
496 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
497 1.69 thorpej * the code.
498 1.69 thorpej */
499 1.69 thorpej extern int pmap_needs_pte_sync;
500 1.69 thorpej #if defined(_KERNEL_OPT)
501 1.69 thorpej /*
502 1.145 skrll * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
503 1.145 skrll * single MMU type is selected.
504 1.145 skrll *
505 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
506 1.145 skrll * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
507 1.145 skrll * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
508 1.145 skrll *
509 1.145 skrll * Use run time evaluation for all other cases.
510 1.148 skrll *
511 1.69 thorpej */
512 1.145 skrll #if (ARM_NMMUS == 1)
513 1.145 skrll #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
514 1.104 matt #define PMAP_INCLUDE_PTE_SYNC
515 1.109 matt #define PMAP_NEEDS_PTE_SYNC 1
516 1.145 skrll #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
517 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
518 1.69 thorpej #endif
519 1.112 matt #endif
520 1.69 thorpej #endif /* _KERNEL_OPT */
521 1.69 thorpej
522 1.69 thorpej /*
523 1.69 thorpej * Provide a fallback in case we were not able to determine it at
524 1.69 thorpej * compile-time.
525 1.65 scw */
526 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
527 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
528 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
529 1.69 thorpej #endif
530 1.65 scw
531 1.104 matt static inline void
532 1.104 matt pmap_ptesync(pt_entry_t *ptep, size_t cnt)
533 1.104 matt {
534 1.132 matt if (PMAP_NEEDS_PTE_SYNC) {
535 1.104 matt cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
536 1.132 matt #ifdef SHEEVA_L2_CACHE
537 1.132 matt cpu_sdcache_wb_range((vaddr_t)ptep, -1,
538 1.132 matt cnt * sizeof(pt_entry_t));
539 1.132 matt #endif
540 1.132 matt }
541 1.169 skrll dsb(sy);
542 1.104 matt }
543 1.69 thorpej
544 1.124 matt #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
545 1.124 matt #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
546 1.124 matt #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
547 1.104 matt #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
548 1.65 scw
549 1.168 skrll #define l1pte_valid_p(pde) ((pde) != 0)
550 1.168 skrll #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
551 1.168 skrll #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
552 1.104 matt && ((pde) & L1_S_V6_SUPER) != 0)
553 1.168 skrll #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
554 1.168 skrll #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
555 1.168 skrll #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
556 1.168 skrll #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
557 1.124 matt
558 1.124 matt static inline void
559 1.124 matt l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
560 1.124 matt {
561 1.124 matt *pdep = pde;
562 1.124 matt }
563 1.36 thorpej
564 1.124 matt static inline void
565 1.124 matt l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
566 1.124 matt {
567 1.124 matt *pdep = pde;
568 1.124 matt if (l1pte_page_p(pde)) {
569 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
570 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
571 1.124 matt pde += L2_T_SIZE;
572 1.124 matt pdep[k] = pde;
573 1.124 matt }
574 1.124 matt } else if (l1pte_supersection_p(pde)) {
575 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
576 1.158 christos for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
577 1.124 matt pdep[k] = pde;
578 1.124 matt }
579 1.124 matt }
580 1.124 matt }
581 1.124 matt
582 1.168 skrll #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
583 1.168 skrll #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
584 1.168 skrll #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
585 1.168 skrll #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
586 1.168 skrll #define l2pte_minidata_p(pte) (((pte) & \
587 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
588 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
589 1.35 thorpej
590 1.121 matt static inline void
591 1.121 matt l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
592 1.121 matt {
593 1.129 skrll if (l1pte_lpage_p(pte)) {
594 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
595 1.158 christos for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
596 1.129 skrll *ptep++ = pte;
597 1.129 skrll }
598 1.129 skrll } else {
599 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
600 1.158 christos for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
601 1.129 skrll KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
602 1.129 skrll *ptep++ = pte;
603 1.129 skrll pte += L2_S_SIZE;
604 1.129 skrll if (opte)
605 1.129 skrll opte += L2_S_SIZE;
606 1.129 skrll }
607 1.121 matt }
608 1.129 skrll }
609 1.121 matt
610 1.121 matt static inline void
611 1.121 matt l2pte_reset(pt_entry_t *ptep)
612 1.121 matt {
613 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
614 1.121 matt *ptep = 0;
615 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
616 1.121 matt ptep[k] = 0;
617 1.121 matt }
618 1.135 skrll }
619 1.121 matt
620 1.1 reinoud /* L1 and L2 page table macros */
621 1.168 skrll #define pmap_pde_v(pde) l1pte_valid(*(pde))
622 1.168 skrll #define pmap_pde_section(pde) l1pte_section_p(*(pde))
623 1.168 skrll #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
624 1.168 skrll #define pmap_pde_page(pde) l1pte_page_p(*(pde))
625 1.168 skrll #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
626 1.16 rearnsha
627 1.124 matt #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
628 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
629 1.35 thorpej
630 1.1 reinoud /* Size of the kernel part of the L1 page table */
631 1.168 skrll #define KERNEL_PD_SIZE \
632 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
633 1.20 chs
634 1.117 matt void bzero_page(vaddr_t);
635 1.117 matt void bcopy_page(vaddr_t, vaddr_t);
636 1.46 thorpej
637 1.116 matt #ifdef FPU_VFP
638 1.117 matt void bzero_page_vfp(vaddr_t);
639 1.117 matt void bcopy_page_vfp(vaddr_t, vaddr_t);
640 1.116 matt #endif
641 1.116 matt
642 1.117 matt /************************* ARM MMU configuration *****************************/
643 1.117 matt
644 1.95 jmcneill #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
645 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
646 1.51 thorpej void pmap_zero_page_generic(paddr_t);
647 1.51 thorpej
648 1.46 thorpej void pmap_pte_init_generic(void);
649 1.69 thorpej #if defined(CPU_ARM8)
650 1.69 thorpej void pmap_pte_init_arm8(void);
651 1.69 thorpej #endif
652 1.46 thorpej #if defined(CPU_ARM9)
653 1.46 thorpej void pmap_pte_init_arm9(void);
654 1.46 thorpej #endif /* CPU_ARM9 */
655 1.76 rearnsha #if defined(CPU_ARM10)
656 1.76 rearnsha void pmap_pte_init_arm10(void);
657 1.76 rearnsha #endif /* CPU_ARM10 */
658 1.103 matt #if defined(CPU_ARM11) /* ARM_MMU_V6 */
659 1.94 uebayasi void pmap_pte_init_arm11(void);
660 1.94 uebayasi #endif /* CPU_ARM11 */
661 1.103 matt #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
662 1.99 bsh void pmap_pte_init_arm11mpcore(void);
663 1.99 bsh #endif
664 1.161 skrll #if ARM_MMU_V6 == 1
665 1.161 skrll void pmap_pte_init_armv6(void);
666 1.161 skrll #endif /* ARM_MMU_V6 */
667 1.103 matt #if ARM_MMU_V7 == 1
668 1.103 matt void pmap_pte_init_armv7(void);
669 1.103 matt #endif /* ARM_MMU_V7 */
670 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
671 1.69 thorpej
672 1.69 thorpej #if ARM_MMU_SA1 == 1
673 1.69 thorpej void pmap_pte_init_sa1(void);
674 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
675 1.46 thorpej
676 1.52 thorpej #if ARM_MMU_XSCALE == 1
677 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
678 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
679 1.51 thorpej
680 1.46 thorpej void pmap_pte_init_xscale(void);
681 1.50 thorpej
682 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
683 1.77 scw
684 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
685 1.77 scw void pmap_uarea(vaddr_t);
686 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
687 1.46 thorpej
688 1.161 skrll extern pt_entry_t pte_l1_s_nocache_mode;
689 1.161 skrll extern pt_entry_t pte_l2_l_nocache_mode;
690 1.161 skrll extern pt_entry_t pte_l2_s_nocache_mode;
691 1.161 skrll
692 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
693 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
694 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
695 1.46 thorpej
696 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
697 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
698 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
699 1.65 scw
700 1.98 macallan extern pt_entry_t pte_l1_s_wc_mode;
701 1.98 macallan extern pt_entry_t pte_l2_l_wc_mode;
702 1.98 macallan extern pt_entry_t pte_l2_s_wc_mode;
703 1.98 macallan
704 1.161 skrll extern pt_entry_t pte_l1_s_cache_mask;
705 1.161 skrll extern pt_entry_t pte_l2_l_cache_mask;
706 1.161 skrll extern pt_entry_t pte_l2_s_cache_mask;
707 1.161 skrll
708 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_u;
709 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_w;
710 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_ro;
711 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_mask;
712 1.95 jmcneill
713 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
714 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
715 1.95 jmcneill extern pt_entry_t pte_l2_s_prot_ro;
716 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
717 1.95 jmcneill
718 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_u;
719 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_w;
720 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_ro;
721 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_mask;
722 1.95 jmcneill
723 1.103 matt extern pt_entry_t pte_l1_ss_proto;
724 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
725 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
726 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
727 1.46 thorpej
728 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
729 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
730 1.75 bsh
731 1.75 bsh #endif /* !_LOCORE */
732 1.51 thorpej
733 1.46 thorpej /*****************************************************************************/
734 1.46 thorpej
735 1.124 matt #define KERNEL_PID 0 /* The kernel uses ASID 0 */
736 1.124 matt
737 1.20 chs /*
738 1.65 scw * Definitions for MMU domains
739 1.65 scw */
740 1.103 matt #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
741 1.124 matt #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
742 1.156 skrll
743 1.124 matt #ifdef ARM_MMU_EXTENDED
744 1.124 matt #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
745 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
746 1.156 skrll #else
747 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
748 1.124 matt #endif
749 1.45 thorpej
750 1.45 thorpej /*
751 1.45 thorpej * These macros define the various bit masks in the PTE.
752 1.45 thorpej *
753 1.45 thorpej * We use these macros since we use different bits on different processor
754 1.45 thorpej * models.
755 1.45 thorpej */
756 1.95 jmcneill #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
757 1.95 jmcneill #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
758 1.152 skrll #define L1_S_PROT_RO_generic (0)
759 1.95 jmcneill #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
760 1.95 jmcneill
761 1.95 jmcneill #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
762 1.95 jmcneill #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
763 1.152 skrll #define L1_S_PROT_RO_xscale (0)
764 1.95 jmcneill #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
765 1.95 jmcneill
766 1.99 bsh #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
767 1.99 bsh #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
768 1.99 bsh #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
769 1.99 bsh #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
770 1.99 bsh
771 1.95 jmcneill #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
772 1.95 jmcneill #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
773 1.95 jmcneill #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
774 1.95 jmcneill #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
775 1.45 thorpej
776 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
777 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
778 1.99 bsh #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
779 1.134 skrll #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
780 1.111 matt #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
781 1.45 thorpej
782 1.95 jmcneill #define L2_L_PROT_U_generic (L2_AP(AP_U))
783 1.95 jmcneill #define L2_L_PROT_W_generic (L2_AP(AP_W))
784 1.152 skrll #define L2_L_PROT_RO_generic (0)
785 1.95 jmcneill #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
786 1.95 jmcneill
787 1.95 jmcneill #define L2_L_PROT_U_xscale (L2_AP(AP_U))
788 1.95 jmcneill #define L2_L_PROT_W_xscale (L2_AP(AP_W))
789 1.152 skrll #define L2_L_PROT_RO_xscale (0)
790 1.95 jmcneill #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
791 1.95 jmcneill
792 1.99 bsh #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
793 1.99 bsh #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
794 1.99 bsh #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
795 1.99 bsh #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
796 1.99 bsh
797 1.95 jmcneill #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
798 1.95 jmcneill #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
799 1.95 jmcneill #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
800 1.95 jmcneill #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
801 1.45 thorpej
802 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
803 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
804 1.99 bsh #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
805 1.134 skrll #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
806 1.111 matt #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
807 1.49 thorpej
808 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
809 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
810 1.152 skrll #define L2_S_PROT_RO_generic (0)
811 1.95 jmcneill #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
812 1.46 thorpej
813 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
814 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
815 1.152 skrll #define L2_S_PROT_RO_xscale (0)
816 1.95 jmcneill #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
817 1.95 jmcneill
818 1.99 bsh #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
819 1.99 bsh #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
820 1.99 bsh #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
821 1.99 bsh #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
822 1.99 bsh
823 1.95 jmcneill #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
824 1.95 jmcneill #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
825 1.95 jmcneill #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
826 1.95 jmcneill #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
827 1.46 thorpej
828 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
829 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
830 1.99 bsh #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
831 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
832 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
833 1.99 bsh #else
834 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
835 1.99 bsh #endif
836 1.142 skrll #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
837 1.111 matt #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
838 1.46 thorpej
839 1.99 bsh
840 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
841 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
842 1.99 bsh #define L1_S_PROTO_armv6 (L1_TYPE_S)
843 1.95 jmcneill #define L1_S_PROTO_armv7 (L1_TYPE_S)
844 1.46 thorpej
845 1.103 matt #define L1_SS_PROTO_generic 0
846 1.103 matt #define L1_SS_PROTO_xscale 0
847 1.103 matt #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
848 1.103 matt #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
849 1.103 matt
850 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
851 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
852 1.99 bsh #define L1_C_PROTO_armv6 (L1_TYPE_C)
853 1.95 jmcneill #define L1_C_PROTO_armv7 (L1_TYPE_C)
854 1.46 thorpej
855 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
856 1.46 thorpej
857 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
858 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS)
859 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
860 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
861 1.99 bsh #else
862 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
863 1.99 bsh #endif
864 1.134 skrll #ifdef ARM_MMU_EXTENDED
865 1.134 skrll #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
866 1.134 skrll #else
867 1.99 bsh #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
868 1.134 skrll #endif
869 1.124 matt #ifdef ARM_MMU_EXTENDED
870 1.124 matt #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
871 1.124 matt #else
872 1.95 jmcneill #define L2_S_PROTO_armv7 (L2_TYPE_S)
873 1.124 matt #endif
874 1.45 thorpej
875 1.46 thorpej /*
876 1.46 thorpej * User-visible names for the ones that vary with MMU class.
877 1.46 thorpej */
878 1.46 thorpej
879 1.46 thorpej #if ARM_NMMUS > 1
880 1.46 thorpej /* More than one MMU class configured; use variables. */
881 1.95 jmcneill #define L1_S_PROT_U pte_l1_s_prot_u
882 1.95 jmcneill #define L1_S_PROT_W pte_l1_s_prot_w
883 1.95 jmcneill #define L1_S_PROT_RO pte_l1_s_prot_ro
884 1.95 jmcneill #define L1_S_PROT_MASK pte_l1_s_prot_mask
885 1.95 jmcneill
886 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
887 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
888 1.95 jmcneill #define L2_S_PROT_RO pte_l2_s_prot_ro
889 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
890 1.46 thorpej
891 1.95 jmcneill #define L2_L_PROT_U pte_l2_l_prot_u
892 1.95 jmcneill #define L2_L_PROT_W pte_l2_l_prot_w
893 1.95 jmcneill #define L2_L_PROT_RO pte_l2_l_prot_ro
894 1.95 jmcneill #define L2_L_PROT_MASK pte_l2_l_prot_mask
895 1.95 jmcneill
896 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
897 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
898 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
899 1.49 thorpej
900 1.103 matt #define L1_SS_PROTO pte_l1_ss_proto
901 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
902 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
903 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
904 1.51 thorpej
905 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
906 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
907 1.99 bsh #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
908 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_generic
909 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_generic
910 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_generic
911 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
912 1.99 bsh
913 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_generic
914 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_generic
915 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_generic
916 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
917 1.99 bsh
918 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_generic
919 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_generic
920 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_generic
921 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
922 1.99 bsh
923 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
924 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
925 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
926 1.99 bsh
927 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
928 1.99 bsh #define L1_S_PROTO L1_S_PROTO_generic
929 1.99 bsh #define L1_C_PROTO L1_C_PROTO_generic
930 1.99 bsh #define L2_S_PROTO L2_S_PROTO_generic
931 1.99 bsh
932 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
933 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
934 1.99 bsh #elif ARM_MMU_V6N != 0
935 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_armv6
936 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_armv6
937 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_armv6
938 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
939 1.99 bsh
940 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_armv6n
941 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_armv6n
942 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
943 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
944 1.99 bsh
945 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_armv6n
946 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_armv6n
947 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
948 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
949 1.99 bsh
950 1.134 skrll #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
951 1.134 skrll #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
952 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
953 1.99 bsh
954 1.150 skrll /*
955 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
956 1.150 skrll * make read-only mappings.
957 1.150 skrll */
958 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
959 1.99 bsh #define L1_S_PROTO L1_S_PROTO_armv6
960 1.99 bsh #define L1_C_PROTO L1_C_PROTO_armv6
961 1.99 bsh #define L2_S_PROTO L2_S_PROTO_armv6n
962 1.99 bsh
963 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
964 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
965 1.99 bsh #elif ARM_MMU_V6C != 0
966 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
967 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
968 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
969 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
970 1.95 jmcneill
971 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
972 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
973 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_generic
974 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
975 1.46 thorpej
976 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
977 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
978 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
979 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
980 1.95 jmcneill
981 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
982 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
983 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
984 1.49 thorpej
985 1.130 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
986 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
987 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
988 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
989 1.51 thorpej
990 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
991 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
992 1.46 thorpej #elif ARM_MMU_XSCALE == 1
993 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
994 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
995 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
996 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
997 1.95 jmcneill
998 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
999 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
1000 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_xscale
1001 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
1002 1.49 thorpej
1003 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
1004 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
1005 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
1006 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
1007 1.95 jmcneill
1008 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
1009 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
1010 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
1011 1.46 thorpej
1012 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_xscale
1013 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
1014 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
1015 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
1016 1.51 thorpej
1017 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
1018 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
1019 1.95 jmcneill #elif ARM_MMU_V7 == 1
1020 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_armv7
1021 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_armv7
1022 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_armv7
1023 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
1024 1.95 jmcneill
1025 1.95 jmcneill #define L2_S_PROT_U L2_S_PROT_U_armv7
1026 1.95 jmcneill #define L2_S_PROT_W L2_S_PROT_W_armv7
1027 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_armv7
1028 1.95 jmcneill #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1029 1.95 jmcneill
1030 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_armv7
1031 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_armv7
1032 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1033 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1034 1.95 jmcneill
1035 1.95 jmcneill #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1036 1.95 jmcneill #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1037 1.95 jmcneill #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1038 1.95 jmcneill
1039 1.150 skrll /*
1040 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
1041 1.150 skrll * make read-only mappings.
1042 1.150 skrll */
1043 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv7
1044 1.95 jmcneill #define L1_S_PROTO L1_S_PROTO_armv7
1045 1.95 jmcneill #define L1_C_PROTO L1_C_PROTO_armv7
1046 1.95 jmcneill #define L2_S_PROTO L2_S_PROTO_armv7
1047 1.95 jmcneill
1048 1.95 jmcneill #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1049 1.95 jmcneill #define pmap_zero_page(d) pmap_zero_page_generic((d))
1050 1.46 thorpej #endif /* ARM_NMMUS > 1 */
1051 1.20 chs
1052 1.45 thorpej /*
1053 1.95 jmcneill * Macros to set and query the write permission on page descriptors.
1054 1.95 jmcneill */
1055 1.168 skrll #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1056 1.168 skrll #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1057 1.149 skrll
1058 1.168 skrll #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1059 1.168 skrll #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1060 1.95 jmcneill
1061 1.168 skrll #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1062 1.152 skrll (L2_S_PROT_RO == 0 || \
1063 1.95 jmcneill ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1064 1.95 jmcneill
1065 1.95 jmcneill /*
1066 1.45 thorpej * These macros return various bits based on kernel/user and protection.
1067 1.45 thorpej * Note that the compiler will usually fold these at compile time.
1068 1.45 thorpej */
1069 1.152 skrll
1070 1.152 skrll #define L1_S_PROT(ku, pr) ( \
1071 1.152 skrll (((ku) == PTE_USER) ? \
1072 1.152 skrll L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
1073 1.152 skrll : \
1074 1.152 skrll (((L1_S_PROT_RO && \
1075 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1076 1.152 skrll L1_S_PROT_RO : L1_S_PROT_W))) \
1077 1.152 skrll )
1078 1.152 skrll
1079 1.152 skrll #define L2_L_PROT(ku, pr) ( \
1080 1.152 skrll (((ku) == PTE_USER) ? \
1081 1.152 skrll L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
1082 1.152 skrll : \
1083 1.152 skrll (((L2_L_PROT_RO && \
1084 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1085 1.152 skrll L2_L_PROT_RO : L2_L_PROT_W))) \
1086 1.152 skrll )
1087 1.152 skrll
1088 1.152 skrll #define L2_S_PROT(ku, pr) ( \
1089 1.152 skrll (((ku) == PTE_USER) ? \
1090 1.152 skrll L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
1091 1.152 skrll : \
1092 1.152 skrll (((L2_S_PROT_RO && \
1093 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1094 1.152 skrll L2_S_PROT_RO : L2_S_PROT_W))) \
1095 1.152 skrll )
1096 1.66 thorpej
1097 1.66 thorpej /*
1098 1.103 matt * Macros to test if a mapping is mappable with an L1 SuperSection,
1099 1.103 matt * L1 Section, or an L2 Large Page mapping.
1100 1.66 thorpej */
1101 1.103 matt #define L1_SS_MAPPABLE_P(va, pa, size) \
1102 1.103 matt ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1103 1.103 matt
1104 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
1105 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1106 1.66 thorpej
1107 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
1108 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1109 1.64 thorpej
1110 1.155 ryo #define PMAP_MAPSIZE1 L2_L_SIZE
1111 1.155 ryo #define PMAP_MAPSIZE2 L1_S_SIZE
1112 1.155 ryo #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1113 1.155 ryo #define PMAP_MAPSIZE3 L1_SS_SIZE
1114 1.155 ryo #endif
1115 1.155 ryo
1116 1.119 matt #ifndef _LOCORE
1117 1.64 thorpej /*
1118 1.64 thorpej * Hooks for the pool allocator.
1119 1.64 thorpej */
1120 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1121 1.117 matt extern paddr_t physical_start, physical_end;
1122 1.113 matt #ifdef PMAP_NEED_ALLOC_POOLPAGE
1123 1.114 matt struct vm_page *arm_pmap_alloc_poolpage(int);
1124 1.113 matt #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1125 1.118 matt #endif
1126 1.118 matt #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1127 1.131 matt vaddr_t pmap_map_poolpage(paddr_t);
1128 1.131 matt paddr_t pmap_unmap_poolpage(vaddr_t);
1129 1.131 matt #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1130 1.168 skrll #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1131 1.113 matt #endif
1132 1.18 thorpej
1133 1.168 skrll #define __HAVE_PMAP_PV_TRACK 1
1134 1.143 skrll
1135 1.143 skrll void pmap_pv_protect(paddr_t, vm_prot_t);
1136 1.143 skrll
1137 1.143 skrll struct pmap_page {
1138 1.97 uebayasi SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1139 1.97 uebayasi int pvh_attrs; /* page attributes */
1140 1.97 uebayasi u_int uro_mappings;
1141 1.97 uebayasi u_int urw_mappings;
1142 1.97 uebayasi union {
1143 1.97 uebayasi u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1144 1.97 uebayasi u_int i_mappings;
1145 1.97 uebayasi } k_u;
1146 1.97 uebayasi };
1147 1.97 uebayasi
1148 1.97 uebayasi /*
1149 1.143 skrll * pmap-specific data store in the vm_page structure.
1150 1.143 skrll */
1151 1.143 skrll #define __HAVE_VM_PAGE_MD
1152 1.143 skrll struct vm_page_md {
1153 1.143 skrll struct pmap_page pp;
1154 1.143 skrll #define pvh_list pp.pvh_list
1155 1.143 skrll #define pvh_attrs pp.pvh_attrs
1156 1.143 skrll #define uro_mappings pp.uro_mappings
1157 1.143 skrll #define urw_mappings pp.urw_mappings
1158 1.143 skrll #define kro_mappings pp.k_u.s_mappings[0]
1159 1.143 skrll #define krw_mappings pp.k_u.s_mappings[1]
1160 1.143 skrll #define k_mappings pp.k_u.i_mappings
1161 1.143 skrll };
1162 1.143 skrll
1163 1.168 skrll #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1164 1.143 skrll
1165 1.143 skrll /*
1166 1.97 uebayasi * Set the default color of each page.
1167 1.97 uebayasi */
1168 1.97 uebayasi #if ARM_MMU_V6 > 0
1169 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1170 1.157 ad (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
1171 1.97 uebayasi #else
1172 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1173 1.97 uebayasi (pg)->mdpage.pvh_attrs = 0
1174 1.97 uebayasi #endif
1175 1.135 skrll
1176 1.97 uebayasi #define VM_MDPAGE_INIT(pg) \
1177 1.97 uebayasi do { \
1178 1.97 uebayasi SLIST_INIT(&(pg)->mdpage.pvh_list); \
1179 1.97 uebayasi VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1180 1.97 uebayasi (pg)->mdpage.uro_mappings = 0; \
1181 1.97 uebayasi (pg)->mdpage.urw_mappings = 0; \
1182 1.97 uebayasi (pg)->mdpage.k_mappings = 0; \
1183 1.97 uebayasi } while (/*CONSTCOND*/0)
1184 1.97 uebayasi
1185 1.165 skrll #ifndef __BSD_PTENTRY_T__
1186 1.165 skrll #define __BSD_PTENTRY_T__
1187 1.165 skrll typedef uint32_t pt_entry_t;
1188 1.168 skrll #define PRIxPTE PRIx32
1189 1.165 skrll #endif
1190 1.165 skrll
1191 1.166 skrll #endif /* !_LOCORE */
1192 1.166 skrll
1193 1.18 thorpej #endif /* _KERNEL */
1194 1.1 reinoud
1195 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
1196