pmap.h revision 1.175 1 1.175 martin /* $NetBSD: pmap.h,v 1.175 2023/04/24 16:32:54 martin Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.85 matt #if defined(_KERNEL_OPT)
77 1.85 matt #include "opt_arm32_pmap.h"
78 1.136 skrll #include "opt_multiprocessor.h"
79 1.85 matt #endif
80 1.19 thorpej #include <arm/cpufunc.h>
81 1.138 joerg #include <arm/locore.h>
82 1.174 skrll
83 1.12 chris #include <uvm/uvm_object.h>
84 1.174 skrll
85 1.174 skrll #include <uvm/pmap/pmap_devmap.h>
86 1.143 skrll #include <uvm/pmap/pmap_pvt.h>
87 1.75 bsh #endif
88 1.1 reinoud
89 1.124 matt #ifdef ARM_MMU_EXTENDED
90 1.168 skrll #define PMAP_HWPAGEWALKER 1
91 1.168 skrll #define PMAP_TLB_MAX 1
92 1.126 matt #if PMAP_TLB_MAX > 1
93 1.168 skrll #define PMAP_TLB_NEED_SHOOTDOWN 1
94 1.126 matt #endif
95 1.172 skrll #define PMAP_TLB_FLUSH_ASID_ON_RESET arm_has_tlbiasid_p
96 1.168 skrll #define PMAP_TLB_NUM_PIDS 256
97 1.168 skrll #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
98 1.124 matt #if PMAP_TLB_MAX > 1
99 1.168 skrll #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
100 1.124 matt #else
101 1.168 skrll #define cpu_tlb_info(ci) (&pmap_tlb0_info)
102 1.124 matt #endif
103 1.168 skrll #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
104 1.124 matt #include <uvm/pmap/tlb.h>
105 1.124 matt #include <uvm/pmap/pmap_tlb.h>
106 1.124 matt
107 1.135 skrll /*
108 1.124 matt * If we have an EXTENDED MMU and the address space is split evenly between
109 1.124 matt * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
110 1.124 matt * user and kernel address spaces.
111 1.135 skrll */
112 1.128 matt #if (KERNEL_BASE & 0x80000000) == 0
113 1.128 matt #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
114 1.135 skrll #endif
115 1.124 matt #endif /* ARM_MMU_EXTENDED */
116 1.124 matt
117 1.1 reinoud /*
118 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
119 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
120 1.38 thorpej * are described by L1 PTEs in the L1 table.
121 1.11 chris *
122 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
123 1.38 thorpej * changes when the VM context is switched. Everything above that line
124 1.38 thorpej * is the same no matter which VM context is running. This is achieved
125 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
126 1.38 thorpej * kernel L2 tables.
127 1.11 chris *
128 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
129 1.38 thorpej *
130 1.38 thorpej * 0xffffffff
131 1.38 thorpej * .
132 1.38 thorpej * .
133 1.38 thorpej * .
134 1.38 thorpej * KERNEL_BASE
135 1.38 thorpej * --------------------
136 1.38 thorpej * .
137 1.38 thorpej * .
138 1.38 thorpej * .
139 1.38 thorpej * 0x00000000
140 1.11 chris */
141 1.11 chris
142 1.65 scw /*
143 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
144 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
145 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
146 1.65 scw * three of these to map their whole working set.
147 1.65 scw */
148 1.124 matt #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
149 1.168 skrll #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
150 1.65 scw #define L2_BUCKET_LOG2 4
151 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
152 1.65 scw
153 1.65 scw /*
154 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
155 1.65 scw * of l2_dtable structures required to track all possible page descriptors
156 1.65 scw * mappable by an L1 translation table is given by the following constants:
157 1.65 scw */
158 1.124 matt #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
159 1.65 scw #define L2_SIZE (1 << L2_LOG2)
160 1.65 scw
161 1.90 matt /*
162 1.90 matt * tell MI code that the cache is virtually-indexed.
163 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged.
164 1.90 matt */
165 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
166 1.168 skrll #define PMAP_CACHE_VIPT
167 1.90 matt #else
168 1.168 skrll #define PMAP_CACHE_VIVT
169 1.90 matt #endif
170 1.90 matt
171 1.75 bsh #ifndef _LOCORE
172 1.75 bsh
173 1.146 skrll #ifndef ARM_MMU_EXTENDED
174 1.65 scw struct l1_ttable;
175 1.65 scw struct l2_dtable;
176 1.65 scw
177 1.65 scw /*
178 1.65 scw * Track cache/tlb occupancy using the following structure
179 1.65 scw */
180 1.65 scw union pmap_cache_state {
181 1.65 scw struct {
182 1.65 scw union {
183 1.115 skrll uint8_t csu_cache_b[2];
184 1.115 skrll uint16_t csu_cache;
185 1.65 scw } cs_cache_u;
186 1.65 scw
187 1.65 scw union {
188 1.115 skrll uint8_t csu_tlb_b[2];
189 1.115 skrll uint16_t csu_tlb;
190 1.65 scw } cs_tlb_u;
191 1.65 scw } cs_s;
192 1.115 skrll uint32_t cs_all;
193 1.65 scw };
194 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
195 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
196 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
197 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
198 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
199 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
200 1.65 scw
201 1.65 scw /*
202 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
203 1.65 scw */
204 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
205 1.124 matt #endif /* !ARM_MMU_EXTENDED */
206 1.65 scw
207 1.73 thorpej
208 1.153 skrll #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
209 1.153 skrll #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
210 1.175 martin #define DEVMAP_FLAGS PMAP_DEV
211 1.153 skrll
212 1.73 thorpej /*
213 1.65 scw * The pmap structure itself
214 1.65 scw */
215 1.65 scw struct pmap {
216 1.163 ad kmutex_t pm_lock;
217 1.163 ad u_int pm_refs;
218 1.120 matt #ifndef ARM_HAS_VBAR
219 1.82 scw pd_entry_t *pm_pl1vec;
220 1.124 matt pd_entry_t pm_l1vec;
221 1.120 matt #endif
222 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
223 1.65 scw struct pmap_statistics pm_stats;
224 1.65 scw LIST_ENTRY(pmap) pm_list;
225 1.171 skrll bool pm_remove_all;
226 1.124 matt #ifdef ARM_MMU_EXTENDED
227 1.124 matt pd_entry_t *pm_l1;
228 1.124 matt paddr_t pm_l1_pa;
229 1.124 matt #ifdef MULTIPROCESSOR
230 1.124 matt kcpuset_t *pm_onproc;
231 1.124 matt kcpuset_t *pm_active;
232 1.126 matt #if PMAP_TLB_MAX > 1
233 1.126 matt u_int pm_shootdown_pending;
234 1.126 matt #endif
235 1.124 matt #endif
236 1.126 matt struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
237 1.124 matt #else
238 1.124 matt struct l1_ttable *pm_l1;
239 1.124 matt union pmap_cache_state pm_cstate;
240 1.124 matt uint8_t pm_domain;
241 1.124 matt bool pm_activated;
242 1.124 matt #endif
243 1.124 matt };
244 1.124 matt
245 1.124 matt struct pmap_kernel {
246 1.124 matt struct pmap kernel_pmap;
247 1.65 scw };
248 1.65 scw
249 1.106 martin /*
250 1.106 martin * Physical / virtual address structure. In a number of places (particularly
251 1.106 martin * during bootstrapping) we need to keep track of the physical and virtual
252 1.106 martin * addresses of various pages
253 1.106 martin */
254 1.106 martin typedef struct pv_addr {
255 1.106 martin SLIST_ENTRY(pv_addr) pv_list;
256 1.106 martin paddr_t pv_pa;
257 1.106 martin vaddr_t pv_va;
258 1.106 martin vsize_t pv_size;
259 1.106 martin uint8_t pv_cache;
260 1.106 martin uint8_t pv_prot;
261 1.106 martin } pv_addr_t;
262 1.106 martin typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
263 1.106 martin
264 1.85 matt extern pv_addrqh_t pmap_freeq;
265 1.102 matt extern pv_addr_t kernelstack;
266 1.102 matt extern pv_addr_t abtstack;
267 1.102 matt extern pv_addr_t fiqstack;
268 1.102 matt extern pv_addr_t irqstack;
269 1.102 matt extern pv_addr_t undstack;
270 1.103 matt extern pv_addr_t idlestack;
271 1.85 matt extern pv_addr_t systempage;
272 1.85 matt extern pv_addr_t kernel_l1pt;
273 1.173 skrll #if defined(EFI_RUNTIME)
274 1.173 skrll extern pv_addr_t efirt_l1pt;
275 1.173 skrll #endif
276 1.1 reinoud
277 1.126 matt #ifdef ARM_MMU_EXTENDED
278 1.126 matt extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
279 1.126 matt #endif
280 1.126 matt
281 1.1 reinoud /*
282 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
283 1.24 thorpej * vs. non-cacheable).
284 1.24 thorpej */
285 1.24 thorpej #define PTE_KERNEL 0
286 1.24 thorpej #define PTE_USER 1
287 1.24 thorpej #define PTE_NOCACHE 0
288 1.24 thorpej #define PTE_CACHE 1
289 1.65 scw #define PTE_PAGETABLE 2
290 1.161 skrll #define PTE_DEV 3
291 1.24 thorpej
292 1.24 thorpej /*
293 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
294 1.43 thorpej *
295 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
296 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
297 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
298 1.43 thorpej * that we can clear multiple attributes at a time.
299 1.43 thorpej *
300 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
301 1.43 thorpej * multiple mappings in a given address space.
302 1.43 thorpej */
303 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
304 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
305 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
306 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
307 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
308 1.90 matt #ifdef PMAP_CACHE_VIVT
309 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
310 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
311 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC)
312 1.90 matt #endif
313 1.90 matt #ifdef PMAP_CACHE_VIPT
314 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
315 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
316 1.90 matt #endif
317 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */
318 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
319 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */
320 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
321 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */
322 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
323 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
324 1.43 thorpej
325 1.43 thorpej /*
326 1.1 reinoud * Commonly referenced structures
327 1.1 reinoud */
328 1.113 matt extern int arm_poolpage_vmfreelist;
329 1.1 reinoud
330 1.1 reinoud /*
331 1.1 reinoud * Macros that we need to export
332 1.1 reinoud */
333 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
334 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
335 1.31 thorpej
336 1.43 thorpej #define pmap_is_modified(pg) \
337 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
338 1.43 thorpej #define pmap_is_referenced(pg) \
339 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
340 1.96 uebayasi #define pmap_is_page_colored_p(md) \
341 1.96 uebayasi (((md)->pvh_attrs & PVF_COLORED) != 0)
342 1.41 thorpej
343 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
344 1.60 chs
345 1.168 skrll #define pmap_phys_address(ppn) (arm_ptob((ppn)))
346 1.98 macallan u_int arm32_mmap_flags(paddr_t);
347 1.168 skrll #define ARM32_MMAP_WRITECOMBINE 0x40000000
348 1.168 skrll #define ARM32_MMAP_CACHEABLE 0x20000000
349 1.168 skrll #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
350 1.168 skrll #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
351 1.168 skrll #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
352 1.1 reinoud
353 1.123 matt #define PMAP_PTE 0x10000000 /* kenter_pa */
354 1.161 skrll #define PMAP_DEV 0x20000000 /* kenter_pa */
355 1.161 skrll #define PMAP_DEV_SO 0x40000000 /* kenter_pa */
356 1.161 skrll #define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO)
357 1.123 matt
358 1.1 reinoud /*
359 1.1 reinoud * Functions that we need to export
360 1.1 reinoud */
361 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
362 1.164 ad bool pmap_remove_all(pmap_t);
363 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
364 1.39 thorpej
365 1.1 reinoud #define PMAP_NEED_PROCWR
366 1.168 skrll #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
367 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
368 1.4 matt
369 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
370 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
371 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int);
372 1.85 matt #endif
373 1.85 matt
374 1.160 skrll #ifdef ARM_MMU_EXTENDED
375 1.159 skrll int pmap_maxproc_set(int);
376 1.173 skrll struct pmap *
377 1.173 skrll pmap_efirt(void);
378 1.159 skrll #endif
379 1.159 skrll
380 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
381 1.85 matt
382 1.39 thorpej /* Functions we use internally. */
383 1.85 matt #ifdef PMAP_STEAL_MEMORY
384 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
385 1.85 matt void pmap_boot_pageadd(pv_addr_t *);
386 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
387 1.85 matt #endif
388 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t);
389 1.65 scw
390 1.173 skrll struct pmap *
391 1.173 skrll pmap_efirt(void);
392 1.173 skrll void pmap_activate_efirt(void);
393 1.173 skrll void pmap_deactivate_efirt(void);
394 1.173 skrll
395 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
396 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
397 1.124 matt int pmap_prefetchabt_fixup(void *);
398 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
399 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
400 1.155 ryo bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
401 1.65 scw
402 1.39 thorpej void pmap_postinit(void);
403 1.42 thorpej
404 1.42 thorpej void vector_page_setprot(int);
405 1.24 thorpej
406 1.24 thorpej /* Bootstrapping routines. */
407 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
408 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
409 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
410 1.156 skrll void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
411 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
412 1.174 skrll
413 1.174 skrll vsize_t pmap_kenter_range(vaddr_t, paddr_t, vsize_t, vm_prot_t, u_int);
414 1.13 chris
415 1.13 chris /*
416 1.135 skrll * Special page zero routine for use by the idle loop (no cache cleans).
417 1.13 chris */
418 1.80 thorpej bool pmap_pageidlezero(paddr_t);
419 1.168 skrll #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
420 1.1 reinoud
421 1.131 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
422 1.131 matt /*
423 1.131 matt * For the pmap, this is a more useful way to map a direct mapped page.
424 1.131 matt * It returns either the direct-mapped VA or the VA supplied if it can't
425 1.131 matt * be direct mapped.
426 1.131 matt */
427 1.131 matt vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
428 1.131 matt #endif
429 1.131 matt
430 1.29 chris /*
431 1.84 chris * used by dumpsys to record the PA of the L1 table
432 1.84 chris */
433 1.84 chris uint32_t pmap_kernel_L1_addr(void);
434 1.84 chris /*
435 1.29 chris * The current top of kernel VM
436 1.29 chris */
437 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
438 1.1 reinoud
439 1.131 matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
440 1.131 matt /*
441 1.141 matt * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
442 1.131 matt */
443 1.140 matt extern vaddr_t pmap_directlimit;
444 1.131 matt #endif
445 1.131 matt
446 1.1 reinoud /*
447 1.135 skrll * Useful macros and constants
448 1.1 reinoud */
449 1.59 thorpej
450 1.65 scw /* Virtual address to page table entry */
451 1.79 perry static inline pt_entry_t *
452 1.65 scw vtopte(vaddr_t va)
453 1.65 scw {
454 1.65 scw pd_entry_t *pdep;
455 1.65 scw pt_entry_t *ptep;
456 1.65 scw
457 1.124 matt KASSERT(trunc_page(va) == va);
458 1.124 matt
459 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
460 1.65 scw return (NULL);
461 1.65 scw return (ptep);
462 1.65 scw }
463 1.65 scw
464 1.65 scw /*
465 1.65 scw * Virtual address to physical address
466 1.65 scw */
467 1.79 perry static inline paddr_t
468 1.65 scw vtophys(vaddr_t va)
469 1.65 scw {
470 1.65 scw paddr_t pa;
471 1.65 scw
472 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
473 1.65 scw return (0); /* XXXSCW: Panic? */
474 1.65 scw
475 1.65 scw return (pa);
476 1.65 scw }
477 1.65 scw
478 1.65 scw /*
479 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
480 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
481 1.65 scw * on every change.
482 1.65 scw *
483 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
484 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
485 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
486 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
487 1.69 thorpej * the code.
488 1.69 thorpej */
489 1.69 thorpej extern int pmap_needs_pte_sync;
490 1.69 thorpej #if defined(_KERNEL_OPT)
491 1.69 thorpej /*
492 1.145 skrll * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
493 1.145 skrll * single MMU type is selected.
494 1.145 skrll *
495 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
496 1.145 skrll * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
497 1.145 skrll * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
498 1.145 skrll *
499 1.145 skrll * Use run time evaluation for all other cases.
500 1.148 skrll *
501 1.69 thorpej */
502 1.145 skrll #if (ARM_NMMUS == 1)
503 1.145 skrll #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
504 1.104 matt #define PMAP_INCLUDE_PTE_SYNC
505 1.109 matt #define PMAP_NEEDS_PTE_SYNC 1
506 1.145 skrll #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
507 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
508 1.69 thorpej #endif
509 1.112 matt #endif
510 1.69 thorpej #endif /* _KERNEL_OPT */
511 1.69 thorpej
512 1.69 thorpej /*
513 1.69 thorpej * Provide a fallback in case we were not able to determine it at
514 1.69 thorpej * compile-time.
515 1.65 scw */
516 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
517 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
518 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
519 1.69 thorpej #endif
520 1.65 scw
521 1.104 matt static inline void
522 1.104 matt pmap_ptesync(pt_entry_t *ptep, size_t cnt)
523 1.104 matt {
524 1.132 matt if (PMAP_NEEDS_PTE_SYNC) {
525 1.104 matt cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
526 1.132 matt #ifdef SHEEVA_L2_CACHE
527 1.132 matt cpu_sdcache_wb_range((vaddr_t)ptep, -1,
528 1.132 matt cnt * sizeof(pt_entry_t));
529 1.132 matt #endif
530 1.132 matt }
531 1.169 skrll dsb(sy);
532 1.104 matt }
533 1.69 thorpej
534 1.124 matt #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
535 1.124 matt #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
536 1.124 matt #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
537 1.104 matt #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
538 1.65 scw
539 1.168 skrll #define l1pte_valid_p(pde) ((pde) != 0)
540 1.168 skrll #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
541 1.168 skrll #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
542 1.104 matt && ((pde) & L1_S_V6_SUPER) != 0)
543 1.168 skrll #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
544 1.168 skrll #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
545 1.168 skrll #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
546 1.168 skrll #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
547 1.124 matt
548 1.124 matt static inline void
549 1.124 matt l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
550 1.124 matt {
551 1.124 matt *pdep = pde;
552 1.124 matt }
553 1.36 thorpej
554 1.124 matt static inline void
555 1.124 matt l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
556 1.124 matt {
557 1.124 matt *pdep = pde;
558 1.124 matt if (l1pte_page_p(pde)) {
559 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
560 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
561 1.124 matt pde += L2_T_SIZE;
562 1.124 matt pdep[k] = pde;
563 1.124 matt }
564 1.124 matt } else if (l1pte_supersection_p(pde)) {
565 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
566 1.158 christos for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
567 1.124 matt pdep[k] = pde;
568 1.124 matt }
569 1.124 matt }
570 1.124 matt }
571 1.124 matt
572 1.168 skrll #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
573 1.168 skrll #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
574 1.168 skrll #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
575 1.168 skrll #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
576 1.168 skrll #define l2pte_minidata_p(pte) (((pte) & \
577 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
578 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
579 1.35 thorpej
580 1.121 matt static inline void
581 1.121 matt l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
582 1.121 matt {
583 1.129 skrll if (l1pte_lpage_p(pte)) {
584 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
585 1.158 christos for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
586 1.129 skrll *ptep++ = pte;
587 1.129 skrll }
588 1.129 skrll } else {
589 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
590 1.158 christos for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
591 1.129 skrll KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
592 1.129 skrll *ptep++ = pte;
593 1.129 skrll pte += L2_S_SIZE;
594 1.129 skrll if (opte)
595 1.129 skrll opte += L2_S_SIZE;
596 1.129 skrll }
597 1.121 matt }
598 1.129 skrll }
599 1.121 matt
600 1.121 matt static inline void
601 1.121 matt l2pte_reset(pt_entry_t *ptep)
602 1.121 matt {
603 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
604 1.121 matt *ptep = 0;
605 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
606 1.121 matt ptep[k] = 0;
607 1.121 matt }
608 1.135 skrll }
609 1.121 matt
610 1.1 reinoud /* L1 and L2 page table macros */
611 1.168 skrll #define pmap_pde_v(pde) l1pte_valid(*(pde))
612 1.168 skrll #define pmap_pde_section(pde) l1pte_section_p(*(pde))
613 1.168 skrll #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
614 1.168 skrll #define pmap_pde_page(pde) l1pte_page_p(*(pde))
615 1.168 skrll #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
616 1.16 rearnsha
617 1.124 matt #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
618 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
619 1.35 thorpej
620 1.170 skrll static inline uint32_t
621 1.170 skrll pte_value(pt_entry_t pte)
622 1.170 skrll {
623 1.170 skrll return pte;
624 1.170 skrll }
625 1.170 skrll
626 1.170 skrll static inline bool
627 1.170 skrll pte_valid_p(pt_entry_t pte)
628 1.170 skrll {
629 1.170 skrll
630 1.170 skrll return l2pte_valid_p(pte);
631 1.170 skrll }
632 1.170 skrll
633 1.170 skrll
634 1.1 reinoud /* Size of the kernel part of the L1 page table */
635 1.168 skrll #define KERNEL_PD_SIZE \
636 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
637 1.20 chs
638 1.117 matt void bzero_page(vaddr_t);
639 1.117 matt void bcopy_page(vaddr_t, vaddr_t);
640 1.46 thorpej
641 1.116 matt #ifdef FPU_VFP
642 1.117 matt void bzero_page_vfp(vaddr_t);
643 1.117 matt void bcopy_page_vfp(vaddr_t, vaddr_t);
644 1.116 matt #endif
645 1.116 matt
646 1.117 matt /************************* ARM MMU configuration *****************************/
647 1.117 matt
648 1.95 jmcneill #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
649 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
650 1.51 thorpej void pmap_zero_page_generic(paddr_t);
651 1.51 thorpej
652 1.46 thorpej void pmap_pte_init_generic(void);
653 1.69 thorpej #if defined(CPU_ARM8)
654 1.69 thorpej void pmap_pte_init_arm8(void);
655 1.69 thorpej #endif
656 1.46 thorpej #if defined(CPU_ARM9)
657 1.46 thorpej void pmap_pte_init_arm9(void);
658 1.46 thorpej #endif /* CPU_ARM9 */
659 1.76 rearnsha #if defined(CPU_ARM10)
660 1.76 rearnsha void pmap_pte_init_arm10(void);
661 1.76 rearnsha #endif /* CPU_ARM10 */
662 1.103 matt #if defined(CPU_ARM11) /* ARM_MMU_V6 */
663 1.94 uebayasi void pmap_pte_init_arm11(void);
664 1.94 uebayasi #endif /* CPU_ARM11 */
665 1.103 matt #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
666 1.99 bsh void pmap_pte_init_arm11mpcore(void);
667 1.99 bsh #endif
668 1.161 skrll #if ARM_MMU_V6 == 1
669 1.161 skrll void pmap_pte_init_armv6(void);
670 1.161 skrll #endif /* ARM_MMU_V6 */
671 1.103 matt #if ARM_MMU_V7 == 1
672 1.103 matt void pmap_pte_init_armv7(void);
673 1.103 matt #endif /* ARM_MMU_V7 */
674 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
675 1.69 thorpej
676 1.69 thorpej #if ARM_MMU_SA1 == 1
677 1.69 thorpej void pmap_pte_init_sa1(void);
678 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
679 1.46 thorpej
680 1.52 thorpej #if ARM_MMU_XSCALE == 1
681 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
682 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
683 1.51 thorpej
684 1.46 thorpej void pmap_pte_init_xscale(void);
685 1.50 thorpej
686 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
687 1.77 scw
688 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
689 1.77 scw void pmap_uarea(vaddr_t);
690 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
691 1.46 thorpej
692 1.161 skrll extern pt_entry_t pte_l1_s_nocache_mode;
693 1.161 skrll extern pt_entry_t pte_l2_l_nocache_mode;
694 1.161 skrll extern pt_entry_t pte_l2_s_nocache_mode;
695 1.161 skrll
696 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
697 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
698 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
699 1.46 thorpej
700 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
701 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
702 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
703 1.65 scw
704 1.98 macallan extern pt_entry_t pte_l1_s_wc_mode;
705 1.98 macallan extern pt_entry_t pte_l2_l_wc_mode;
706 1.98 macallan extern pt_entry_t pte_l2_s_wc_mode;
707 1.98 macallan
708 1.161 skrll extern pt_entry_t pte_l1_s_cache_mask;
709 1.161 skrll extern pt_entry_t pte_l2_l_cache_mask;
710 1.161 skrll extern pt_entry_t pte_l2_s_cache_mask;
711 1.161 skrll
712 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_u;
713 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_w;
714 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_ro;
715 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_mask;
716 1.95 jmcneill
717 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
718 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
719 1.95 jmcneill extern pt_entry_t pte_l2_s_prot_ro;
720 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
721 1.95 jmcneill
722 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_u;
723 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_w;
724 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_ro;
725 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_mask;
726 1.95 jmcneill
727 1.103 matt extern pt_entry_t pte_l1_ss_proto;
728 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
729 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
730 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
731 1.46 thorpej
732 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
733 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
734 1.75 bsh
735 1.75 bsh #endif /* !_LOCORE */
736 1.51 thorpej
737 1.46 thorpej /*****************************************************************************/
738 1.46 thorpej
739 1.124 matt #define KERNEL_PID 0 /* The kernel uses ASID 0 */
740 1.124 matt
741 1.20 chs /*
742 1.65 scw * Definitions for MMU domains
743 1.65 scw */
744 1.103 matt #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
745 1.124 matt #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
746 1.156 skrll
747 1.124 matt #ifdef ARM_MMU_EXTENDED
748 1.124 matt #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
749 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
750 1.156 skrll #else
751 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
752 1.124 matt #endif
753 1.45 thorpej
754 1.45 thorpej /*
755 1.45 thorpej * These macros define the various bit masks in the PTE.
756 1.45 thorpej *
757 1.45 thorpej * We use these macros since we use different bits on different processor
758 1.45 thorpej * models.
759 1.45 thorpej */
760 1.95 jmcneill #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
761 1.95 jmcneill #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
762 1.152 skrll #define L1_S_PROT_RO_generic (0)
763 1.95 jmcneill #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
764 1.95 jmcneill
765 1.95 jmcneill #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
766 1.95 jmcneill #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
767 1.152 skrll #define L1_S_PROT_RO_xscale (0)
768 1.95 jmcneill #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
769 1.95 jmcneill
770 1.99 bsh #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
771 1.99 bsh #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
772 1.99 bsh #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
773 1.99 bsh #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
774 1.99 bsh
775 1.95 jmcneill #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
776 1.95 jmcneill #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
777 1.95 jmcneill #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
778 1.95 jmcneill #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
779 1.45 thorpej
780 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
781 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
782 1.99 bsh #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
783 1.134 skrll #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
784 1.111 matt #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
785 1.45 thorpej
786 1.95 jmcneill #define L2_L_PROT_U_generic (L2_AP(AP_U))
787 1.95 jmcneill #define L2_L_PROT_W_generic (L2_AP(AP_W))
788 1.152 skrll #define L2_L_PROT_RO_generic (0)
789 1.95 jmcneill #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
790 1.95 jmcneill
791 1.95 jmcneill #define L2_L_PROT_U_xscale (L2_AP(AP_U))
792 1.95 jmcneill #define L2_L_PROT_W_xscale (L2_AP(AP_W))
793 1.152 skrll #define L2_L_PROT_RO_xscale (0)
794 1.95 jmcneill #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
795 1.95 jmcneill
796 1.99 bsh #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
797 1.99 bsh #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
798 1.99 bsh #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
799 1.99 bsh #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
800 1.99 bsh
801 1.95 jmcneill #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
802 1.95 jmcneill #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
803 1.95 jmcneill #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
804 1.95 jmcneill #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
805 1.45 thorpej
806 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
807 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
808 1.99 bsh #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
809 1.134 skrll #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
810 1.111 matt #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
811 1.49 thorpej
812 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
813 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
814 1.152 skrll #define L2_S_PROT_RO_generic (0)
815 1.95 jmcneill #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
816 1.46 thorpej
817 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
818 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
819 1.152 skrll #define L2_S_PROT_RO_xscale (0)
820 1.95 jmcneill #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
821 1.95 jmcneill
822 1.99 bsh #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
823 1.99 bsh #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
824 1.99 bsh #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
825 1.99 bsh #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
826 1.99 bsh
827 1.95 jmcneill #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
828 1.95 jmcneill #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
829 1.95 jmcneill #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
830 1.95 jmcneill #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
831 1.46 thorpej
832 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
833 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
834 1.99 bsh #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
835 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
836 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
837 1.99 bsh #else
838 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
839 1.99 bsh #endif
840 1.142 skrll #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
841 1.111 matt #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
842 1.46 thorpej
843 1.99 bsh
844 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
845 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
846 1.99 bsh #define L1_S_PROTO_armv6 (L1_TYPE_S)
847 1.95 jmcneill #define L1_S_PROTO_armv7 (L1_TYPE_S)
848 1.46 thorpej
849 1.103 matt #define L1_SS_PROTO_generic 0
850 1.103 matt #define L1_SS_PROTO_xscale 0
851 1.103 matt #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
852 1.103 matt #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
853 1.103 matt
854 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
855 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
856 1.99 bsh #define L1_C_PROTO_armv6 (L1_TYPE_C)
857 1.95 jmcneill #define L1_C_PROTO_armv7 (L1_TYPE_C)
858 1.46 thorpej
859 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
860 1.46 thorpej
861 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
862 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS)
863 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
864 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
865 1.99 bsh #else
866 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
867 1.99 bsh #endif
868 1.134 skrll #ifdef ARM_MMU_EXTENDED
869 1.134 skrll #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
870 1.134 skrll #else
871 1.99 bsh #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
872 1.134 skrll #endif
873 1.124 matt #ifdef ARM_MMU_EXTENDED
874 1.124 matt #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
875 1.124 matt #else
876 1.95 jmcneill #define L2_S_PROTO_armv7 (L2_TYPE_S)
877 1.124 matt #endif
878 1.45 thorpej
879 1.46 thorpej /*
880 1.46 thorpej * User-visible names for the ones that vary with MMU class.
881 1.46 thorpej */
882 1.46 thorpej
883 1.46 thorpej #if ARM_NMMUS > 1
884 1.46 thorpej /* More than one MMU class configured; use variables. */
885 1.95 jmcneill #define L1_S_PROT_U pte_l1_s_prot_u
886 1.95 jmcneill #define L1_S_PROT_W pte_l1_s_prot_w
887 1.95 jmcneill #define L1_S_PROT_RO pte_l1_s_prot_ro
888 1.95 jmcneill #define L1_S_PROT_MASK pte_l1_s_prot_mask
889 1.95 jmcneill
890 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
891 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
892 1.95 jmcneill #define L2_S_PROT_RO pte_l2_s_prot_ro
893 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
894 1.46 thorpej
895 1.95 jmcneill #define L2_L_PROT_U pte_l2_l_prot_u
896 1.95 jmcneill #define L2_L_PROT_W pte_l2_l_prot_w
897 1.95 jmcneill #define L2_L_PROT_RO pte_l2_l_prot_ro
898 1.95 jmcneill #define L2_L_PROT_MASK pte_l2_l_prot_mask
899 1.95 jmcneill
900 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
901 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
902 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
903 1.49 thorpej
904 1.103 matt #define L1_SS_PROTO pte_l1_ss_proto
905 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
906 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
907 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
908 1.51 thorpej
909 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
910 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
911 1.99 bsh #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
912 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_generic
913 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_generic
914 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_generic
915 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
916 1.99 bsh
917 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_generic
918 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_generic
919 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_generic
920 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
921 1.99 bsh
922 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_generic
923 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_generic
924 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_generic
925 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
926 1.99 bsh
927 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
928 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
929 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
930 1.99 bsh
931 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
932 1.99 bsh #define L1_S_PROTO L1_S_PROTO_generic
933 1.99 bsh #define L1_C_PROTO L1_C_PROTO_generic
934 1.99 bsh #define L2_S_PROTO L2_S_PROTO_generic
935 1.99 bsh
936 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
937 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
938 1.99 bsh #elif ARM_MMU_V6N != 0
939 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_armv6
940 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_armv6
941 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_armv6
942 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
943 1.99 bsh
944 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_armv6n
945 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_armv6n
946 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
947 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
948 1.99 bsh
949 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_armv6n
950 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_armv6n
951 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
952 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
953 1.99 bsh
954 1.134 skrll #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
955 1.134 skrll #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
956 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
957 1.99 bsh
958 1.150 skrll /*
959 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
960 1.150 skrll * make read-only mappings.
961 1.150 skrll */
962 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
963 1.99 bsh #define L1_S_PROTO L1_S_PROTO_armv6
964 1.99 bsh #define L1_C_PROTO L1_C_PROTO_armv6
965 1.99 bsh #define L2_S_PROTO L2_S_PROTO_armv6n
966 1.99 bsh
967 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
968 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
969 1.99 bsh #elif ARM_MMU_V6C != 0
970 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
971 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
972 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
973 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
974 1.95 jmcneill
975 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
976 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
977 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_generic
978 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
979 1.46 thorpej
980 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
981 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
982 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
983 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
984 1.95 jmcneill
985 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
986 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
987 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
988 1.49 thorpej
989 1.130 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
990 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
991 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
992 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
993 1.51 thorpej
994 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
995 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
996 1.46 thorpej #elif ARM_MMU_XSCALE == 1
997 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
998 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
999 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
1000 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
1001 1.95 jmcneill
1002 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
1003 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
1004 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_xscale
1005 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
1006 1.49 thorpej
1007 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
1008 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
1009 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
1010 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
1011 1.95 jmcneill
1012 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
1013 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
1014 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
1015 1.46 thorpej
1016 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_xscale
1017 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
1018 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
1019 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
1020 1.51 thorpej
1021 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
1022 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
1023 1.95 jmcneill #elif ARM_MMU_V7 == 1
1024 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_armv7
1025 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_armv7
1026 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_armv7
1027 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
1028 1.95 jmcneill
1029 1.95 jmcneill #define L2_S_PROT_U L2_S_PROT_U_armv7
1030 1.95 jmcneill #define L2_S_PROT_W L2_S_PROT_W_armv7
1031 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_armv7
1032 1.95 jmcneill #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1033 1.95 jmcneill
1034 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_armv7
1035 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_armv7
1036 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1037 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1038 1.95 jmcneill
1039 1.95 jmcneill #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1040 1.95 jmcneill #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1041 1.95 jmcneill #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1042 1.95 jmcneill
1043 1.150 skrll /*
1044 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
1045 1.150 skrll * make read-only mappings.
1046 1.150 skrll */
1047 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv7
1048 1.95 jmcneill #define L1_S_PROTO L1_S_PROTO_armv7
1049 1.95 jmcneill #define L1_C_PROTO L1_C_PROTO_armv7
1050 1.95 jmcneill #define L2_S_PROTO L2_S_PROTO_armv7
1051 1.95 jmcneill
1052 1.95 jmcneill #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1053 1.95 jmcneill #define pmap_zero_page(d) pmap_zero_page_generic((d))
1054 1.46 thorpej #endif /* ARM_NMMUS > 1 */
1055 1.20 chs
1056 1.45 thorpej /*
1057 1.95 jmcneill * Macros to set and query the write permission on page descriptors.
1058 1.95 jmcneill */
1059 1.168 skrll #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1060 1.168 skrll #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1061 1.149 skrll
1062 1.168 skrll #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1063 1.168 skrll #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1064 1.95 jmcneill
1065 1.168 skrll #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1066 1.152 skrll (L2_S_PROT_RO == 0 || \
1067 1.95 jmcneill ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1068 1.95 jmcneill
1069 1.95 jmcneill /*
1070 1.45 thorpej * These macros return various bits based on kernel/user and protection.
1071 1.45 thorpej * Note that the compiler will usually fold these at compile time.
1072 1.45 thorpej */
1073 1.152 skrll
1074 1.152 skrll #define L1_S_PROT(ku, pr) ( \
1075 1.152 skrll (((ku) == PTE_USER) ? \
1076 1.152 skrll L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
1077 1.152 skrll : \
1078 1.152 skrll (((L1_S_PROT_RO && \
1079 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1080 1.152 skrll L1_S_PROT_RO : L1_S_PROT_W))) \
1081 1.152 skrll )
1082 1.152 skrll
1083 1.152 skrll #define L2_L_PROT(ku, pr) ( \
1084 1.152 skrll (((ku) == PTE_USER) ? \
1085 1.152 skrll L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
1086 1.152 skrll : \
1087 1.152 skrll (((L2_L_PROT_RO && \
1088 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1089 1.152 skrll L2_L_PROT_RO : L2_L_PROT_W))) \
1090 1.152 skrll )
1091 1.152 skrll
1092 1.152 skrll #define L2_S_PROT(ku, pr) ( \
1093 1.152 skrll (((ku) == PTE_USER) ? \
1094 1.152 skrll L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
1095 1.152 skrll : \
1096 1.152 skrll (((L2_S_PROT_RO && \
1097 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1098 1.152 skrll L2_S_PROT_RO : L2_S_PROT_W))) \
1099 1.152 skrll )
1100 1.66 thorpej
1101 1.66 thorpej /*
1102 1.103 matt * Macros to test if a mapping is mappable with an L1 SuperSection,
1103 1.103 matt * L1 Section, or an L2 Large Page mapping.
1104 1.66 thorpej */
1105 1.103 matt #define L1_SS_MAPPABLE_P(va, pa, size) \
1106 1.103 matt ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1107 1.103 matt
1108 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
1109 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1110 1.66 thorpej
1111 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
1112 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1113 1.64 thorpej
1114 1.155 ryo #define PMAP_MAPSIZE1 L2_L_SIZE
1115 1.155 ryo #define PMAP_MAPSIZE2 L1_S_SIZE
1116 1.155 ryo #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1117 1.155 ryo #define PMAP_MAPSIZE3 L1_SS_SIZE
1118 1.155 ryo #endif
1119 1.155 ryo
1120 1.119 matt #ifndef _LOCORE
1121 1.64 thorpej /*
1122 1.64 thorpej * Hooks for the pool allocator.
1123 1.64 thorpej */
1124 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1125 1.117 matt extern paddr_t physical_start, physical_end;
1126 1.113 matt #ifdef PMAP_NEED_ALLOC_POOLPAGE
1127 1.114 matt struct vm_page *arm_pmap_alloc_poolpage(int);
1128 1.113 matt #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1129 1.118 matt #endif
1130 1.118 matt #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1131 1.131 matt vaddr_t pmap_map_poolpage(paddr_t);
1132 1.131 matt paddr_t pmap_unmap_poolpage(vaddr_t);
1133 1.131 matt #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1134 1.168 skrll #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1135 1.113 matt #endif
1136 1.18 thorpej
1137 1.168 skrll #define __HAVE_PMAP_PV_TRACK 1
1138 1.143 skrll
1139 1.143 skrll void pmap_pv_protect(paddr_t, vm_prot_t);
1140 1.143 skrll
1141 1.143 skrll struct pmap_page {
1142 1.97 uebayasi SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1143 1.97 uebayasi int pvh_attrs; /* page attributes */
1144 1.97 uebayasi u_int uro_mappings;
1145 1.97 uebayasi u_int urw_mappings;
1146 1.97 uebayasi union {
1147 1.97 uebayasi u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1148 1.97 uebayasi u_int i_mappings;
1149 1.97 uebayasi } k_u;
1150 1.97 uebayasi };
1151 1.97 uebayasi
1152 1.97 uebayasi /*
1153 1.143 skrll * pmap-specific data store in the vm_page structure.
1154 1.143 skrll */
1155 1.143 skrll #define __HAVE_VM_PAGE_MD
1156 1.143 skrll struct vm_page_md {
1157 1.143 skrll struct pmap_page pp;
1158 1.143 skrll #define pvh_list pp.pvh_list
1159 1.143 skrll #define pvh_attrs pp.pvh_attrs
1160 1.143 skrll #define uro_mappings pp.uro_mappings
1161 1.143 skrll #define urw_mappings pp.urw_mappings
1162 1.143 skrll #define kro_mappings pp.k_u.s_mappings[0]
1163 1.143 skrll #define krw_mappings pp.k_u.s_mappings[1]
1164 1.143 skrll #define k_mappings pp.k_u.i_mappings
1165 1.143 skrll };
1166 1.143 skrll
1167 1.168 skrll #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1168 1.143 skrll
1169 1.143 skrll /*
1170 1.97 uebayasi * Set the default color of each page.
1171 1.97 uebayasi */
1172 1.97 uebayasi #if ARM_MMU_V6 > 0
1173 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1174 1.157 ad (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
1175 1.97 uebayasi #else
1176 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1177 1.97 uebayasi (pg)->mdpage.pvh_attrs = 0
1178 1.97 uebayasi #endif
1179 1.135 skrll
1180 1.97 uebayasi #define VM_MDPAGE_INIT(pg) \
1181 1.97 uebayasi do { \
1182 1.97 uebayasi SLIST_INIT(&(pg)->mdpage.pvh_list); \
1183 1.97 uebayasi VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1184 1.97 uebayasi (pg)->mdpage.uro_mappings = 0; \
1185 1.97 uebayasi (pg)->mdpage.urw_mappings = 0; \
1186 1.97 uebayasi (pg)->mdpage.k_mappings = 0; \
1187 1.97 uebayasi } while (/*CONSTCOND*/0)
1188 1.97 uebayasi
1189 1.165 skrll #ifndef __BSD_PTENTRY_T__
1190 1.165 skrll #define __BSD_PTENTRY_T__
1191 1.165 skrll typedef uint32_t pt_entry_t;
1192 1.168 skrll #define PRIxPTE PRIx32
1193 1.165 skrll #endif
1194 1.165 skrll
1195 1.166 skrll #endif /* !_LOCORE */
1196 1.166 skrll
1197 1.18 thorpej #endif /* _KERNEL */
1198 1.1 reinoud
1199 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
1200