pmap.h revision 1.177 1 1.177 skrll /* $NetBSD: pmap.h,v 1.177 2023/10/12 11:33:37 skrll Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.85 matt #if defined(_KERNEL_OPT)
77 1.85 matt #include "opt_arm32_pmap.h"
78 1.136 skrll #include "opt_multiprocessor.h"
79 1.85 matt #endif
80 1.19 thorpej #include <arm/cpufunc.h>
81 1.138 joerg #include <arm/locore.h>
82 1.174 skrll
83 1.12 chris #include <uvm/uvm_object.h>
84 1.174 skrll
85 1.174 skrll #include <uvm/pmap/pmap_devmap.h>
86 1.143 skrll #include <uvm/pmap/pmap_pvt.h>
87 1.75 bsh #endif
88 1.1 reinoud
89 1.124 matt #ifdef ARM_MMU_EXTENDED
90 1.168 skrll #define PMAP_HWPAGEWALKER 1
91 1.168 skrll #define PMAP_TLB_MAX 1
92 1.126 matt #if PMAP_TLB_MAX > 1
93 1.168 skrll #define PMAP_TLB_NEED_SHOOTDOWN 1
94 1.126 matt #endif
95 1.172 skrll #define PMAP_TLB_FLUSH_ASID_ON_RESET arm_has_tlbiasid_p
96 1.168 skrll #define PMAP_TLB_NUM_PIDS 256
97 1.176 skrll
98 1.168 skrll #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
99 1.124 matt #include <uvm/pmap/tlb.h>
100 1.124 matt #include <uvm/pmap/pmap_tlb.h>
101 1.124 matt
102 1.135 skrll /*
103 1.124 matt * If we have an EXTENDED MMU and the address space is split evenly between
104 1.124 matt * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
105 1.124 matt * user and kernel address spaces.
106 1.135 skrll */
107 1.128 matt #if (KERNEL_BASE & 0x80000000) == 0
108 1.128 matt #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
109 1.135 skrll #endif
110 1.124 matt #endif /* ARM_MMU_EXTENDED */
111 1.124 matt
112 1.1 reinoud /*
113 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
114 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
115 1.38 thorpej * are described by L1 PTEs in the L1 table.
116 1.11 chris *
117 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
118 1.38 thorpej * changes when the VM context is switched. Everything above that line
119 1.38 thorpej * is the same no matter which VM context is running. This is achieved
120 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
121 1.38 thorpej * kernel L2 tables.
122 1.11 chris *
123 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
124 1.38 thorpej *
125 1.38 thorpej * 0xffffffff
126 1.38 thorpej * .
127 1.38 thorpej * .
128 1.38 thorpej * .
129 1.38 thorpej * KERNEL_BASE
130 1.38 thorpej * --------------------
131 1.38 thorpej * .
132 1.38 thorpej * .
133 1.38 thorpej * .
134 1.38 thorpej * 0x00000000
135 1.11 chris */
136 1.11 chris
137 1.65 scw /*
138 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
139 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
140 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
141 1.65 scw * three of these to map their whole working set.
142 1.65 scw */
143 1.124 matt #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
144 1.168 skrll #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
145 1.65 scw #define L2_BUCKET_LOG2 4
146 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
147 1.65 scw
148 1.65 scw /*
149 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
150 1.65 scw * of l2_dtable structures required to track all possible page descriptors
151 1.65 scw * mappable by an L1 translation table is given by the following constants:
152 1.65 scw */
153 1.124 matt #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
154 1.65 scw #define L2_SIZE (1 << L2_LOG2)
155 1.65 scw
156 1.90 matt /*
157 1.90 matt * tell MI code that the cache is virtually-indexed.
158 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged.
159 1.90 matt */
160 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
161 1.168 skrll #define PMAP_CACHE_VIPT
162 1.90 matt #else
163 1.168 skrll #define PMAP_CACHE_VIVT
164 1.90 matt #endif
165 1.90 matt
166 1.75 bsh #ifndef _LOCORE
167 1.75 bsh
168 1.146 skrll #ifndef ARM_MMU_EXTENDED
169 1.65 scw struct l1_ttable;
170 1.65 scw struct l2_dtable;
171 1.65 scw
172 1.65 scw /*
173 1.65 scw * Track cache/tlb occupancy using the following structure
174 1.65 scw */
175 1.65 scw union pmap_cache_state {
176 1.65 scw struct {
177 1.65 scw union {
178 1.115 skrll uint8_t csu_cache_b[2];
179 1.115 skrll uint16_t csu_cache;
180 1.65 scw } cs_cache_u;
181 1.65 scw
182 1.65 scw union {
183 1.115 skrll uint8_t csu_tlb_b[2];
184 1.115 skrll uint16_t csu_tlb;
185 1.65 scw } cs_tlb_u;
186 1.65 scw } cs_s;
187 1.115 skrll uint32_t cs_all;
188 1.65 scw };
189 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
190 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
191 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
192 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
193 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
194 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
195 1.65 scw
196 1.65 scw /*
197 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
198 1.65 scw */
199 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
200 1.124 matt #endif /* !ARM_MMU_EXTENDED */
201 1.65 scw
202 1.73 thorpej
203 1.153 skrll #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
204 1.153 skrll #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
205 1.175 martin #define DEVMAP_FLAGS PMAP_DEV
206 1.153 skrll
207 1.73 thorpej /*
208 1.65 scw * The pmap structure itself
209 1.65 scw */
210 1.65 scw struct pmap {
211 1.163 ad kmutex_t pm_lock;
212 1.163 ad u_int pm_refs;
213 1.120 matt #ifndef ARM_HAS_VBAR
214 1.82 scw pd_entry_t *pm_pl1vec;
215 1.124 matt pd_entry_t pm_l1vec;
216 1.120 matt #endif
217 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
218 1.65 scw struct pmap_statistics pm_stats;
219 1.65 scw LIST_ENTRY(pmap) pm_list;
220 1.171 skrll bool pm_remove_all;
221 1.124 matt #ifdef ARM_MMU_EXTENDED
222 1.124 matt pd_entry_t *pm_l1;
223 1.124 matt paddr_t pm_l1_pa;
224 1.124 matt #ifdef MULTIPROCESSOR
225 1.124 matt kcpuset_t *pm_onproc;
226 1.124 matt kcpuset_t *pm_active;
227 1.126 matt #if PMAP_TLB_MAX > 1
228 1.126 matt u_int pm_shootdown_pending;
229 1.126 matt #endif
230 1.124 matt #endif
231 1.126 matt struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
232 1.124 matt #else
233 1.124 matt struct l1_ttable *pm_l1;
234 1.124 matt union pmap_cache_state pm_cstate;
235 1.124 matt uint8_t pm_domain;
236 1.124 matt bool pm_activated;
237 1.124 matt #endif
238 1.124 matt };
239 1.124 matt
240 1.124 matt struct pmap_kernel {
241 1.124 matt struct pmap kernel_pmap;
242 1.65 scw };
243 1.65 scw
244 1.106 martin /*
245 1.106 martin * Physical / virtual address structure. In a number of places (particularly
246 1.106 martin * during bootstrapping) we need to keep track of the physical and virtual
247 1.106 martin * addresses of various pages
248 1.106 martin */
249 1.106 martin typedef struct pv_addr {
250 1.106 martin SLIST_ENTRY(pv_addr) pv_list;
251 1.106 martin paddr_t pv_pa;
252 1.106 martin vaddr_t pv_va;
253 1.106 martin vsize_t pv_size;
254 1.106 martin uint8_t pv_cache;
255 1.106 martin uint8_t pv_prot;
256 1.106 martin } pv_addr_t;
257 1.106 martin typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
258 1.106 martin
259 1.85 matt extern pv_addrqh_t pmap_freeq;
260 1.102 matt extern pv_addr_t kernelstack;
261 1.102 matt extern pv_addr_t abtstack;
262 1.102 matt extern pv_addr_t fiqstack;
263 1.102 matt extern pv_addr_t irqstack;
264 1.102 matt extern pv_addr_t undstack;
265 1.103 matt extern pv_addr_t idlestack;
266 1.85 matt extern pv_addr_t systempage;
267 1.85 matt extern pv_addr_t kernel_l1pt;
268 1.173 skrll #if defined(EFI_RUNTIME)
269 1.173 skrll extern pv_addr_t efirt_l1pt;
270 1.173 skrll #endif
271 1.1 reinoud
272 1.126 matt #ifdef ARM_MMU_EXTENDED
273 1.126 matt extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
274 1.126 matt #endif
275 1.126 matt
276 1.1 reinoud /*
277 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
278 1.24 thorpej * vs. non-cacheable).
279 1.24 thorpej */
280 1.24 thorpej #define PTE_KERNEL 0
281 1.24 thorpej #define PTE_USER 1
282 1.24 thorpej #define PTE_NOCACHE 0
283 1.24 thorpej #define PTE_CACHE 1
284 1.65 scw #define PTE_PAGETABLE 2
285 1.161 skrll #define PTE_DEV 3
286 1.24 thorpej
287 1.24 thorpej /*
288 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
289 1.43 thorpej *
290 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
291 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
292 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
293 1.43 thorpej * that we can clear multiple attributes at a time.
294 1.43 thorpej *
295 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
296 1.43 thorpej * multiple mappings in a given address space.
297 1.43 thorpej */
298 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
299 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
300 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
301 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
302 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
303 1.90 matt #ifdef PMAP_CACHE_VIVT
304 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
305 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
306 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC)
307 1.90 matt #endif
308 1.90 matt #ifdef PMAP_CACHE_VIPT
309 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
310 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
311 1.90 matt #endif
312 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */
313 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
314 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */
315 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
316 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */
317 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
318 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
319 1.43 thorpej
320 1.43 thorpej /*
321 1.1 reinoud * Commonly referenced structures
322 1.1 reinoud */
323 1.113 matt extern int arm_poolpage_vmfreelist;
324 1.1 reinoud
325 1.1 reinoud /*
326 1.1 reinoud * Macros that we need to export
327 1.1 reinoud */
328 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
329 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
330 1.31 thorpej
331 1.43 thorpej #define pmap_is_modified(pg) \
332 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
333 1.43 thorpej #define pmap_is_referenced(pg) \
334 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
335 1.96 uebayasi #define pmap_is_page_colored_p(md) \
336 1.96 uebayasi (((md)->pvh_attrs & PVF_COLORED) != 0)
337 1.41 thorpej
338 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
339 1.60 chs
340 1.168 skrll #define pmap_phys_address(ppn) (arm_ptob((ppn)))
341 1.98 macallan u_int arm32_mmap_flags(paddr_t);
342 1.168 skrll #define ARM32_MMAP_WRITECOMBINE 0x40000000
343 1.168 skrll #define ARM32_MMAP_CACHEABLE 0x20000000
344 1.168 skrll #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
345 1.168 skrll #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
346 1.168 skrll #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
347 1.1 reinoud
348 1.123 matt #define PMAP_PTE 0x10000000 /* kenter_pa */
349 1.161 skrll #define PMAP_DEV 0x20000000 /* kenter_pa */
350 1.161 skrll #define PMAP_DEV_SO 0x40000000 /* kenter_pa */
351 1.161 skrll #define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO)
352 1.123 matt
353 1.1 reinoud /*
354 1.1 reinoud * Functions that we need to export
355 1.1 reinoud */
356 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
357 1.164 ad bool pmap_remove_all(pmap_t);
358 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
359 1.39 thorpej
360 1.1 reinoud #define PMAP_NEED_PROCWR
361 1.168 skrll #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
362 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
363 1.4 matt
364 1.95 jmcneill #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
365 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
366 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int);
367 1.85 matt #endif
368 1.85 matt
369 1.160 skrll #ifdef ARM_MMU_EXTENDED
370 1.159 skrll int pmap_maxproc_set(int);
371 1.173 skrll struct pmap *
372 1.173 skrll pmap_efirt(void);
373 1.159 skrll #endif
374 1.159 skrll
375 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
376 1.85 matt
377 1.39 thorpej /* Functions we use internally. */
378 1.85 matt #ifdef PMAP_STEAL_MEMORY
379 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
380 1.85 matt void pmap_boot_pageadd(pv_addr_t *);
381 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
382 1.85 matt #endif
383 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t);
384 1.65 scw
385 1.173 skrll struct pmap *
386 1.173 skrll pmap_efirt(void);
387 1.173 skrll void pmap_activate_efirt(void);
388 1.173 skrll void pmap_deactivate_efirt(void);
389 1.173 skrll
390 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
391 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
392 1.124 matt int pmap_prefetchabt_fixup(void *);
393 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
394 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
395 1.155 ryo bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
396 1.65 scw
397 1.39 thorpej void pmap_postinit(void);
398 1.42 thorpej
399 1.42 thorpej void vector_page_setprot(int);
400 1.24 thorpej
401 1.24 thorpej /* Bootstrapping routines. */
402 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
403 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
404 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
405 1.156 skrll void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
406 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
407 1.174 skrll
408 1.174 skrll vsize_t pmap_kenter_range(vaddr_t, paddr_t, vsize_t, vm_prot_t, u_int);
409 1.13 chris
410 1.13 chris /*
411 1.135 skrll * Special page zero routine for use by the idle loop (no cache cleans).
412 1.13 chris */
413 1.80 thorpej bool pmap_pageidlezero(paddr_t);
414 1.168 skrll #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
415 1.1 reinoud
416 1.131 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
417 1.131 matt /*
418 1.131 matt * For the pmap, this is a more useful way to map a direct mapped page.
419 1.131 matt * It returns either the direct-mapped VA or the VA supplied if it can't
420 1.131 matt * be direct mapped.
421 1.131 matt */
422 1.131 matt vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
423 1.131 matt #endif
424 1.131 matt
425 1.29 chris /*
426 1.84 chris * used by dumpsys to record the PA of the L1 table
427 1.84 chris */
428 1.84 chris uint32_t pmap_kernel_L1_addr(void);
429 1.84 chris /*
430 1.29 chris * The current top of kernel VM
431 1.29 chris */
432 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
433 1.1 reinoud
434 1.131 matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
435 1.131 matt /*
436 1.141 matt * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
437 1.131 matt */
438 1.140 matt extern vaddr_t pmap_directlimit;
439 1.131 matt #endif
440 1.131 matt
441 1.1 reinoud /*
442 1.135 skrll * Useful macros and constants
443 1.1 reinoud */
444 1.59 thorpej
445 1.65 scw /* Virtual address to page table entry */
446 1.79 perry static inline pt_entry_t *
447 1.65 scw vtopte(vaddr_t va)
448 1.65 scw {
449 1.65 scw pd_entry_t *pdep;
450 1.65 scw pt_entry_t *ptep;
451 1.65 scw
452 1.124 matt KASSERT(trunc_page(va) == va);
453 1.124 matt
454 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
455 1.65 scw return (NULL);
456 1.65 scw return (ptep);
457 1.65 scw }
458 1.65 scw
459 1.65 scw /*
460 1.65 scw * Virtual address to physical address
461 1.65 scw */
462 1.79 perry static inline paddr_t
463 1.65 scw vtophys(vaddr_t va)
464 1.65 scw {
465 1.65 scw paddr_t pa;
466 1.65 scw
467 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
468 1.65 scw return (0); /* XXXSCW: Panic? */
469 1.65 scw
470 1.65 scw return (pa);
471 1.65 scw }
472 1.65 scw
473 1.65 scw /*
474 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
475 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
476 1.65 scw * on every change.
477 1.65 scw *
478 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
479 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
480 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
481 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
482 1.69 thorpej * the code.
483 1.69 thorpej */
484 1.69 thorpej extern int pmap_needs_pte_sync;
485 1.69 thorpej #if defined(_KERNEL_OPT)
486 1.69 thorpej /*
487 1.145 skrll * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
488 1.145 skrll * single MMU type is selected.
489 1.145 skrll *
490 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
491 1.145 skrll * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
492 1.145 skrll * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
493 1.145 skrll *
494 1.145 skrll * Use run time evaluation for all other cases.
495 1.148 skrll *
496 1.69 thorpej */
497 1.145 skrll #if (ARM_NMMUS == 1)
498 1.145 skrll #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
499 1.104 matt #define PMAP_INCLUDE_PTE_SYNC
500 1.109 matt #define PMAP_NEEDS_PTE_SYNC 1
501 1.145 skrll #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
502 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
503 1.69 thorpej #endif
504 1.112 matt #endif
505 1.69 thorpej #endif /* _KERNEL_OPT */
506 1.69 thorpej
507 1.69 thorpej /*
508 1.69 thorpej * Provide a fallback in case we were not able to determine it at
509 1.69 thorpej * compile-time.
510 1.65 scw */
511 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
512 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
513 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
514 1.69 thorpej #endif
515 1.65 scw
516 1.104 matt static inline void
517 1.104 matt pmap_ptesync(pt_entry_t *ptep, size_t cnt)
518 1.104 matt {
519 1.132 matt if (PMAP_NEEDS_PTE_SYNC) {
520 1.104 matt cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
521 1.132 matt #ifdef SHEEVA_L2_CACHE
522 1.132 matt cpu_sdcache_wb_range((vaddr_t)ptep, -1,
523 1.132 matt cnt * sizeof(pt_entry_t));
524 1.132 matt #endif
525 1.132 matt }
526 1.169 skrll dsb(sy);
527 1.104 matt }
528 1.69 thorpej
529 1.124 matt #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
530 1.124 matt #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
531 1.124 matt #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
532 1.104 matt #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
533 1.65 scw
534 1.168 skrll #define l1pte_valid_p(pde) ((pde) != 0)
535 1.168 skrll #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
536 1.168 skrll #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
537 1.104 matt && ((pde) & L1_S_V6_SUPER) != 0)
538 1.168 skrll #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
539 1.168 skrll #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
540 1.168 skrll #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
541 1.168 skrll #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
542 1.124 matt
543 1.124 matt static inline void
544 1.124 matt l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
545 1.124 matt {
546 1.124 matt *pdep = pde;
547 1.124 matt }
548 1.36 thorpej
549 1.124 matt static inline void
550 1.124 matt l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
551 1.124 matt {
552 1.124 matt *pdep = pde;
553 1.124 matt if (l1pte_page_p(pde)) {
554 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
555 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
556 1.124 matt pde += L2_T_SIZE;
557 1.124 matt pdep[k] = pde;
558 1.124 matt }
559 1.124 matt } else if (l1pte_supersection_p(pde)) {
560 1.124 matt KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
561 1.158 christos for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
562 1.124 matt pdep[k] = pde;
563 1.124 matt }
564 1.124 matt }
565 1.124 matt }
566 1.124 matt
567 1.168 skrll #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
568 1.168 skrll #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
569 1.168 skrll #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
570 1.168 skrll #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
571 1.168 skrll #define l2pte_minidata_p(pte) (((pte) & \
572 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
573 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
574 1.35 thorpej
575 1.121 matt static inline void
576 1.121 matt l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
577 1.121 matt {
578 1.129 skrll if (l1pte_lpage_p(pte)) {
579 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
580 1.158 christos for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
581 1.129 skrll *ptep++ = pte;
582 1.129 skrll }
583 1.129 skrll } else {
584 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
585 1.158 christos for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
586 1.129 skrll KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
587 1.129 skrll *ptep++ = pte;
588 1.129 skrll pte += L2_S_SIZE;
589 1.129 skrll if (opte)
590 1.129 skrll opte += L2_S_SIZE;
591 1.129 skrll }
592 1.121 matt }
593 1.129 skrll }
594 1.121 matt
595 1.121 matt static inline void
596 1.121 matt l2pte_reset(pt_entry_t *ptep)
597 1.121 matt {
598 1.139 skrll KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
599 1.121 matt *ptep = 0;
600 1.158 christos for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
601 1.121 matt ptep[k] = 0;
602 1.121 matt }
603 1.135 skrll }
604 1.121 matt
605 1.1 reinoud /* L1 and L2 page table macros */
606 1.168 skrll #define pmap_pde_v(pde) l1pte_valid(*(pde))
607 1.168 skrll #define pmap_pde_section(pde) l1pte_section_p(*(pde))
608 1.168 skrll #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
609 1.168 skrll #define pmap_pde_page(pde) l1pte_page_p(*(pde))
610 1.168 skrll #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
611 1.16 rearnsha
612 1.124 matt #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
613 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
614 1.35 thorpej
615 1.170 skrll static inline uint32_t
616 1.170 skrll pte_value(pt_entry_t pte)
617 1.170 skrll {
618 1.170 skrll return pte;
619 1.170 skrll }
620 1.170 skrll
621 1.170 skrll static inline bool
622 1.170 skrll pte_valid_p(pt_entry_t pte)
623 1.170 skrll {
624 1.170 skrll
625 1.170 skrll return l2pte_valid_p(pte);
626 1.170 skrll }
627 1.170 skrll
628 1.170 skrll
629 1.1 reinoud /* Size of the kernel part of the L1 page table */
630 1.168 skrll #define KERNEL_PD_SIZE \
631 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
632 1.20 chs
633 1.117 matt void bzero_page(vaddr_t);
634 1.117 matt void bcopy_page(vaddr_t, vaddr_t);
635 1.46 thorpej
636 1.116 matt #ifdef FPU_VFP
637 1.117 matt void bzero_page_vfp(vaddr_t);
638 1.117 matt void bcopy_page_vfp(vaddr_t, vaddr_t);
639 1.116 matt #endif
640 1.116 matt
641 1.117 matt /************************* ARM MMU configuration *****************************/
642 1.117 matt
643 1.95 jmcneill #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
644 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
645 1.51 thorpej void pmap_zero_page_generic(paddr_t);
646 1.51 thorpej
647 1.46 thorpej void pmap_pte_init_generic(void);
648 1.69 thorpej #if defined(CPU_ARM8)
649 1.69 thorpej void pmap_pte_init_arm8(void);
650 1.69 thorpej #endif
651 1.46 thorpej #if defined(CPU_ARM9)
652 1.46 thorpej void pmap_pte_init_arm9(void);
653 1.46 thorpej #endif /* CPU_ARM9 */
654 1.76 rearnsha #if defined(CPU_ARM10)
655 1.76 rearnsha void pmap_pte_init_arm10(void);
656 1.76 rearnsha #endif /* CPU_ARM10 */
657 1.103 matt #if defined(CPU_ARM11) /* ARM_MMU_V6 */
658 1.94 uebayasi void pmap_pte_init_arm11(void);
659 1.94 uebayasi #endif /* CPU_ARM11 */
660 1.103 matt #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
661 1.99 bsh void pmap_pte_init_arm11mpcore(void);
662 1.99 bsh #endif
663 1.161 skrll #if ARM_MMU_V6 == 1
664 1.161 skrll void pmap_pte_init_armv6(void);
665 1.161 skrll #endif /* ARM_MMU_V6 */
666 1.103 matt #if ARM_MMU_V7 == 1
667 1.103 matt void pmap_pte_init_armv7(void);
668 1.103 matt #endif /* ARM_MMU_V7 */
669 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
670 1.69 thorpej
671 1.69 thorpej #if ARM_MMU_SA1 == 1
672 1.69 thorpej void pmap_pte_init_sa1(void);
673 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
674 1.46 thorpej
675 1.52 thorpej #if ARM_MMU_XSCALE == 1
676 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
677 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
678 1.51 thorpej
679 1.46 thorpej void pmap_pte_init_xscale(void);
680 1.50 thorpej
681 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
682 1.77 scw
683 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
684 1.77 scw void pmap_uarea(vaddr_t);
685 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
686 1.46 thorpej
687 1.161 skrll extern pt_entry_t pte_l1_s_nocache_mode;
688 1.161 skrll extern pt_entry_t pte_l2_l_nocache_mode;
689 1.161 skrll extern pt_entry_t pte_l2_s_nocache_mode;
690 1.161 skrll
691 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
692 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
693 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
694 1.46 thorpej
695 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
696 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
697 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
698 1.65 scw
699 1.98 macallan extern pt_entry_t pte_l1_s_wc_mode;
700 1.98 macallan extern pt_entry_t pte_l2_l_wc_mode;
701 1.98 macallan extern pt_entry_t pte_l2_s_wc_mode;
702 1.98 macallan
703 1.161 skrll extern pt_entry_t pte_l1_s_cache_mask;
704 1.161 skrll extern pt_entry_t pte_l2_l_cache_mask;
705 1.161 skrll extern pt_entry_t pte_l2_s_cache_mask;
706 1.161 skrll
707 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_u;
708 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_w;
709 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_ro;
710 1.95 jmcneill extern pt_entry_t pte_l1_s_prot_mask;
711 1.95 jmcneill
712 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
713 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
714 1.95 jmcneill extern pt_entry_t pte_l2_s_prot_ro;
715 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
716 1.95 jmcneill
717 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_u;
718 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_w;
719 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_ro;
720 1.95 jmcneill extern pt_entry_t pte_l2_l_prot_mask;
721 1.95 jmcneill
722 1.103 matt extern pt_entry_t pte_l1_ss_proto;
723 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
724 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
725 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
726 1.46 thorpej
727 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
728 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
729 1.75 bsh
730 1.177 skrll /*
731 1.177 skrll * Global varaiables in cpufunc_asm_xscale.S supporting the Xscale
732 1.177 skrll * cache clean/purge functions.
733 1.177 skrll */
734 1.177 skrll extern vaddr_t xscale_minidata_clean_addr;
735 1.177 skrll extern vsize_t xscale_minidata_clean_size;
736 1.177 skrll extern vaddr_t xscale_cache_clean_addr;
737 1.177 skrll extern vsize_t xscale_cache_clean_size;
738 1.177 skrll
739 1.75 bsh #endif /* !_LOCORE */
740 1.51 thorpej
741 1.46 thorpej /*****************************************************************************/
742 1.46 thorpej
743 1.124 matt #define KERNEL_PID 0 /* The kernel uses ASID 0 */
744 1.124 matt
745 1.20 chs /*
746 1.65 scw * Definitions for MMU domains
747 1.65 scw */
748 1.103 matt #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
749 1.124 matt #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
750 1.156 skrll
751 1.124 matt #ifdef ARM_MMU_EXTENDED
752 1.124 matt #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
753 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
754 1.156 skrll #else
755 1.156 skrll #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
756 1.124 matt #endif
757 1.45 thorpej
758 1.45 thorpej /*
759 1.45 thorpej * These macros define the various bit masks in the PTE.
760 1.45 thorpej *
761 1.45 thorpej * We use these macros since we use different bits on different processor
762 1.45 thorpej * models.
763 1.45 thorpej */
764 1.95 jmcneill #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
765 1.95 jmcneill #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
766 1.152 skrll #define L1_S_PROT_RO_generic (0)
767 1.95 jmcneill #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
768 1.95 jmcneill
769 1.95 jmcneill #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
770 1.95 jmcneill #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
771 1.152 skrll #define L1_S_PROT_RO_xscale (0)
772 1.95 jmcneill #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
773 1.95 jmcneill
774 1.99 bsh #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
775 1.99 bsh #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
776 1.99 bsh #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
777 1.99 bsh #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
778 1.99 bsh
779 1.95 jmcneill #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
780 1.95 jmcneill #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
781 1.95 jmcneill #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
782 1.95 jmcneill #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
783 1.45 thorpej
784 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
785 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
786 1.99 bsh #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
787 1.134 skrll #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
788 1.111 matt #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
789 1.45 thorpej
790 1.95 jmcneill #define L2_L_PROT_U_generic (L2_AP(AP_U))
791 1.95 jmcneill #define L2_L_PROT_W_generic (L2_AP(AP_W))
792 1.152 skrll #define L2_L_PROT_RO_generic (0)
793 1.95 jmcneill #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
794 1.95 jmcneill
795 1.95 jmcneill #define L2_L_PROT_U_xscale (L2_AP(AP_U))
796 1.95 jmcneill #define L2_L_PROT_W_xscale (L2_AP(AP_W))
797 1.152 skrll #define L2_L_PROT_RO_xscale (0)
798 1.95 jmcneill #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
799 1.95 jmcneill
800 1.99 bsh #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
801 1.99 bsh #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
802 1.99 bsh #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
803 1.99 bsh #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
804 1.99 bsh
805 1.95 jmcneill #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
806 1.95 jmcneill #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
807 1.95 jmcneill #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
808 1.95 jmcneill #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
809 1.45 thorpej
810 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
811 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
812 1.99 bsh #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
813 1.134 skrll #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
814 1.111 matt #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
815 1.49 thorpej
816 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
817 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
818 1.152 skrll #define L2_S_PROT_RO_generic (0)
819 1.95 jmcneill #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
820 1.46 thorpej
821 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
822 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
823 1.152 skrll #define L2_S_PROT_RO_xscale (0)
824 1.95 jmcneill #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
825 1.95 jmcneill
826 1.99 bsh #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
827 1.99 bsh #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
828 1.99 bsh #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
829 1.99 bsh #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
830 1.99 bsh
831 1.95 jmcneill #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
832 1.95 jmcneill #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
833 1.95 jmcneill #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
834 1.95 jmcneill #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
835 1.46 thorpej
836 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
837 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
838 1.99 bsh #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
839 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
840 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
841 1.99 bsh #else
842 1.99 bsh #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
843 1.99 bsh #endif
844 1.142 skrll #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
845 1.111 matt #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
846 1.46 thorpej
847 1.99 bsh
848 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
849 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
850 1.99 bsh #define L1_S_PROTO_armv6 (L1_TYPE_S)
851 1.95 jmcneill #define L1_S_PROTO_armv7 (L1_TYPE_S)
852 1.46 thorpej
853 1.103 matt #define L1_SS_PROTO_generic 0
854 1.103 matt #define L1_SS_PROTO_xscale 0
855 1.103 matt #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
856 1.103 matt #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
857 1.103 matt
858 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
859 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
860 1.99 bsh #define L1_C_PROTO_armv6 (L1_TYPE_C)
861 1.95 jmcneill #define L1_C_PROTO_armv7 (L1_TYPE_C)
862 1.46 thorpej
863 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
864 1.46 thorpej
865 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
866 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS)
867 1.99 bsh #ifdef ARMV6_EXTENDED_SMALL_PAGE
868 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
869 1.99 bsh #else
870 1.99 bsh #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
871 1.99 bsh #endif
872 1.134 skrll #ifdef ARM_MMU_EXTENDED
873 1.134 skrll #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
874 1.134 skrll #else
875 1.99 bsh #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
876 1.134 skrll #endif
877 1.124 matt #ifdef ARM_MMU_EXTENDED
878 1.124 matt #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
879 1.124 matt #else
880 1.95 jmcneill #define L2_S_PROTO_armv7 (L2_TYPE_S)
881 1.124 matt #endif
882 1.45 thorpej
883 1.46 thorpej /*
884 1.46 thorpej * User-visible names for the ones that vary with MMU class.
885 1.46 thorpej */
886 1.46 thorpej
887 1.46 thorpej #if ARM_NMMUS > 1
888 1.46 thorpej /* More than one MMU class configured; use variables. */
889 1.95 jmcneill #define L1_S_PROT_U pte_l1_s_prot_u
890 1.95 jmcneill #define L1_S_PROT_W pte_l1_s_prot_w
891 1.95 jmcneill #define L1_S_PROT_RO pte_l1_s_prot_ro
892 1.95 jmcneill #define L1_S_PROT_MASK pte_l1_s_prot_mask
893 1.95 jmcneill
894 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
895 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
896 1.95 jmcneill #define L2_S_PROT_RO pte_l2_s_prot_ro
897 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
898 1.46 thorpej
899 1.95 jmcneill #define L2_L_PROT_U pte_l2_l_prot_u
900 1.95 jmcneill #define L2_L_PROT_W pte_l2_l_prot_w
901 1.95 jmcneill #define L2_L_PROT_RO pte_l2_l_prot_ro
902 1.95 jmcneill #define L2_L_PROT_MASK pte_l2_l_prot_mask
903 1.95 jmcneill
904 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
905 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
906 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
907 1.49 thorpej
908 1.103 matt #define L1_SS_PROTO pte_l1_ss_proto
909 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
910 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
911 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
912 1.51 thorpej
913 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
914 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
915 1.99 bsh #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
916 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_generic
917 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_generic
918 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_generic
919 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
920 1.99 bsh
921 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_generic
922 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_generic
923 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_generic
924 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
925 1.99 bsh
926 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_generic
927 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_generic
928 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_generic
929 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
930 1.99 bsh
931 1.99 bsh #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
932 1.99 bsh #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
933 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
934 1.99 bsh
935 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_generic
936 1.99 bsh #define L1_S_PROTO L1_S_PROTO_generic
937 1.99 bsh #define L1_C_PROTO L1_C_PROTO_generic
938 1.99 bsh #define L2_S_PROTO L2_S_PROTO_generic
939 1.99 bsh
940 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
941 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
942 1.99 bsh #elif ARM_MMU_V6N != 0
943 1.99 bsh #define L1_S_PROT_U L1_S_PROT_U_armv6
944 1.99 bsh #define L1_S_PROT_W L1_S_PROT_W_armv6
945 1.99 bsh #define L1_S_PROT_RO L1_S_PROT_RO_armv6
946 1.99 bsh #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
947 1.99 bsh
948 1.99 bsh #define L2_S_PROT_U L2_S_PROT_U_armv6n
949 1.99 bsh #define L2_S_PROT_W L2_S_PROT_W_armv6n
950 1.99 bsh #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
951 1.99 bsh #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
952 1.99 bsh
953 1.99 bsh #define L2_L_PROT_U L2_L_PROT_U_armv6n
954 1.99 bsh #define L2_L_PROT_W L2_L_PROT_W_armv6n
955 1.99 bsh #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
956 1.99 bsh #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
957 1.99 bsh
958 1.134 skrll #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
959 1.134 skrll #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
960 1.99 bsh #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
961 1.99 bsh
962 1.150 skrll /*
963 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
964 1.150 skrll * make read-only mappings.
965 1.150 skrll */
966 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
967 1.99 bsh #define L1_S_PROTO L1_S_PROTO_armv6
968 1.99 bsh #define L1_C_PROTO L1_C_PROTO_armv6
969 1.99 bsh #define L2_S_PROTO L2_S_PROTO_armv6n
970 1.99 bsh
971 1.99 bsh #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
972 1.99 bsh #define pmap_zero_page(d) pmap_zero_page_generic((d))
973 1.99 bsh #elif ARM_MMU_V6C != 0
974 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
975 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
976 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
977 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
978 1.95 jmcneill
979 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
980 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
981 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_generic
982 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
983 1.46 thorpej
984 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
985 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
986 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
987 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
988 1.95 jmcneill
989 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
990 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
991 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
992 1.49 thorpej
993 1.130 matt #define L1_SS_PROTO L1_SS_PROTO_armv6
994 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
995 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
996 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
997 1.51 thorpej
998 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
999 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
1000 1.46 thorpej #elif ARM_MMU_XSCALE == 1
1001 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_generic
1002 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_generic
1003 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_generic
1004 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
1005 1.95 jmcneill
1006 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
1007 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
1008 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_xscale
1009 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
1010 1.49 thorpej
1011 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_generic
1012 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_generic
1013 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_generic
1014 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
1015 1.95 jmcneill
1016 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
1017 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
1018 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
1019 1.46 thorpej
1020 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_xscale
1021 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
1022 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
1023 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
1024 1.51 thorpej
1025 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
1026 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
1027 1.95 jmcneill #elif ARM_MMU_V7 == 1
1028 1.95 jmcneill #define L1_S_PROT_U L1_S_PROT_U_armv7
1029 1.95 jmcneill #define L1_S_PROT_W L1_S_PROT_W_armv7
1030 1.95 jmcneill #define L1_S_PROT_RO L1_S_PROT_RO_armv7
1031 1.95 jmcneill #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
1032 1.95 jmcneill
1033 1.95 jmcneill #define L2_S_PROT_U L2_S_PROT_U_armv7
1034 1.95 jmcneill #define L2_S_PROT_W L2_S_PROT_W_armv7
1035 1.95 jmcneill #define L2_S_PROT_RO L2_S_PROT_RO_armv7
1036 1.95 jmcneill #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1037 1.95 jmcneill
1038 1.95 jmcneill #define L2_L_PROT_U L2_L_PROT_U_armv7
1039 1.95 jmcneill #define L2_L_PROT_W L2_L_PROT_W_armv7
1040 1.95 jmcneill #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1041 1.95 jmcneill #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1042 1.95 jmcneill
1043 1.95 jmcneill #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1044 1.95 jmcneill #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1045 1.95 jmcneill #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1046 1.95 jmcneill
1047 1.150 skrll /*
1048 1.150 skrll * These prototypes make writeable mappings, while the other MMU types
1049 1.150 skrll * make read-only mappings.
1050 1.150 skrll */
1051 1.103 matt #define L1_SS_PROTO L1_SS_PROTO_armv7
1052 1.95 jmcneill #define L1_S_PROTO L1_S_PROTO_armv7
1053 1.95 jmcneill #define L1_C_PROTO L1_C_PROTO_armv7
1054 1.95 jmcneill #define L2_S_PROTO L2_S_PROTO_armv7
1055 1.95 jmcneill
1056 1.95 jmcneill #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1057 1.95 jmcneill #define pmap_zero_page(d) pmap_zero_page_generic((d))
1058 1.46 thorpej #endif /* ARM_NMMUS > 1 */
1059 1.20 chs
1060 1.45 thorpej /*
1061 1.95 jmcneill * Macros to set and query the write permission on page descriptors.
1062 1.95 jmcneill */
1063 1.168 skrll #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1064 1.168 skrll #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1065 1.149 skrll
1066 1.168 skrll #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1067 1.168 skrll #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1068 1.95 jmcneill
1069 1.168 skrll #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1070 1.152 skrll (L2_S_PROT_RO == 0 || \
1071 1.95 jmcneill ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1072 1.95 jmcneill
1073 1.95 jmcneill /*
1074 1.45 thorpej * These macros return various bits based on kernel/user and protection.
1075 1.45 thorpej * Note that the compiler will usually fold these at compile time.
1076 1.45 thorpej */
1077 1.152 skrll
1078 1.152 skrll #define L1_S_PROT(ku, pr) ( \
1079 1.152 skrll (((ku) == PTE_USER) ? \
1080 1.152 skrll L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
1081 1.152 skrll : \
1082 1.152 skrll (((L1_S_PROT_RO && \
1083 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1084 1.152 skrll L1_S_PROT_RO : L1_S_PROT_W))) \
1085 1.152 skrll )
1086 1.152 skrll
1087 1.152 skrll #define L2_L_PROT(ku, pr) ( \
1088 1.152 skrll (((ku) == PTE_USER) ? \
1089 1.152 skrll L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
1090 1.152 skrll : \
1091 1.152 skrll (((L2_L_PROT_RO && \
1092 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1093 1.152 skrll L2_L_PROT_RO : L2_L_PROT_W))) \
1094 1.152 skrll )
1095 1.152 skrll
1096 1.152 skrll #define L2_S_PROT(ku, pr) ( \
1097 1.152 skrll (((ku) == PTE_USER) ? \
1098 1.152 skrll L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
1099 1.152 skrll : \
1100 1.152 skrll (((L2_S_PROT_RO && \
1101 1.152 skrll ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1102 1.152 skrll L2_S_PROT_RO : L2_S_PROT_W))) \
1103 1.152 skrll )
1104 1.66 thorpej
1105 1.66 thorpej /*
1106 1.103 matt * Macros to test if a mapping is mappable with an L1 SuperSection,
1107 1.103 matt * L1 Section, or an L2 Large Page mapping.
1108 1.66 thorpej */
1109 1.103 matt #define L1_SS_MAPPABLE_P(va, pa, size) \
1110 1.103 matt ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1111 1.103 matt
1112 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
1113 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1114 1.66 thorpej
1115 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
1116 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1117 1.64 thorpej
1118 1.155 ryo #define PMAP_MAPSIZE1 L2_L_SIZE
1119 1.155 ryo #define PMAP_MAPSIZE2 L1_S_SIZE
1120 1.155 ryo #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1121 1.155 ryo #define PMAP_MAPSIZE3 L1_SS_SIZE
1122 1.155 ryo #endif
1123 1.155 ryo
1124 1.119 matt #ifndef _LOCORE
1125 1.64 thorpej /*
1126 1.64 thorpej * Hooks for the pool allocator.
1127 1.64 thorpej */
1128 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1129 1.117 matt extern paddr_t physical_start, physical_end;
1130 1.113 matt #ifdef PMAP_NEED_ALLOC_POOLPAGE
1131 1.114 matt struct vm_page *arm_pmap_alloc_poolpage(int);
1132 1.113 matt #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1133 1.118 matt #endif
1134 1.118 matt #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1135 1.131 matt vaddr_t pmap_map_poolpage(paddr_t);
1136 1.131 matt paddr_t pmap_unmap_poolpage(vaddr_t);
1137 1.131 matt #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1138 1.168 skrll #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1139 1.113 matt #endif
1140 1.18 thorpej
1141 1.168 skrll #define __HAVE_PMAP_PV_TRACK 1
1142 1.143 skrll
1143 1.143 skrll void pmap_pv_protect(paddr_t, vm_prot_t);
1144 1.143 skrll
1145 1.143 skrll struct pmap_page {
1146 1.97 uebayasi SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1147 1.97 uebayasi int pvh_attrs; /* page attributes */
1148 1.97 uebayasi u_int uro_mappings;
1149 1.97 uebayasi u_int urw_mappings;
1150 1.97 uebayasi union {
1151 1.97 uebayasi u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1152 1.97 uebayasi u_int i_mappings;
1153 1.97 uebayasi } k_u;
1154 1.97 uebayasi };
1155 1.97 uebayasi
1156 1.97 uebayasi /*
1157 1.143 skrll * pmap-specific data store in the vm_page structure.
1158 1.143 skrll */
1159 1.143 skrll #define __HAVE_VM_PAGE_MD
1160 1.143 skrll struct vm_page_md {
1161 1.143 skrll struct pmap_page pp;
1162 1.143 skrll #define pvh_list pp.pvh_list
1163 1.143 skrll #define pvh_attrs pp.pvh_attrs
1164 1.143 skrll #define uro_mappings pp.uro_mappings
1165 1.143 skrll #define urw_mappings pp.urw_mappings
1166 1.143 skrll #define kro_mappings pp.k_u.s_mappings[0]
1167 1.143 skrll #define krw_mappings pp.k_u.s_mappings[1]
1168 1.143 skrll #define k_mappings pp.k_u.i_mappings
1169 1.143 skrll };
1170 1.143 skrll
1171 1.168 skrll #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1172 1.143 skrll
1173 1.143 skrll /*
1174 1.97 uebayasi * Set the default color of each page.
1175 1.97 uebayasi */
1176 1.97 uebayasi #if ARM_MMU_V6 > 0
1177 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1178 1.157 ad (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
1179 1.97 uebayasi #else
1180 1.97 uebayasi #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1181 1.97 uebayasi (pg)->mdpage.pvh_attrs = 0
1182 1.97 uebayasi #endif
1183 1.135 skrll
1184 1.97 uebayasi #define VM_MDPAGE_INIT(pg) \
1185 1.97 uebayasi do { \
1186 1.97 uebayasi SLIST_INIT(&(pg)->mdpage.pvh_list); \
1187 1.97 uebayasi VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1188 1.97 uebayasi (pg)->mdpage.uro_mappings = 0; \
1189 1.97 uebayasi (pg)->mdpage.urw_mappings = 0; \
1190 1.97 uebayasi (pg)->mdpage.k_mappings = 0; \
1191 1.97 uebayasi } while (/*CONSTCOND*/0)
1192 1.97 uebayasi
1193 1.165 skrll #ifndef __BSD_PTENTRY_T__
1194 1.165 skrll #define __BSD_PTENTRY_T__
1195 1.165 skrll typedef uint32_t pt_entry_t;
1196 1.168 skrll #define PRIxPTE PRIx32
1197 1.165 skrll #endif
1198 1.165 skrll
1199 1.166 skrll #endif /* !_LOCORE */
1200 1.166 skrll
1201 1.18 thorpej #endif /* _KERNEL */
1202 1.1 reinoud
1203 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
1204