pmap.h revision 1.64 1 1.64 thorpej /* $NetBSD: pmap.h,v 1.64 2003/04/09 18:22:14 thorpej Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.64 thorpej * Copyright (c) 2002 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.46 thorpej * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.19 thorpej #include <arm/cpufunc.h>
75 1.18 thorpej #include <arm/arm32/pte.h>
76 1.12 chris #include <uvm/uvm_object.h>
77 1.1 reinoud
78 1.1 reinoud /*
79 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
80 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
81 1.38 thorpej * are described by L1 PTEs in the L1 table.
82 1.11 chris *
83 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
84 1.38 thorpej * changes when the VM context is switched. Everything above that line
85 1.38 thorpej * is the same no matter which VM context is running. This is achieved
86 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
87 1.38 thorpej * kernel L2 tables.
88 1.11 chris *
89 1.38 thorpej * The L2 tables are mapped linearly starting at PTE_BASE. PTE_BASE
90 1.38 thorpej * is below KERNEL_BASE, which means that the current process's PTEs
91 1.38 thorpej * are always available starting at PTE_BASE. Another region of KVA
92 1.38 thorpej * above KERNEL_BASE, APTE_BASE, is reserved for mapping in the PTEs
93 1.38 thorpej * of another process, should we need to manipulate them.
94 1.38 thorpej *
95 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
96 1.38 thorpej *
97 1.38 thorpej * 0xffffffff
98 1.38 thorpej * .
99 1.38 thorpej * .
100 1.38 thorpej * .
101 1.38 thorpej * KERNEL_BASE
102 1.38 thorpej * --------------------
103 1.38 thorpej * PTE_BASE
104 1.38 thorpej * .
105 1.38 thorpej * .
106 1.38 thorpej * .
107 1.38 thorpej * 0x00000000
108 1.11 chris */
109 1.11 chris
110 1.11 chris /*
111 1.1 reinoud * The pmap structure itself.
112 1.1 reinoud */
113 1.1 reinoud struct pmap {
114 1.12 chris struct uvm_object pm_obj; /* uvm_object */
115 1.12 chris #define pm_lock pm_obj.vmobjlock
116 1.29 chris LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
117 1.1 reinoud pd_entry_t *pm_pdir; /* KVA of page directory */
118 1.40 thorpej struct l1pt *pm_l1pt; /* L1 table metadata */
119 1.12 chris paddr_t pm_pptpt; /* PA of pt's page table */
120 1.12 chris vaddr_t pm_vptpt; /* VA of pt's page table */
121 1.1 reinoud struct pmap_statistics pm_stats; /* pmap statistics */
122 1.40 thorpej struct vm_page *pm_ptphint; /* recently used PT */
123 1.1 reinoud };
124 1.1 reinoud
125 1.1 reinoud typedef struct pmap *pmap_t;
126 1.1 reinoud
127 1.1 reinoud /*
128 1.1 reinoud * Physical / virtual address structure. In a number of places (particularly
129 1.1 reinoud * during bootstrapping) we need to keep track of the physical and virtual
130 1.1 reinoud * addresses of various pages
131 1.1 reinoud */
132 1.28 thorpej typedef struct pv_addr {
133 1.28 thorpej SLIST_ENTRY(pv_addr) pv_list;
134 1.3 matt paddr_t pv_pa;
135 1.2 matt vaddr_t pv_va;
136 1.1 reinoud } pv_addr_t;
137 1.1 reinoud
138 1.1 reinoud /*
139 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
140 1.24 thorpej * vs. non-cacheable).
141 1.24 thorpej */
142 1.24 thorpej #define PTE_KERNEL 0
143 1.24 thorpej #define PTE_USER 1
144 1.24 thorpej #define PTE_NOCACHE 0
145 1.24 thorpej #define PTE_CACHE 1
146 1.24 thorpej
147 1.24 thorpej /*
148 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
149 1.43 thorpej *
150 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
151 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
152 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
153 1.43 thorpej * that we can clear multiple attributes at a time.
154 1.43 thorpej *
155 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
156 1.43 thorpej * multiple mappings in a given address space.
157 1.43 thorpej */
158 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
159 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
160 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
161 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
162 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
163 1.56 thorpej #define PVF_NC 0x20 /* mapping is non-cacheable */
164 1.43 thorpej
165 1.43 thorpej /*
166 1.1 reinoud * Commonly referenced structures
167 1.1 reinoud */
168 1.11 chris extern struct pmap kernel_pmap_store;
169 1.4 matt extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
170 1.1 reinoud
171 1.1 reinoud /*
172 1.1 reinoud * Macros that we need to export
173 1.1 reinoud */
174 1.1 reinoud #define pmap_kernel() (&kernel_pmap_store)
175 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
176 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
177 1.31 thorpej
178 1.43 thorpej #define pmap_is_modified(pg) \
179 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
180 1.43 thorpej #define pmap_is_referenced(pg) \
181 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
182 1.41 thorpej
183 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
184 1.60 chs
185 1.63 chris /* ARGSUSED */
186 1.60 chs static __inline void
187 1.61 chs pmap_remove_all(struct pmap *pmap)
188 1.60 chs {
189 1.60 chs /* Nothing. */
190 1.60 chs }
191 1.1 reinoud
192 1.35 thorpej #define pmap_phys_address(ppn) (arm_ptob((ppn)))
193 1.1 reinoud
194 1.1 reinoud /*
195 1.1 reinoud * Functions that we need to export
196 1.1 reinoud */
197 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
198 1.39 thorpej
199 1.1 reinoud #define PMAP_NEED_PROCWR
200 1.29 chris #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
201 1.4 matt
202 1.39 thorpej /* Functions we use internally. */
203 1.39 thorpej void pmap_bootstrap(pd_entry_t *, pv_addr_t);
204 1.39 thorpej void pmap_debug(int);
205 1.39 thorpej int pmap_handled_emulation(struct pmap *, vaddr_t);
206 1.39 thorpej int pmap_modified_emulation(struct pmap *, vaddr_t);
207 1.39 thorpej void pmap_postinit(void);
208 1.42 thorpej
209 1.42 thorpej void vector_page_setprot(int);
210 1.24 thorpej
211 1.24 thorpej /* Bootstrapping routines. */
212 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
213 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
214 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
215 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
216 1.13 chris
217 1.13 chris /*
218 1.13 chris * Special page zero routine for use by the idle loop (no cache cleans).
219 1.13 chris */
220 1.13 chris boolean_t pmap_pageidlezero __P((paddr_t));
221 1.13 chris #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
222 1.1 reinoud
223 1.29 chris /*
224 1.29 chris * The current top of kernel VM
225 1.29 chris */
226 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
227 1.1 reinoud
228 1.1 reinoud /*
229 1.1 reinoud * Useful macros and constants
230 1.1 reinoud */
231 1.59 thorpej
232 1.59 thorpej /*
233 1.59 thorpej * While the ARM MMU's L1 descriptors describe a 1M "section", each
234 1.59 thorpej * one pointing to a 1K L2 table, NetBSD's VM system allocates the
235 1.59 thorpej * page tables in 4K chunks, and thus we describe 4M "super sections".
236 1.59 thorpej *
237 1.59 thorpej * We'll lift terminology from another architecture and refer to this as
238 1.59 thorpej * the "page directory" size.
239 1.59 thorpej */
240 1.59 thorpej #define PD_SIZE (L1_S_SIZE * 4) /* 4M */
241 1.59 thorpej #define PD_OFFSET (PD_SIZE - 1)
242 1.59 thorpej #define PD_FRAME (~PD_OFFSET)
243 1.59 thorpej #define PD_SHIFT 22
244 1.1 reinoud
245 1.1 reinoud /* Virtual address to page table entry */
246 1.1 reinoud #define vtopte(va) \
247 1.39 thorpej (((pt_entry_t *)PTE_BASE) + arm_btop((vaddr_t) (va)))
248 1.1 reinoud
249 1.1 reinoud /* Virtual address to physical address */
250 1.1 reinoud #define vtophys(va) \
251 1.44 thorpej ((*vtopte(va) & L2_S_FRAME) | ((vaddr_t) (va) & L2_S_OFFSET))
252 1.57 thorpej
253 1.57 thorpej #define PTE_SYNC(pte) \
254 1.57 thorpej cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t))
255 1.58 thorpej #define PTE_FLUSH(pte) \
256 1.58 thorpej cpu_dcache_wbinv_range((vaddr_t)(pte), sizeof(pt_entry_t))
257 1.57 thorpej
258 1.57 thorpej #define PTE_SYNC_RANGE(pte, cnt) \
259 1.57 thorpej cpu_dcache_wb_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
260 1.62 chris #define PTE_FLUSH_RANGE(pte, cnt) \
261 1.58 thorpej cpu_dcache_wbinv_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
262 1.1 reinoud
263 1.36 thorpej #define l1pte_valid(pde) ((pde) != 0)
264 1.44 thorpej #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
265 1.44 thorpej #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
266 1.44 thorpej #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
267 1.36 thorpej
268 1.36 thorpej #define l2pte_valid(pte) ((pte) != 0)
269 1.44 thorpej #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
270 1.35 thorpej
271 1.1 reinoud /* L1 and L2 page table macros */
272 1.44 thorpej #define pmap_pdei(v) ((v & L1_S_FRAME) >> L1_S_SHIFT)
273 1.36 thorpej #define pmap_pde(m, v) (&((m)->pm_pdir[pmap_pdei(v)]))
274 1.36 thorpej
275 1.36 thorpej #define pmap_pde_v(pde) l1pte_valid(*(pde))
276 1.36 thorpej #define pmap_pde_section(pde) l1pte_section_p(*(pde))
277 1.36 thorpej #define pmap_pde_page(pde) l1pte_page_p(*(pde))
278 1.36 thorpej #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
279 1.16 rearnsha
280 1.36 thorpej #define pmap_pte_v(pte) l2pte_valid(*(pte))
281 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
282 1.35 thorpej
283 1.1 reinoud
284 1.1 reinoud /* Size of the kernel part of the L1 page table */
285 1.1 reinoud #define KERNEL_PD_SIZE \
286 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
287 1.20 chs
288 1.46 thorpej /************************* ARM MMU configuration *****************************/
289 1.46 thorpej
290 1.52 thorpej #if ARM_MMU_GENERIC == 1
291 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
292 1.51 thorpej void pmap_zero_page_generic(paddr_t);
293 1.51 thorpej
294 1.46 thorpej void pmap_pte_init_generic(void);
295 1.46 thorpej #if defined(CPU_ARM9)
296 1.46 thorpej void pmap_pte_init_arm9(void);
297 1.46 thorpej #endif /* CPU_ARM9 */
298 1.52 thorpej #endif /* ARM_MMU_GENERIC == 1 */
299 1.46 thorpej
300 1.52 thorpej #if ARM_MMU_XSCALE == 1
301 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
302 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
303 1.51 thorpej
304 1.46 thorpej void pmap_pte_init_xscale(void);
305 1.50 thorpej
306 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
307 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
308 1.46 thorpej
309 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
310 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mask;
311 1.49 thorpej
312 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
313 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mask;
314 1.49 thorpej
315 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
316 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mask;
317 1.46 thorpej
318 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
319 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
320 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
321 1.46 thorpej
322 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
323 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
324 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
325 1.46 thorpej
326 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
327 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
328 1.51 thorpej
329 1.46 thorpej /*****************************************************************************/
330 1.46 thorpej
331 1.20 chs /*
332 1.20 chs * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
333 1.20 chs */
334 1.45 thorpej #define PMAP_CACHE_VIVT
335 1.45 thorpej
336 1.45 thorpej /*
337 1.45 thorpej * These macros define the various bit masks in the PTE.
338 1.45 thorpej *
339 1.45 thorpej * We use these macros since we use different bits on different processor
340 1.45 thorpej * models.
341 1.45 thorpej */
342 1.45 thorpej #define L1_S_PROT_U (L1_S_AP(AP_U))
343 1.45 thorpej #define L1_S_PROT_W (L1_S_AP(AP_W))
344 1.45 thorpej #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
345 1.45 thorpej
346 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
347 1.49 thorpej #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
348 1.45 thorpej
349 1.45 thorpej #define L2_L_PROT_U (L2_AP(AP_U))
350 1.45 thorpej #define L2_L_PROT_W (L2_AP(AP_W))
351 1.45 thorpej #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
352 1.45 thorpej
353 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
354 1.49 thorpej #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
355 1.49 thorpej
356 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
357 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
358 1.46 thorpej #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
359 1.46 thorpej
360 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
361 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
362 1.46 thorpej #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
363 1.46 thorpej
364 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
365 1.49 thorpej #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
366 1.46 thorpej
367 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
368 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
369 1.46 thorpej
370 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
371 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
372 1.46 thorpej
373 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
374 1.46 thorpej
375 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
376 1.48 thorpej #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
377 1.45 thorpej
378 1.46 thorpej /*
379 1.46 thorpej * User-visible names for the ones that vary with MMU class.
380 1.46 thorpej */
381 1.46 thorpej
382 1.46 thorpej #if ARM_NMMUS > 1
383 1.46 thorpej /* More than one MMU class configured; use variables. */
384 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
385 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
386 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
387 1.46 thorpej
388 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
389 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
390 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
391 1.49 thorpej
392 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
393 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
394 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
395 1.51 thorpej
396 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
397 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
398 1.46 thorpej #elif ARM_MMU_GENERIC == 1
399 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
400 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
401 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
402 1.46 thorpej
403 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
404 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
405 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
406 1.49 thorpej
407 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
408 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
409 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
410 1.51 thorpej
411 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
412 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
413 1.46 thorpej #elif ARM_MMU_XSCALE == 1
414 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
415 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
416 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
417 1.49 thorpej
418 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
419 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
420 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
421 1.46 thorpej
422 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
423 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
424 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
425 1.51 thorpej
426 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
427 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
428 1.46 thorpej #endif /* ARM_NMMUS > 1 */
429 1.20 chs
430 1.45 thorpej /*
431 1.45 thorpej * These macros return various bits based on kernel/user and protection.
432 1.45 thorpej * Note that the compiler will usually fold these at compile time.
433 1.45 thorpej */
434 1.45 thorpej #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
435 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
436 1.45 thorpej
437 1.45 thorpej #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
438 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
439 1.45 thorpej
440 1.45 thorpej #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
441 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
442 1.64 thorpej
443 1.64 thorpej /*
444 1.64 thorpej * Hooks for the pool allocator.
445 1.64 thorpej */
446 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
447 1.18 thorpej
448 1.18 thorpej #endif /* _KERNEL */
449 1.1 reinoud
450 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
451