Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.73
      1  1.73   thorpej /*	$NetBSD: pmap.h,v 1.73 2003/06/15 17:45:23 thorpej Exp $	*/
      2  1.46   thorpej 
      3  1.46   thorpej /*
      4  1.65       scw  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  1.46   thorpej  * All rights reserved.
      6  1.46   thorpej  *
      7  1.65       scw  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  1.46   thorpej  *
      9  1.46   thorpej  * Redistribution and use in source and binary forms, with or without
     10  1.46   thorpej  * modification, are permitted provided that the following conditions
     11  1.46   thorpej  * are met:
     12  1.46   thorpej  * 1. Redistributions of source code must retain the above copyright
     13  1.46   thorpej  *    notice, this list of conditions and the following disclaimer.
     14  1.46   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.46   thorpej  *    notice, this list of conditions and the following disclaimer in the
     16  1.46   thorpej  *    documentation and/or other materials provided with the distribution.
     17  1.46   thorpej  * 3. All advertising materials mentioning features or use of this software
     18  1.46   thorpej  *    must display the following acknowledgement:
     19  1.46   thorpej  *	This product includes software developed for the NetBSD Project by
     20  1.46   thorpej  *	Wasabi Systems, Inc.
     21  1.46   thorpej  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  1.46   thorpej  *    or promote products derived from this software without specific prior
     23  1.46   thorpej  *    written permission.
     24  1.46   thorpej  *
     25  1.46   thorpej  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  1.46   thorpej  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  1.46   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  1.46   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  1.46   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  1.46   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  1.46   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  1.46   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  1.46   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  1.46   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  1.46   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     36  1.46   thorpej  */
     37   1.1   reinoud 
     38   1.1   reinoud /*
     39   1.1   reinoud  * Copyright (c) 1994,1995 Mark Brinicombe.
     40   1.1   reinoud  * All rights reserved.
     41   1.1   reinoud  *
     42   1.1   reinoud  * Redistribution and use in source and binary forms, with or without
     43   1.1   reinoud  * modification, are permitted provided that the following conditions
     44   1.1   reinoud  * are met:
     45   1.1   reinoud  * 1. Redistributions of source code must retain the above copyright
     46   1.1   reinoud  *    notice, this list of conditions and the following disclaimer.
     47   1.1   reinoud  * 2. Redistributions in binary form must reproduce the above copyright
     48   1.1   reinoud  *    notice, this list of conditions and the following disclaimer in the
     49   1.1   reinoud  *    documentation and/or other materials provided with the distribution.
     50   1.1   reinoud  * 3. All advertising materials mentioning features or use of this software
     51   1.1   reinoud  *    must display the following acknowledgement:
     52   1.1   reinoud  *	This product includes software developed by Mark Brinicombe
     53   1.1   reinoud  * 4. The name of the author may not be used to endorse or promote products
     54   1.1   reinoud  *    derived from this software without specific prior written permission.
     55   1.1   reinoud  *
     56   1.1   reinoud  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57   1.1   reinoud  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58   1.1   reinoud  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59   1.1   reinoud  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60   1.1   reinoud  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61   1.1   reinoud  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62   1.1   reinoud  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63   1.1   reinoud  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64   1.1   reinoud  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65   1.1   reinoud  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66   1.1   reinoud  */
     67   1.1   reinoud 
     68   1.1   reinoud #ifndef	_ARM32_PMAP_H_
     69   1.1   reinoud #define	_ARM32_PMAP_H_
     70   1.1   reinoud 
     71  1.18   thorpej #ifdef _KERNEL
     72  1.18   thorpej 
     73  1.52   thorpej #include <arm/cpuconf.h>
     74  1.19   thorpej #include <arm/cpufunc.h>
     75  1.18   thorpej #include <arm/arm32/pte.h>
     76  1.12     chris #include <uvm/uvm_object.h>
     77   1.1   reinoud 
     78   1.1   reinoud /*
     79  1.11     chris  * a pmap describes a processes' 4GB virtual address space.  this
     80  1.11     chris  * virtual address space can be broken up into 4096 1MB regions which
     81  1.38   thorpej  * are described by L1 PTEs in the L1 table.
     82  1.11     chris  *
     83  1.38   thorpej  * There is a line drawn at KERNEL_BASE.  Everything below that line
     84  1.38   thorpej  * changes when the VM context is switched.  Everything above that line
     85  1.38   thorpej  * is the same no matter which VM context is running.  This is achieved
     86  1.38   thorpej  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     87  1.38   thorpej  * kernel L2 tables.
     88  1.11     chris  *
     89  1.38   thorpej  * The basic layout of the virtual address space thus looks like this:
     90  1.38   thorpej  *
     91  1.38   thorpej  *	0xffffffff
     92  1.38   thorpej  *	.
     93  1.38   thorpej  *	.
     94  1.38   thorpej  *	.
     95  1.38   thorpej  *	KERNEL_BASE
     96  1.38   thorpej  *	--------------------
     97  1.38   thorpej  *	.
     98  1.38   thorpej  *	.
     99  1.38   thorpej  *	.
    100  1.38   thorpej  *	0x00000000
    101  1.11     chris  */
    102  1.11     chris 
    103  1.65       scw /*
    104  1.65       scw  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    105  1.65       scw  * A bucket size of 16 provides for 16MB of contiguous virtual address
    106  1.65       scw  * space per l2_dtable. Most processes will, therefore, require only two or
    107  1.65       scw  * three of these to map their whole working set.
    108  1.65       scw  */
    109  1.65       scw #define	L2_BUCKET_LOG2	4
    110  1.65       scw #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    111  1.65       scw 
    112  1.65       scw /*
    113  1.65       scw  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    114  1.65       scw  * of l2_dtable structures required to track all possible page descriptors
    115  1.65       scw  * mappable by an L1 translation table is given by the following constants:
    116  1.65       scw  */
    117  1.65       scw #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    118  1.65       scw #define	L2_SIZE		(1 << L2_LOG2)
    119  1.65       scw 
    120  1.65       scw struct l1_ttable;
    121  1.65       scw struct l2_dtable;
    122  1.65       scw 
    123  1.65       scw /*
    124  1.65       scw  * Track cache/tlb occupancy using the following structure
    125  1.65       scw  */
    126  1.65       scw union pmap_cache_state {
    127  1.65       scw 	struct {
    128  1.65       scw 		union {
    129  1.65       scw 			u_int8_t csu_cache_b[2];
    130  1.65       scw 			u_int16_t csu_cache;
    131  1.65       scw 		} cs_cache_u;
    132  1.65       scw 
    133  1.65       scw 		union {
    134  1.65       scw 			u_int8_t csu_tlb_b[2];
    135  1.65       scw 			u_int16_t csu_tlb;
    136  1.65       scw 		} cs_tlb_u;
    137  1.65       scw 	} cs_s;
    138  1.65       scw 	u_int32_t cs_all;
    139  1.65       scw };
    140  1.65       scw #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    141  1.65       scw #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    142  1.65       scw #define	cs_cache	cs_s.cs_cache_u.csu_cache
    143  1.65       scw #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    144  1.65       scw #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    145  1.65       scw #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    146  1.65       scw 
    147  1.65       scw /*
    148  1.65       scw  * Assigned to cs_all to force cacheops to work for a particular pmap
    149  1.65       scw  */
    150  1.65       scw #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    151  1.65       scw 
    152  1.65       scw /*
    153  1.73   thorpej  * This structure is used by machine-dependent code to describe
    154  1.73   thorpej  * static mappings of devices, created at bootstrap time.
    155  1.73   thorpej  */
    156  1.73   thorpej struct pmap_devmap {
    157  1.73   thorpej 	vaddr_t		pd_va;		/* virtual address */
    158  1.73   thorpej 	paddr_t		pd_pa;		/* physical address */
    159  1.73   thorpej 	psize_t		pd_size;	/* size of region */
    160  1.73   thorpej 	vm_prot_t	pd_prot;	/* protection code */
    161  1.73   thorpej 	int		pd_cache;	/* cache attributes */
    162  1.73   thorpej };
    163  1.73   thorpej 
    164  1.73   thorpej /*
    165  1.65       scw  * The pmap structure itself
    166  1.65       scw  */
    167  1.65       scw struct pmap {
    168  1.65       scw 	u_int8_t		pm_domain;
    169  1.65       scw 	boolean_t		pm_remove_all;
    170  1.65       scw 	struct l1_ttable	*pm_l1;
    171  1.65       scw 	union pmap_cache_state	pm_cstate;
    172  1.65       scw 	struct uvm_object	pm_obj;
    173  1.65       scw #define	pm_lock pm_obj.vmobjlock
    174  1.65       scw 	struct l2_dtable	*pm_l2[L2_SIZE];
    175  1.65       scw 	struct pmap_statistics	pm_stats;
    176  1.65       scw 	LIST_ENTRY(pmap)	pm_list;
    177  1.65       scw };
    178  1.65       scw 
    179   1.1   reinoud typedef struct pmap *pmap_t;
    180   1.1   reinoud 
    181   1.1   reinoud /*
    182   1.1   reinoud  * Physical / virtual address structure. In a number of places (particularly
    183   1.1   reinoud  * during bootstrapping) we need to keep track of the physical and virtual
    184   1.1   reinoud  * addresses of various pages
    185   1.1   reinoud  */
    186  1.28   thorpej typedef struct pv_addr {
    187  1.28   thorpej 	SLIST_ENTRY(pv_addr) pv_list;
    188   1.3      matt 	paddr_t pv_pa;
    189   1.2      matt 	vaddr_t pv_va;
    190   1.1   reinoud } pv_addr_t;
    191   1.1   reinoud 
    192   1.1   reinoud /*
    193  1.24   thorpej  * Determine various modes for PTEs (user vs. kernel, cacheable
    194  1.24   thorpej  * vs. non-cacheable).
    195  1.24   thorpej  */
    196  1.24   thorpej #define	PTE_KERNEL	0
    197  1.24   thorpej #define	PTE_USER	1
    198  1.24   thorpej #define	PTE_NOCACHE	0
    199  1.24   thorpej #define	PTE_CACHE	1
    200  1.65       scw #define	PTE_PAGETABLE	2
    201  1.24   thorpej 
    202  1.24   thorpej /*
    203  1.43   thorpej  * Flags that indicate attributes of pages or mappings of pages.
    204  1.43   thorpej  *
    205  1.43   thorpej  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    206  1.43   thorpej  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    207  1.43   thorpej  * pv_entry's for each page.  They live in the same "namespace" so
    208  1.43   thorpej  * that we can clear multiple attributes at a time.
    209  1.43   thorpej  *
    210  1.43   thorpej  * Note the "non-cacheable" flag generally means the page has
    211  1.43   thorpej  * multiple mappings in a given address space.
    212  1.43   thorpej  */
    213  1.43   thorpej #define	PVF_MOD		0x01		/* page is modified */
    214  1.43   thorpej #define	PVF_REF		0x02		/* page is referenced */
    215  1.43   thorpej #define	PVF_WIRED	0x04		/* mapping is wired */
    216  1.43   thorpej #define	PVF_WRITE	0x08		/* mapping is writable */
    217  1.56   thorpej #define	PVF_EXEC	0x10		/* mapping is executable */
    218  1.65       scw #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    219  1.65       scw #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    220  1.65       scw #define	PVF_NC		(PVF_UNC|PVF_KNC)
    221  1.43   thorpej 
    222  1.43   thorpej /*
    223   1.1   reinoud  * Commonly referenced structures
    224   1.1   reinoud  */
    225  1.11     chris extern struct pmap	kernel_pmap_store;
    226   1.4      matt extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    227   1.1   reinoud 
    228   1.1   reinoud /*
    229   1.1   reinoud  * Macros that we need to export
    230   1.1   reinoud  */
    231   1.1   reinoud #define pmap_kernel()			(&kernel_pmap_store)
    232   1.1   reinoud #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    233   1.1   reinoud #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    234  1.31   thorpej 
    235  1.43   thorpej #define	pmap_is_modified(pg)	\
    236  1.43   thorpej 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    237  1.43   thorpej #define	pmap_is_referenced(pg)	\
    238  1.43   thorpej 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    239  1.41   thorpej 
    240  1.41   thorpej #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    241  1.60       chs 
    242  1.35   thorpej #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    243   1.1   reinoud 
    244   1.1   reinoud /*
    245   1.1   reinoud  * Functions that we need to export
    246   1.1   reinoud  */
    247  1.39   thorpej void	pmap_procwr(struct proc *, vaddr_t, int);
    248  1.65       scw void	pmap_remove_all(pmap_t);
    249  1.65       scw boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
    250  1.39   thorpej 
    251   1.1   reinoud #define	PMAP_NEED_PROCWR
    252  1.29     chris #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    253   1.4      matt 
    254  1.39   thorpej /* Functions we use internally. */
    255  1.71   thorpej void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
    256  1.65       scw 
    257  1.70       scw int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    258  1.65       scw boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    259  1.65       scw boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    260  1.65       scw void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    261  1.65       scw 
    262  1.65       scw void	pmap_debug(int);
    263  1.39   thorpej void	pmap_postinit(void);
    264  1.42   thorpej 
    265  1.42   thorpej void	vector_page_setprot(int);
    266  1.24   thorpej 
    267  1.73   thorpej const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    268  1.73   thorpej const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    269  1.73   thorpej 
    270  1.24   thorpej /* Bootstrapping routines. */
    271  1.24   thorpej void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    272  1.25   thorpej void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    273  1.28   thorpej vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    274  1.28   thorpej void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    275  1.73   thorpej void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    276  1.13     chris 
    277  1.13     chris /*
    278  1.13     chris  * Special page zero routine for use by the idle loop (no cache cleans).
    279  1.13     chris  */
    280  1.65       scw boolean_t	pmap_pageidlezero(paddr_t);
    281  1.13     chris #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    282   1.1   reinoud 
    283  1.29     chris /*
    284  1.29     chris  * The current top of kernel VM
    285  1.29     chris  */
    286  1.29     chris extern vaddr_t	pmap_curmaxkvaddr;
    287   1.1   reinoud 
    288   1.1   reinoud /*
    289   1.1   reinoud  * Useful macros and constants
    290   1.1   reinoud  */
    291  1.59   thorpej 
    292  1.65       scw /* Virtual address to page table entry */
    293  1.65       scw static __inline pt_entry_t *
    294  1.65       scw vtopte(vaddr_t va)
    295  1.65       scw {
    296  1.65       scw 	pd_entry_t *pdep;
    297  1.65       scw 	pt_entry_t *ptep;
    298  1.65       scw 
    299  1.65       scw 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
    300  1.65       scw 		return (NULL);
    301  1.65       scw 	return (ptep);
    302  1.65       scw }
    303  1.65       scw 
    304  1.65       scw /*
    305  1.65       scw  * Virtual address to physical address
    306  1.65       scw  */
    307  1.65       scw static __inline paddr_t
    308  1.65       scw vtophys(vaddr_t va)
    309  1.65       scw {
    310  1.65       scw 	paddr_t pa;
    311  1.65       scw 
    312  1.65       scw 	if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    313  1.65       scw 		return (0);	/* XXXSCW: Panic? */
    314  1.65       scw 
    315  1.65       scw 	return (pa);
    316  1.65       scw }
    317  1.65       scw 
    318  1.65       scw /*
    319  1.65       scw  * The new pmap ensures that page-tables are always mapping Write-Thru.
    320  1.65       scw  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    321  1.65       scw  * on every change.
    322  1.65       scw  *
    323  1.69   thorpej  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    324  1.69   thorpej  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    325  1.69   thorpej  * and if there is the chance for PTE syncs to be needed, we define
    326  1.69   thorpej  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    327  1.69   thorpej  * the code.
    328  1.69   thorpej  */
    329  1.69   thorpej extern int pmap_needs_pte_sync;
    330  1.69   thorpej #if defined(_KERNEL_OPT)
    331  1.69   thorpej /*
    332  1.69   thorpej  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    333  1.69   thorpej  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    334  1.69   thorpej  * this at compile time.
    335  1.69   thorpej  */
    336  1.69   thorpej #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
    337  1.69   thorpej #define	PMAP_NEEDS_PTE_SYNC	1
    338  1.69   thorpej #define	PMAP_INCLUDE_PTE_SYNC
    339  1.69   thorpej #elif (ARM_MMU_SA1 == 0)
    340  1.69   thorpej #define	PMAP_NEEDS_PTE_SYNC	0
    341  1.69   thorpej #endif
    342  1.69   thorpej #endif /* _KERNEL_OPT */
    343  1.69   thorpej 
    344  1.69   thorpej /*
    345  1.69   thorpej  * Provide a fallback in case we were not able to determine it at
    346  1.69   thorpej  * compile-time.
    347  1.65       scw  */
    348  1.69   thorpej #ifndef PMAP_NEEDS_PTE_SYNC
    349  1.69   thorpej #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    350  1.69   thorpej #define	PMAP_INCLUDE_PTE_SYNC
    351  1.69   thorpej #endif
    352  1.65       scw 
    353  1.69   thorpej #define	PTE_SYNC(pte)							\
    354  1.69   thorpej do {									\
    355  1.69   thorpej 	if (PMAP_NEEDS_PTE_SYNC)					\
    356  1.69   thorpej 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
    357  1.69   thorpej } while (/*CONSTCOND*/0)
    358  1.69   thorpej 
    359  1.69   thorpej #define	PTE_SYNC_RANGE(pte, cnt)					\
    360  1.69   thorpej do {									\
    361  1.69   thorpej 	if (PMAP_NEEDS_PTE_SYNC) {					\
    362  1.69   thorpej 		cpu_dcache_wb_range((vaddr_t)(pte),			\
    363  1.69   thorpej 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
    364  1.69   thorpej 	}								\
    365  1.69   thorpej } while (/*CONSTCOND*/0)
    366  1.65       scw 
    367  1.36   thorpej #define	l1pte_valid(pde)	((pde) != 0)
    368  1.44   thorpej #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    369  1.44   thorpej #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    370  1.44   thorpej #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    371  1.36   thorpej 
    372  1.65       scw #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    373  1.36   thorpej #define	l2pte_valid(pte)	((pte) != 0)
    374  1.44   thorpej #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    375  1.35   thorpej 
    376   1.1   reinoud /* L1 and L2 page table macros */
    377  1.36   thorpej #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    378  1.36   thorpej #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    379  1.36   thorpej #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    380  1.36   thorpej #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    381  1.16  rearnsha 
    382  1.36   thorpej #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    383  1.36   thorpej #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    384  1.35   thorpej 
    385   1.1   reinoud /* Size of the kernel part of the L1 page table */
    386   1.1   reinoud #define KERNEL_PD_SIZE	\
    387  1.44   thorpej 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    388  1.20       chs 
    389  1.46   thorpej /************************* ARM MMU configuration *****************************/
    390  1.46   thorpej 
    391  1.69   thorpej #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    392  1.51   thorpej void	pmap_copy_page_generic(paddr_t, paddr_t);
    393  1.51   thorpej void	pmap_zero_page_generic(paddr_t);
    394  1.51   thorpej 
    395  1.46   thorpej void	pmap_pte_init_generic(void);
    396  1.69   thorpej #if defined(CPU_ARM8)
    397  1.69   thorpej void	pmap_pte_init_arm8(void);
    398  1.69   thorpej #endif
    399  1.46   thorpej #if defined(CPU_ARM9)
    400  1.46   thorpej void	pmap_pte_init_arm9(void);
    401  1.46   thorpej #endif /* CPU_ARM9 */
    402  1.69   thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    403  1.69   thorpej 
    404  1.69   thorpej #if ARM_MMU_SA1 == 1
    405  1.69   thorpej void	pmap_pte_init_sa1(void);
    406  1.69   thorpej #endif /* ARM_MMU_SA1 == 1 */
    407  1.46   thorpej 
    408  1.52   thorpej #if ARM_MMU_XSCALE == 1
    409  1.51   thorpej void	pmap_copy_page_xscale(paddr_t, paddr_t);
    410  1.51   thorpej void	pmap_zero_page_xscale(paddr_t);
    411  1.51   thorpej 
    412  1.46   thorpej void	pmap_pte_init_xscale(void);
    413  1.50   thorpej 
    414  1.50   thorpej void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    415  1.52   thorpej #endif /* ARM_MMU_XSCALE == 1 */
    416  1.46   thorpej 
    417  1.49   thorpej extern pt_entry_t		pte_l1_s_cache_mode;
    418  1.49   thorpej extern pt_entry_t		pte_l1_s_cache_mask;
    419  1.49   thorpej 
    420  1.49   thorpej extern pt_entry_t		pte_l2_l_cache_mode;
    421  1.49   thorpej extern pt_entry_t		pte_l2_l_cache_mask;
    422  1.49   thorpej 
    423  1.49   thorpej extern pt_entry_t		pte_l2_s_cache_mode;
    424  1.49   thorpej extern pt_entry_t		pte_l2_s_cache_mask;
    425  1.46   thorpej 
    426  1.65       scw extern pt_entry_t		pte_l1_s_cache_mode_pt;
    427  1.65       scw extern pt_entry_t		pte_l2_l_cache_mode_pt;
    428  1.65       scw extern pt_entry_t		pte_l2_s_cache_mode_pt;
    429  1.65       scw 
    430  1.46   thorpej extern pt_entry_t		pte_l2_s_prot_u;
    431  1.46   thorpej extern pt_entry_t		pte_l2_s_prot_w;
    432  1.46   thorpej extern pt_entry_t		pte_l2_s_prot_mask;
    433  1.46   thorpej 
    434  1.46   thorpej extern pt_entry_t		pte_l1_s_proto;
    435  1.46   thorpej extern pt_entry_t		pte_l1_c_proto;
    436  1.46   thorpej extern pt_entry_t		pte_l2_s_proto;
    437  1.46   thorpej 
    438  1.51   thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    439  1.51   thorpej extern void (*pmap_zero_page_func)(paddr_t);
    440  1.51   thorpej 
    441  1.46   thorpej /*****************************************************************************/
    442  1.46   thorpej 
    443  1.20       chs /*
    444  1.20       chs  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    445  1.20       chs  */
    446  1.45   thorpej #define PMAP_CACHE_VIVT
    447  1.65       scw 
    448  1.65       scw /*
    449  1.65       scw  * Definitions for MMU domains
    450  1.65       scw  */
    451  1.65       scw #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
    452  1.65       scw #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
    453  1.45   thorpej 
    454  1.45   thorpej /*
    455  1.45   thorpej  * These macros define the various bit masks in the PTE.
    456  1.45   thorpej  *
    457  1.45   thorpej  * We use these macros since we use different bits on different processor
    458  1.45   thorpej  * models.
    459  1.45   thorpej  */
    460  1.45   thorpej #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    461  1.45   thorpej #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    462  1.45   thorpej #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    463  1.45   thorpej 
    464  1.49   thorpej #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    465  1.49   thorpej #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    466  1.45   thorpej 
    467  1.45   thorpej #define	L2_L_PROT_U		(L2_AP(AP_U))
    468  1.45   thorpej #define	L2_L_PROT_W		(L2_AP(AP_W))
    469  1.45   thorpej #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    470  1.45   thorpej 
    471  1.49   thorpej #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    472  1.49   thorpej #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    473  1.49   thorpej 
    474  1.46   thorpej #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    475  1.46   thorpej #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    476  1.46   thorpej #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    477  1.46   thorpej 
    478  1.48   thorpej #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    479  1.48   thorpej #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    480  1.46   thorpej #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    481  1.46   thorpej 
    482  1.49   thorpej #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    483  1.49   thorpej #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    484  1.46   thorpej 
    485  1.46   thorpej #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    486  1.47   thorpej #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    487  1.46   thorpej 
    488  1.46   thorpej #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    489  1.47   thorpej #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    490  1.46   thorpej 
    491  1.46   thorpej #define	L2_L_PROTO		(L2_TYPE_L)
    492  1.46   thorpej 
    493  1.46   thorpej #define	L2_S_PROTO_generic	(L2_TYPE_S)
    494  1.48   thorpej #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    495  1.45   thorpej 
    496  1.46   thorpej /*
    497  1.46   thorpej  * User-visible names for the ones that vary with MMU class.
    498  1.46   thorpej  */
    499  1.46   thorpej 
    500  1.46   thorpej #if ARM_NMMUS > 1
    501  1.46   thorpej /* More than one MMU class configured; use variables. */
    502  1.46   thorpej #define	L2_S_PROT_U		pte_l2_s_prot_u
    503  1.46   thorpej #define	L2_S_PROT_W		pte_l2_s_prot_w
    504  1.46   thorpej #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    505  1.46   thorpej 
    506  1.49   thorpej #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    507  1.49   thorpej #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    508  1.49   thorpej #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    509  1.49   thorpej 
    510  1.46   thorpej #define	L1_S_PROTO		pte_l1_s_proto
    511  1.46   thorpej #define	L1_C_PROTO		pte_l1_c_proto
    512  1.46   thorpej #define	L2_S_PROTO		pte_l2_s_proto
    513  1.51   thorpej 
    514  1.51   thorpej #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    515  1.51   thorpej #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    516  1.69   thorpej #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    517  1.46   thorpej #define	L2_S_PROT_U		L2_S_PROT_U_generic
    518  1.46   thorpej #define	L2_S_PROT_W		L2_S_PROT_W_generic
    519  1.46   thorpej #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    520  1.46   thorpej 
    521  1.49   thorpej #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    522  1.49   thorpej #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    523  1.49   thorpej #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    524  1.49   thorpej 
    525  1.46   thorpej #define	L1_S_PROTO		L1_S_PROTO_generic
    526  1.46   thorpej #define	L1_C_PROTO		L1_C_PROTO_generic
    527  1.46   thorpej #define	L2_S_PROTO		L2_S_PROTO_generic
    528  1.51   thorpej 
    529  1.51   thorpej #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    530  1.51   thorpej #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    531  1.46   thorpej #elif ARM_MMU_XSCALE == 1
    532  1.46   thorpej #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    533  1.46   thorpej #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    534  1.46   thorpej #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    535  1.49   thorpej 
    536  1.49   thorpej #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    537  1.49   thorpej #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    538  1.49   thorpej #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    539  1.46   thorpej 
    540  1.46   thorpej #define	L1_S_PROTO		L1_S_PROTO_xscale
    541  1.46   thorpej #define	L1_C_PROTO		L1_C_PROTO_xscale
    542  1.46   thorpej #define	L2_S_PROTO		L2_S_PROTO_xscale
    543  1.51   thorpej 
    544  1.51   thorpej #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    545  1.51   thorpej #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    546  1.46   thorpej #endif /* ARM_NMMUS > 1 */
    547  1.20       chs 
    548  1.45   thorpej /*
    549  1.45   thorpej  * These macros return various bits based on kernel/user and protection.
    550  1.45   thorpej  * Note that the compiler will usually fold these at compile time.
    551  1.45   thorpej  */
    552  1.45   thorpej #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    553  1.45   thorpej 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    554  1.45   thorpej 
    555  1.45   thorpej #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    556  1.45   thorpej 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    557  1.45   thorpej 
    558  1.45   thorpej #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    559  1.45   thorpej 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    560  1.66   thorpej 
    561  1.66   thorpej /*
    562  1.66   thorpej  * Macros to test if a mapping is mappable with an L1 Section mapping
    563  1.66   thorpej  * or an L2 Large Page mapping.
    564  1.66   thorpej  */
    565  1.66   thorpej #define	L1_S_MAPPABLE_P(va, pa, size)					\
    566  1.66   thorpej 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    567  1.66   thorpej 
    568  1.67   thorpej #define	L2_L_MAPPABLE_P(va, pa, size)					\
    569  1.68   thorpej 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    570  1.64   thorpej 
    571  1.64   thorpej /*
    572  1.64   thorpej  * Hooks for the pool allocator.
    573  1.64   thorpej  */
    574  1.64   thorpej #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    575  1.18   thorpej 
    576  1.18   thorpej #endif /* _KERNEL */
    577   1.1   reinoud 
    578   1.1   reinoud #endif	/* _ARM32_PMAP_H_ */
    579