pmap.h revision 1.84 1 1.84 chris /* $NetBSD: pmap.h,v 1.84 2008/01/01 14:06:43 chris Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.19 thorpej #include <arm/cpufunc.h>
77 1.12 chris #include <uvm/uvm_object.h>
78 1.75 bsh #endif
79 1.1 reinoud
80 1.1 reinoud /*
81 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
82 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
83 1.38 thorpej * are described by L1 PTEs in the L1 table.
84 1.11 chris *
85 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
86 1.38 thorpej * changes when the VM context is switched. Everything above that line
87 1.38 thorpej * is the same no matter which VM context is running. This is achieved
88 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
89 1.38 thorpej * kernel L2 tables.
90 1.11 chris *
91 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
92 1.38 thorpej *
93 1.38 thorpej * 0xffffffff
94 1.38 thorpej * .
95 1.38 thorpej * .
96 1.38 thorpej * .
97 1.38 thorpej * KERNEL_BASE
98 1.38 thorpej * --------------------
99 1.38 thorpej * .
100 1.38 thorpej * .
101 1.38 thorpej * .
102 1.38 thorpej * 0x00000000
103 1.11 chris */
104 1.11 chris
105 1.65 scw /*
106 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
107 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
108 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
109 1.65 scw * three of these to map their whole working set.
110 1.65 scw */
111 1.65 scw #define L2_BUCKET_LOG2 4
112 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
113 1.65 scw
114 1.65 scw /*
115 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
116 1.65 scw * of l2_dtable structures required to track all possible page descriptors
117 1.65 scw * mappable by an L1 translation table is given by the following constants:
118 1.65 scw */
119 1.65 scw #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
120 1.65 scw #define L2_SIZE (1 << L2_LOG2)
121 1.65 scw
122 1.75 bsh #ifndef _LOCORE
123 1.75 bsh
124 1.65 scw struct l1_ttable;
125 1.65 scw struct l2_dtable;
126 1.65 scw
127 1.65 scw /*
128 1.65 scw * Track cache/tlb occupancy using the following structure
129 1.65 scw */
130 1.65 scw union pmap_cache_state {
131 1.65 scw struct {
132 1.65 scw union {
133 1.65 scw u_int8_t csu_cache_b[2];
134 1.65 scw u_int16_t csu_cache;
135 1.65 scw } cs_cache_u;
136 1.65 scw
137 1.65 scw union {
138 1.65 scw u_int8_t csu_tlb_b[2];
139 1.65 scw u_int16_t csu_tlb;
140 1.65 scw } cs_tlb_u;
141 1.65 scw } cs_s;
142 1.65 scw u_int32_t cs_all;
143 1.65 scw };
144 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
145 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
146 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
147 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
148 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
149 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
150 1.65 scw
151 1.65 scw /*
152 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
153 1.65 scw */
154 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
155 1.65 scw
156 1.65 scw /*
157 1.73 thorpej * This structure is used by machine-dependent code to describe
158 1.73 thorpej * static mappings of devices, created at bootstrap time.
159 1.73 thorpej */
160 1.73 thorpej struct pmap_devmap {
161 1.73 thorpej vaddr_t pd_va; /* virtual address */
162 1.73 thorpej paddr_t pd_pa; /* physical address */
163 1.73 thorpej psize_t pd_size; /* size of region */
164 1.73 thorpej vm_prot_t pd_prot; /* protection code */
165 1.73 thorpej int pd_cache; /* cache attributes */
166 1.73 thorpej };
167 1.73 thorpej
168 1.73 thorpej /*
169 1.65 scw * The pmap structure itself
170 1.65 scw */
171 1.65 scw struct pmap {
172 1.65 scw u_int8_t pm_domain;
173 1.80 thorpej bool pm_remove_all;
174 1.82 scw bool pm_activated;
175 1.65 scw struct l1_ttable *pm_l1;
176 1.82 scw pd_entry_t *pm_pl1vec;
177 1.82 scw pd_entry_t pm_l1vec;
178 1.65 scw union pmap_cache_state pm_cstate;
179 1.65 scw struct uvm_object pm_obj;
180 1.65 scw #define pm_lock pm_obj.vmobjlock
181 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
182 1.65 scw struct pmap_statistics pm_stats;
183 1.65 scw LIST_ENTRY(pmap) pm_list;
184 1.65 scw };
185 1.65 scw
186 1.1 reinoud typedef struct pmap *pmap_t;
187 1.1 reinoud
188 1.1 reinoud /*
189 1.1 reinoud * Physical / virtual address structure. In a number of places (particularly
190 1.1 reinoud * during bootstrapping) we need to keep track of the physical and virtual
191 1.1 reinoud * addresses of various pages
192 1.1 reinoud */
193 1.28 thorpej typedef struct pv_addr {
194 1.28 thorpej SLIST_ENTRY(pv_addr) pv_list;
195 1.3 matt paddr_t pv_pa;
196 1.2 matt vaddr_t pv_va;
197 1.1 reinoud } pv_addr_t;
198 1.1 reinoud
199 1.1 reinoud /*
200 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
201 1.24 thorpej * vs. non-cacheable).
202 1.24 thorpej */
203 1.24 thorpej #define PTE_KERNEL 0
204 1.24 thorpej #define PTE_USER 1
205 1.24 thorpej #define PTE_NOCACHE 0
206 1.24 thorpej #define PTE_CACHE 1
207 1.65 scw #define PTE_PAGETABLE 2
208 1.24 thorpej
209 1.24 thorpej /*
210 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
211 1.43 thorpej *
212 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
213 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
214 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
215 1.43 thorpej * that we can clear multiple attributes at a time.
216 1.43 thorpej *
217 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
218 1.43 thorpej * multiple mappings in a given address space.
219 1.43 thorpej */
220 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
221 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
222 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
223 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
224 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
225 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
226 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
227 1.65 scw #define PVF_NC (PVF_UNC|PVF_KNC)
228 1.43 thorpej
229 1.43 thorpej /*
230 1.1 reinoud * Commonly referenced structures
231 1.1 reinoud */
232 1.11 chris extern struct pmap kernel_pmap_store;
233 1.4 matt extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
234 1.1 reinoud
235 1.1 reinoud /*
236 1.1 reinoud * Macros that we need to export
237 1.1 reinoud */
238 1.1 reinoud #define pmap_kernel() (&kernel_pmap_store)
239 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
240 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
241 1.31 thorpej
242 1.78 scw #define pmap_remove(pmap,sva,eva) pmap_do_remove((pmap),(sva),(eva),0)
243 1.78 scw
244 1.43 thorpej #define pmap_is_modified(pg) \
245 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
246 1.43 thorpej #define pmap_is_referenced(pg) \
247 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
248 1.41 thorpej
249 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
250 1.60 chs
251 1.35 thorpej #define pmap_phys_address(ppn) (arm_ptob((ppn)))
252 1.1 reinoud
253 1.1 reinoud /*
254 1.1 reinoud * Functions that we need to export
255 1.1 reinoud */
256 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
257 1.65 scw void pmap_remove_all(pmap_t);
258 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
259 1.39 thorpej
260 1.1 reinoud #define PMAP_NEED_PROCWR
261 1.29 chris #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
262 1.4 matt
263 1.39 thorpej /* Functions we use internally. */
264 1.71 thorpej void pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
265 1.65 scw
266 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
267 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
268 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
269 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
270 1.65 scw void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
271 1.65 scw
272 1.65 scw void pmap_debug(int);
273 1.39 thorpej void pmap_postinit(void);
274 1.42 thorpej
275 1.42 thorpej void vector_page_setprot(int);
276 1.24 thorpej
277 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
278 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
279 1.73 thorpej
280 1.24 thorpej /* Bootstrapping routines. */
281 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
282 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
283 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
284 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
285 1.73 thorpej void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
286 1.74 thorpej void pmap_devmap_register(const struct pmap_devmap *);
287 1.13 chris
288 1.13 chris /*
289 1.13 chris * Special page zero routine for use by the idle loop (no cache cleans).
290 1.13 chris */
291 1.80 thorpej bool pmap_pageidlezero(paddr_t);
292 1.13 chris #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
293 1.1 reinoud
294 1.29 chris /*
295 1.84 chris * used by dumpsys to record the PA of the L1 table
296 1.84 chris */
297 1.84 chris uint32_t pmap_kernel_L1_addr(void);
298 1.84 chris /*
299 1.29 chris * The current top of kernel VM
300 1.29 chris */
301 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
302 1.1 reinoud
303 1.1 reinoud /*
304 1.1 reinoud * Useful macros and constants
305 1.1 reinoud */
306 1.59 thorpej
307 1.65 scw /* Virtual address to page table entry */
308 1.79 perry static inline pt_entry_t *
309 1.65 scw vtopte(vaddr_t va)
310 1.65 scw {
311 1.65 scw pd_entry_t *pdep;
312 1.65 scw pt_entry_t *ptep;
313 1.65 scw
314 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
315 1.65 scw return (NULL);
316 1.65 scw return (ptep);
317 1.65 scw }
318 1.65 scw
319 1.65 scw /*
320 1.65 scw * Virtual address to physical address
321 1.65 scw */
322 1.79 perry static inline paddr_t
323 1.65 scw vtophys(vaddr_t va)
324 1.65 scw {
325 1.65 scw paddr_t pa;
326 1.65 scw
327 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
328 1.65 scw return (0); /* XXXSCW: Panic? */
329 1.65 scw
330 1.65 scw return (pa);
331 1.65 scw }
332 1.65 scw
333 1.65 scw /*
334 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
335 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
336 1.65 scw * on every change.
337 1.65 scw *
338 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
339 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
340 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
341 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
342 1.69 thorpej * the code.
343 1.69 thorpej */
344 1.69 thorpej extern int pmap_needs_pte_sync;
345 1.69 thorpej #if defined(_KERNEL_OPT)
346 1.69 thorpej /*
347 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
348 1.69 thorpej * we need to do PTE syncs. If only SA-1 is configured, then evaluate
349 1.69 thorpej * this at compile time.
350 1.69 thorpej */
351 1.69 thorpej #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
352 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 1
353 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
354 1.69 thorpej #elif (ARM_MMU_SA1 == 0)
355 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
356 1.69 thorpej #endif
357 1.69 thorpej #endif /* _KERNEL_OPT */
358 1.69 thorpej
359 1.69 thorpej /*
360 1.69 thorpej * Provide a fallback in case we were not able to determine it at
361 1.69 thorpej * compile-time.
362 1.65 scw */
363 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
364 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
365 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
366 1.69 thorpej #endif
367 1.65 scw
368 1.69 thorpej #define PTE_SYNC(pte) \
369 1.69 thorpej do { \
370 1.69 thorpej if (PMAP_NEEDS_PTE_SYNC) \
371 1.69 thorpej cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
372 1.69 thorpej } while (/*CONSTCOND*/0)
373 1.69 thorpej
374 1.69 thorpej #define PTE_SYNC_RANGE(pte, cnt) \
375 1.69 thorpej do { \
376 1.69 thorpej if (PMAP_NEEDS_PTE_SYNC) { \
377 1.69 thorpej cpu_dcache_wb_range((vaddr_t)(pte), \
378 1.69 thorpej (cnt) << 2); /* * sizeof(pt_entry_t) */ \
379 1.69 thorpej } \
380 1.69 thorpej } while (/*CONSTCOND*/0)
381 1.65 scw
382 1.36 thorpej #define l1pte_valid(pde) ((pde) != 0)
383 1.44 thorpej #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
384 1.44 thorpej #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
385 1.44 thorpej #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
386 1.36 thorpej
387 1.65 scw #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
388 1.36 thorpej #define l2pte_valid(pte) ((pte) != 0)
389 1.44 thorpej #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
390 1.77 scw #define l2pte_minidata(pte) (((pte) & \
391 1.77 scw (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
392 1.77 scw == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
393 1.35 thorpej
394 1.1 reinoud /* L1 and L2 page table macros */
395 1.36 thorpej #define pmap_pde_v(pde) l1pte_valid(*(pde))
396 1.36 thorpej #define pmap_pde_section(pde) l1pte_section_p(*(pde))
397 1.36 thorpej #define pmap_pde_page(pde) l1pte_page_p(*(pde))
398 1.36 thorpej #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
399 1.16 rearnsha
400 1.36 thorpej #define pmap_pte_v(pte) l2pte_valid(*(pte))
401 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
402 1.35 thorpej
403 1.1 reinoud /* Size of the kernel part of the L1 page table */
404 1.1 reinoud #define KERNEL_PD_SIZE \
405 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
406 1.20 chs
407 1.46 thorpej /************************* ARM MMU configuration *****************************/
408 1.46 thorpej
409 1.69 thorpej #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
410 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
411 1.51 thorpej void pmap_zero_page_generic(paddr_t);
412 1.51 thorpej
413 1.46 thorpej void pmap_pte_init_generic(void);
414 1.69 thorpej #if defined(CPU_ARM8)
415 1.69 thorpej void pmap_pte_init_arm8(void);
416 1.69 thorpej #endif
417 1.46 thorpej #if defined(CPU_ARM9)
418 1.46 thorpej void pmap_pte_init_arm9(void);
419 1.46 thorpej #endif /* CPU_ARM9 */
420 1.76 rearnsha #if defined(CPU_ARM10)
421 1.76 rearnsha void pmap_pte_init_arm10(void);
422 1.76 rearnsha #endif /* CPU_ARM10 */
423 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
424 1.69 thorpej
425 1.69 thorpej #if ARM_MMU_SA1 == 1
426 1.69 thorpej void pmap_pte_init_sa1(void);
427 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
428 1.46 thorpej
429 1.52 thorpej #if ARM_MMU_XSCALE == 1
430 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
431 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
432 1.51 thorpej
433 1.46 thorpej void pmap_pte_init_xscale(void);
434 1.50 thorpej
435 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
436 1.77 scw
437 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
438 1.77 scw void pmap_uarea(vaddr_t);
439 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
440 1.46 thorpej
441 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
442 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mask;
443 1.49 thorpej
444 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
445 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mask;
446 1.49 thorpej
447 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
448 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mask;
449 1.46 thorpej
450 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
451 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
452 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
453 1.65 scw
454 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
455 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
456 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
457 1.46 thorpej
458 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
459 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
460 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
461 1.46 thorpej
462 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
463 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
464 1.75 bsh
465 1.75 bsh #endif /* !_LOCORE */
466 1.51 thorpej
467 1.46 thorpej /*****************************************************************************/
468 1.46 thorpej
469 1.20 chs /*
470 1.20 chs * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
471 1.20 chs */
472 1.45 thorpej #define PMAP_CACHE_VIVT
473 1.65 scw
474 1.65 scw /*
475 1.65 scw * Definitions for MMU domains
476 1.65 scw */
477 1.65 scw #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
478 1.65 scw #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
479 1.45 thorpej
480 1.45 thorpej /*
481 1.45 thorpej * These macros define the various bit masks in the PTE.
482 1.45 thorpej *
483 1.45 thorpej * We use these macros since we use different bits on different processor
484 1.45 thorpej * models.
485 1.45 thorpej */
486 1.45 thorpej #define L1_S_PROT_U (L1_S_AP(AP_U))
487 1.45 thorpej #define L1_S_PROT_W (L1_S_AP(AP_W))
488 1.45 thorpej #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
489 1.45 thorpej
490 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
491 1.49 thorpej #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
492 1.45 thorpej
493 1.45 thorpej #define L2_L_PROT_U (L2_AP(AP_U))
494 1.45 thorpej #define L2_L_PROT_W (L2_AP(AP_W))
495 1.45 thorpej #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
496 1.45 thorpej
497 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
498 1.49 thorpej #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
499 1.49 thorpej
500 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
501 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
502 1.46 thorpej #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
503 1.46 thorpej
504 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
505 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
506 1.46 thorpej #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
507 1.46 thorpej
508 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
509 1.49 thorpej #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
510 1.46 thorpej
511 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
512 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
513 1.46 thorpej
514 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
515 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
516 1.46 thorpej
517 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
518 1.46 thorpej
519 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
520 1.48 thorpej #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
521 1.45 thorpej
522 1.46 thorpej /*
523 1.46 thorpej * User-visible names for the ones that vary with MMU class.
524 1.46 thorpej */
525 1.46 thorpej
526 1.46 thorpej #if ARM_NMMUS > 1
527 1.46 thorpej /* More than one MMU class configured; use variables. */
528 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
529 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
530 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
531 1.46 thorpej
532 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
533 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
534 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
535 1.49 thorpej
536 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
537 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
538 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
539 1.51 thorpej
540 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
541 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
542 1.69 thorpej #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
543 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
544 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
545 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
546 1.46 thorpej
547 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
548 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
549 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
550 1.49 thorpej
551 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
552 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
553 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
554 1.51 thorpej
555 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
556 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
557 1.46 thorpej #elif ARM_MMU_XSCALE == 1
558 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
559 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
560 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
561 1.49 thorpej
562 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
563 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
564 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
565 1.46 thorpej
566 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
567 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
568 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
569 1.51 thorpej
570 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
571 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
572 1.46 thorpej #endif /* ARM_NMMUS > 1 */
573 1.20 chs
574 1.45 thorpej /*
575 1.45 thorpej * These macros return various bits based on kernel/user and protection.
576 1.45 thorpej * Note that the compiler will usually fold these at compile time.
577 1.45 thorpej */
578 1.45 thorpej #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
579 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
580 1.45 thorpej
581 1.45 thorpej #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
582 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
583 1.45 thorpej
584 1.45 thorpej #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
585 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
586 1.66 thorpej
587 1.66 thorpej /*
588 1.66 thorpej * Macros to test if a mapping is mappable with an L1 Section mapping
589 1.66 thorpej * or an L2 Large Page mapping.
590 1.66 thorpej */
591 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
592 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
593 1.66 thorpej
594 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
595 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
596 1.64 thorpej
597 1.64 thorpej /*
598 1.64 thorpej * Hooks for the pool allocator.
599 1.64 thorpej */
600 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
601 1.18 thorpej
602 1.18 thorpej #endif /* _KERNEL */
603 1.1 reinoud
604 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
605