pmap.h revision 1.92 1 1.92 thorpej /* $NetBSD: pmap.h,v 1.92 2009/08/19 23:54:33 thorpej Exp $ */
2 1.46 thorpej
3 1.46 thorpej /*
4 1.65 scw * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 1.46 thorpej * All rights reserved.
6 1.46 thorpej *
7 1.65 scw * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 1.46 thorpej *
9 1.46 thorpej * Redistribution and use in source and binary forms, with or without
10 1.46 thorpej * modification, are permitted provided that the following conditions
11 1.46 thorpej * are met:
12 1.46 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.46 thorpej * notice, this list of conditions and the following disclaimer.
14 1.46 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.46 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.46 thorpej * documentation and/or other materials provided with the distribution.
17 1.46 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.46 thorpej * must display the following acknowledgement:
19 1.46 thorpej * This product includes software developed for the NetBSD Project by
20 1.46 thorpej * Wasabi Systems, Inc.
21 1.46 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.46 thorpej * or promote products derived from this software without specific prior
23 1.46 thorpej * written permission.
24 1.46 thorpej *
25 1.46 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.46 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.46 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.46 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.46 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.46 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.46 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.46 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.46 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.46 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.46 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.46 thorpej */
37 1.1 reinoud
38 1.1 reinoud /*
39 1.1 reinoud * Copyright (c) 1994,1995 Mark Brinicombe.
40 1.1 reinoud * All rights reserved.
41 1.1 reinoud *
42 1.1 reinoud * Redistribution and use in source and binary forms, with or without
43 1.1 reinoud * modification, are permitted provided that the following conditions
44 1.1 reinoud * are met:
45 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
46 1.1 reinoud * notice, this list of conditions and the following disclaimer.
47 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
49 1.1 reinoud * documentation and/or other materials provided with the distribution.
50 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
51 1.1 reinoud * must display the following acknowledgement:
52 1.1 reinoud * This product includes software developed by Mark Brinicombe
53 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
54 1.1 reinoud * derived from this software without specific prior written permission.
55 1.1 reinoud *
56 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 reinoud */
67 1.1 reinoud
68 1.1 reinoud #ifndef _ARM32_PMAP_H_
69 1.1 reinoud #define _ARM32_PMAP_H_
70 1.1 reinoud
71 1.18 thorpej #ifdef _KERNEL
72 1.18 thorpej
73 1.52 thorpej #include <arm/cpuconf.h>
74 1.75 bsh #include <arm/arm32/pte.h>
75 1.75 bsh #ifndef _LOCORE
76 1.85 matt #if defined(_KERNEL_OPT)
77 1.85 matt #include "opt_arm32_pmap.h"
78 1.85 matt #endif
79 1.19 thorpej #include <arm/cpufunc.h>
80 1.12 chris #include <uvm/uvm_object.h>
81 1.75 bsh #endif
82 1.1 reinoud
83 1.1 reinoud /*
84 1.11 chris * a pmap describes a processes' 4GB virtual address space. this
85 1.11 chris * virtual address space can be broken up into 4096 1MB regions which
86 1.38 thorpej * are described by L1 PTEs in the L1 table.
87 1.11 chris *
88 1.38 thorpej * There is a line drawn at KERNEL_BASE. Everything below that line
89 1.38 thorpej * changes when the VM context is switched. Everything above that line
90 1.38 thorpej * is the same no matter which VM context is running. This is achieved
91 1.38 thorpej * by making the L1 PTEs for those slots above KERNEL_BASE reference
92 1.38 thorpej * kernel L2 tables.
93 1.11 chris *
94 1.38 thorpej * The basic layout of the virtual address space thus looks like this:
95 1.38 thorpej *
96 1.38 thorpej * 0xffffffff
97 1.38 thorpej * .
98 1.38 thorpej * .
99 1.38 thorpej * .
100 1.38 thorpej * KERNEL_BASE
101 1.38 thorpej * --------------------
102 1.38 thorpej * .
103 1.38 thorpej * .
104 1.38 thorpej * .
105 1.38 thorpej * 0x00000000
106 1.11 chris */
107 1.11 chris
108 1.65 scw /*
109 1.65 scw * The number of L2 descriptor tables which can be tracked by an l2_dtable.
110 1.65 scw * A bucket size of 16 provides for 16MB of contiguous virtual address
111 1.65 scw * space per l2_dtable. Most processes will, therefore, require only two or
112 1.65 scw * three of these to map their whole working set.
113 1.65 scw */
114 1.65 scw #define L2_BUCKET_LOG2 4
115 1.65 scw #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
116 1.65 scw
117 1.65 scw /*
118 1.65 scw * Given the above "L2-descriptors-per-l2_dtable" constant, the number
119 1.65 scw * of l2_dtable structures required to track all possible page descriptors
120 1.65 scw * mappable by an L1 translation table is given by the following constants:
121 1.65 scw */
122 1.65 scw #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
123 1.65 scw #define L2_SIZE (1 << L2_LOG2)
124 1.65 scw
125 1.90 matt /*
126 1.90 matt * tell MI code that the cache is virtually-indexed.
127 1.90 matt * ARMv6 is physically-tagged but all others are virtually-tagged.
128 1.90 matt */
129 1.90 matt #if ARM_MMU_V6 > 0
130 1.90 matt #define PMAP_CACHE_VIPT
131 1.90 matt #else
132 1.90 matt #define PMAP_CACHE_VIVT
133 1.90 matt #endif
134 1.90 matt
135 1.75 bsh #ifndef _LOCORE
136 1.75 bsh
137 1.65 scw struct l1_ttable;
138 1.65 scw struct l2_dtable;
139 1.65 scw
140 1.65 scw /*
141 1.65 scw * Track cache/tlb occupancy using the following structure
142 1.65 scw */
143 1.65 scw union pmap_cache_state {
144 1.65 scw struct {
145 1.65 scw union {
146 1.65 scw u_int8_t csu_cache_b[2];
147 1.65 scw u_int16_t csu_cache;
148 1.65 scw } cs_cache_u;
149 1.65 scw
150 1.65 scw union {
151 1.65 scw u_int8_t csu_tlb_b[2];
152 1.65 scw u_int16_t csu_tlb;
153 1.65 scw } cs_tlb_u;
154 1.65 scw } cs_s;
155 1.65 scw u_int32_t cs_all;
156 1.65 scw };
157 1.65 scw #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
158 1.65 scw #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
159 1.65 scw #define cs_cache cs_s.cs_cache_u.csu_cache
160 1.65 scw #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
161 1.65 scw #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
162 1.65 scw #define cs_tlb cs_s.cs_tlb_u.csu_tlb
163 1.65 scw
164 1.65 scw /*
165 1.65 scw * Assigned to cs_all to force cacheops to work for a particular pmap
166 1.65 scw */
167 1.65 scw #define PMAP_CACHE_STATE_ALL 0xffffffffu
168 1.65 scw
169 1.65 scw /*
170 1.73 thorpej * This structure is used by machine-dependent code to describe
171 1.73 thorpej * static mappings of devices, created at bootstrap time.
172 1.73 thorpej */
173 1.73 thorpej struct pmap_devmap {
174 1.73 thorpej vaddr_t pd_va; /* virtual address */
175 1.73 thorpej paddr_t pd_pa; /* physical address */
176 1.73 thorpej psize_t pd_size; /* size of region */
177 1.73 thorpej vm_prot_t pd_prot; /* protection code */
178 1.73 thorpej int pd_cache; /* cache attributes */
179 1.73 thorpej };
180 1.73 thorpej
181 1.73 thorpej /*
182 1.65 scw * The pmap structure itself
183 1.65 scw */
184 1.65 scw struct pmap {
185 1.65 scw u_int8_t pm_domain;
186 1.80 thorpej bool pm_remove_all;
187 1.82 scw bool pm_activated;
188 1.65 scw struct l1_ttable *pm_l1;
189 1.82 scw pd_entry_t *pm_pl1vec;
190 1.82 scw pd_entry_t pm_l1vec;
191 1.65 scw union pmap_cache_state pm_cstate;
192 1.65 scw struct uvm_object pm_obj;
193 1.65 scw #define pm_lock pm_obj.vmobjlock
194 1.65 scw struct l2_dtable *pm_l2[L2_SIZE];
195 1.65 scw struct pmap_statistics pm_stats;
196 1.65 scw LIST_ENTRY(pmap) pm_list;
197 1.65 scw };
198 1.65 scw
199 1.1 reinoud /*
200 1.1 reinoud * Physical / virtual address structure. In a number of places (particularly
201 1.1 reinoud * during bootstrapping) we need to keep track of the physical and virtual
202 1.1 reinoud * addresses of various pages
203 1.1 reinoud */
204 1.28 thorpej typedef struct pv_addr {
205 1.28 thorpej SLIST_ENTRY(pv_addr) pv_list;
206 1.3 matt paddr_t pv_pa;
207 1.2 matt vaddr_t pv_va;
208 1.85 matt vsize_t pv_size;
209 1.1 reinoud } pv_addr_t;
210 1.85 matt typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
211 1.85 matt
212 1.85 matt extern pv_addrqh_t pmap_freeq;
213 1.85 matt extern pv_addr_t kernelpages;
214 1.85 matt extern pv_addr_t systempage;
215 1.85 matt extern pv_addr_t kernel_l1pt;
216 1.1 reinoud
217 1.1 reinoud /*
218 1.24 thorpej * Determine various modes for PTEs (user vs. kernel, cacheable
219 1.24 thorpej * vs. non-cacheable).
220 1.24 thorpej */
221 1.24 thorpej #define PTE_KERNEL 0
222 1.24 thorpej #define PTE_USER 1
223 1.24 thorpej #define PTE_NOCACHE 0
224 1.24 thorpej #define PTE_CACHE 1
225 1.65 scw #define PTE_PAGETABLE 2
226 1.24 thorpej
227 1.24 thorpej /*
228 1.43 thorpej * Flags that indicate attributes of pages or mappings of pages.
229 1.43 thorpej *
230 1.43 thorpej * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
231 1.43 thorpej * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
232 1.43 thorpej * pv_entry's for each page. They live in the same "namespace" so
233 1.43 thorpej * that we can clear multiple attributes at a time.
234 1.43 thorpej *
235 1.43 thorpej * Note the "non-cacheable" flag generally means the page has
236 1.43 thorpej * multiple mappings in a given address space.
237 1.43 thorpej */
238 1.43 thorpej #define PVF_MOD 0x01 /* page is modified */
239 1.43 thorpej #define PVF_REF 0x02 /* page is referenced */
240 1.43 thorpej #define PVF_WIRED 0x04 /* mapping is wired */
241 1.43 thorpej #define PVF_WRITE 0x08 /* mapping is writable */
242 1.56 thorpej #define PVF_EXEC 0x10 /* mapping is executable */
243 1.90 matt #ifdef PMAP_CACHE_VIVT
244 1.65 scw #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
245 1.65 scw #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
246 1.90 matt #define PVF_NC (PVF_UNC|PVF_KNC)
247 1.90 matt #endif
248 1.90 matt #ifdef PMAP_CACHE_VIPT
249 1.90 matt #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
250 1.90 matt #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
251 1.90 matt #endif
252 1.85 matt #define PVF_COLORED 0x80 /* page has or had a color */
253 1.85 matt #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
254 1.86 matt #define PVF_KMPAGE 0x0200 /* page is used for kmem */
255 1.87 matt #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
256 1.88 matt #define PVF_KMOD 0x0800 /* unmanaged page is modified */
257 1.88 matt #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
258 1.88 matt #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
259 1.43 thorpej
260 1.43 thorpej /*
261 1.1 reinoud * Commonly referenced structures
262 1.1 reinoud */
263 1.4 matt extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
264 1.1 reinoud
265 1.1 reinoud /*
266 1.1 reinoud * Macros that we need to export
267 1.1 reinoud */
268 1.1 reinoud #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
269 1.1 reinoud #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
270 1.31 thorpej
271 1.78 scw #define pmap_remove(pmap,sva,eva) pmap_do_remove((pmap),(sva),(eva),0)
272 1.78 scw
273 1.43 thorpej #define pmap_is_modified(pg) \
274 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
275 1.43 thorpej #define pmap_is_referenced(pg) \
276 1.43 thorpej (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
277 1.85 matt #define pmap_is_page_colored_p(pg) \
278 1.85 matt (((pg)->mdpage.pvh_attrs & PVF_COLORED) != 0)
279 1.41 thorpej
280 1.41 thorpej #define pmap_copy(dp, sp, da, l, sa) /* nothing */
281 1.60 chs
282 1.35 thorpej #define pmap_phys_address(ppn) (arm_ptob((ppn)))
283 1.1 reinoud
284 1.1 reinoud /*
285 1.1 reinoud * Functions that we need to export
286 1.1 reinoud */
287 1.39 thorpej void pmap_procwr(struct proc *, vaddr_t, int);
288 1.65 scw void pmap_remove_all(pmap_t);
289 1.80 thorpej bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
290 1.39 thorpej
291 1.1 reinoud #define PMAP_NEED_PROCWR
292 1.29 chris #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
293 1.92 thorpej #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
294 1.4 matt
295 1.85 matt #if ARM_MMU_V6 > 0
296 1.85 matt #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
297 1.85 matt void pmap_prefer(vaddr_t, vaddr_t *, int);
298 1.85 matt #endif
299 1.85 matt
300 1.85 matt void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
301 1.85 matt
302 1.39 thorpej /* Functions we use internally. */
303 1.85 matt #ifdef PMAP_STEAL_MEMORY
304 1.85 matt void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
305 1.85 matt void pmap_boot_pageadd(pv_addr_t *);
306 1.85 matt vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
307 1.85 matt #endif
308 1.85 matt void pmap_bootstrap(vaddr_t, vaddr_t);
309 1.65 scw
310 1.78 scw void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
311 1.70 scw int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
312 1.80 thorpej bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
313 1.80 thorpej bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
314 1.65 scw void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
315 1.65 scw
316 1.65 scw void pmap_debug(int);
317 1.39 thorpej void pmap_postinit(void);
318 1.42 thorpej
319 1.42 thorpej void vector_page_setprot(int);
320 1.24 thorpej
321 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
322 1.73 thorpej const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
323 1.73 thorpej
324 1.24 thorpej /* Bootstrapping routines. */
325 1.24 thorpej void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
326 1.25 thorpej void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
327 1.28 thorpej vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
328 1.28 thorpej void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
329 1.73 thorpej void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
330 1.74 thorpej void pmap_devmap_register(const struct pmap_devmap *);
331 1.13 chris
332 1.13 chris /*
333 1.13 chris * Special page zero routine for use by the idle loop (no cache cleans).
334 1.13 chris */
335 1.80 thorpej bool pmap_pageidlezero(paddr_t);
336 1.13 chris #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
337 1.1 reinoud
338 1.29 chris /*
339 1.84 chris * used by dumpsys to record the PA of the L1 table
340 1.84 chris */
341 1.84 chris uint32_t pmap_kernel_L1_addr(void);
342 1.84 chris /*
343 1.29 chris * The current top of kernel VM
344 1.29 chris */
345 1.29 chris extern vaddr_t pmap_curmaxkvaddr;
346 1.1 reinoud
347 1.1 reinoud /*
348 1.1 reinoud * Useful macros and constants
349 1.1 reinoud */
350 1.59 thorpej
351 1.65 scw /* Virtual address to page table entry */
352 1.79 perry static inline pt_entry_t *
353 1.65 scw vtopte(vaddr_t va)
354 1.65 scw {
355 1.65 scw pd_entry_t *pdep;
356 1.65 scw pt_entry_t *ptep;
357 1.65 scw
358 1.81 thorpej if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
359 1.65 scw return (NULL);
360 1.65 scw return (ptep);
361 1.65 scw }
362 1.65 scw
363 1.65 scw /*
364 1.65 scw * Virtual address to physical address
365 1.65 scw */
366 1.79 perry static inline paddr_t
367 1.65 scw vtophys(vaddr_t va)
368 1.65 scw {
369 1.65 scw paddr_t pa;
370 1.65 scw
371 1.81 thorpej if (pmap_extract(pmap_kernel(), va, &pa) == false)
372 1.65 scw return (0); /* XXXSCW: Panic? */
373 1.65 scw
374 1.65 scw return (pa);
375 1.65 scw }
376 1.65 scw
377 1.65 scw /*
378 1.65 scw * The new pmap ensures that page-tables are always mapping Write-Thru.
379 1.65 scw * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
380 1.65 scw * on every change.
381 1.65 scw *
382 1.69 thorpej * Unfortunately, not all CPUs have a write-through cache mode. So we
383 1.69 thorpej * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
384 1.69 thorpej * and if there is the chance for PTE syncs to be needed, we define
385 1.69 thorpej * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
386 1.69 thorpej * the code.
387 1.69 thorpej */
388 1.69 thorpej extern int pmap_needs_pte_sync;
389 1.69 thorpej #if defined(_KERNEL_OPT)
390 1.69 thorpej /*
391 1.69 thorpej * StrongARM SA-1 caches do not have a write-through mode. So, on these,
392 1.69 thorpej * we need to do PTE syncs. If only SA-1 is configured, then evaluate
393 1.69 thorpej * this at compile time.
394 1.69 thorpej */
395 1.85 matt #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
396 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 1
397 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
398 1.69 thorpej #elif (ARM_MMU_SA1 == 0)
399 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC 0
400 1.69 thorpej #endif
401 1.69 thorpej #endif /* _KERNEL_OPT */
402 1.69 thorpej
403 1.69 thorpej /*
404 1.69 thorpej * Provide a fallback in case we were not able to determine it at
405 1.69 thorpej * compile-time.
406 1.65 scw */
407 1.69 thorpej #ifndef PMAP_NEEDS_PTE_SYNC
408 1.69 thorpej #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
409 1.69 thorpej #define PMAP_INCLUDE_PTE_SYNC
410 1.69 thorpej #endif
411 1.65 scw
412 1.69 thorpej #define PTE_SYNC(pte) \
413 1.69 thorpej do { \
414 1.69 thorpej if (PMAP_NEEDS_PTE_SYNC) \
415 1.69 thorpej cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
416 1.69 thorpej } while (/*CONSTCOND*/0)
417 1.69 thorpej
418 1.69 thorpej #define PTE_SYNC_RANGE(pte, cnt) \
419 1.69 thorpej do { \
420 1.69 thorpej if (PMAP_NEEDS_PTE_SYNC) { \
421 1.69 thorpej cpu_dcache_wb_range((vaddr_t)(pte), \
422 1.69 thorpej (cnt) << 2); /* * sizeof(pt_entry_t) */ \
423 1.69 thorpej } \
424 1.69 thorpej } while (/*CONSTCOND*/0)
425 1.65 scw
426 1.36 thorpej #define l1pte_valid(pde) ((pde) != 0)
427 1.44 thorpej #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
428 1.44 thorpej #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
429 1.44 thorpej #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
430 1.36 thorpej
431 1.65 scw #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
432 1.85 matt #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
433 1.44 thorpej #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
434 1.77 scw #define l2pte_minidata(pte) (((pte) & \
435 1.85 matt (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
436 1.85 matt == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
437 1.35 thorpej
438 1.1 reinoud /* L1 and L2 page table macros */
439 1.36 thorpej #define pmap_pde_v(pde) l1pte_valid(*(pde))
440 1.36 thorpej #define pmap_pde_section(pde) l1pte_section_p(*(pde))
441 1.36 thorpej #define pmap_pde_page(pde) l1pte_page_p(*(pde))
442 1.36 thorpej #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
443 1.16 rearnsha
444 1.36 thorpej #define pmap_pte_v(pte) l2pte_valid(*(pte))
445 1.36 thorpej #define pmap_pte_pa(pte) l2pte_pa(*(pte))
446 1.35 thorpej
447 1.1 reinoud /* Size of the kernel part of the L1 page table */
448 1.1 reinoud #define KERNEL_PD_SIZE \
449 1.44 thorpej (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
450 1.20 chs
451 1.46 thorpej /************************* ARM MMU configuration *****************************/
452 1.46 thorpej
453 1.85 matt #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
454 1.51 thorpej void pmap_copy_page_generic(paddr_t, paddr_t);
455 1.51 thorpej void pmap_zero_page_generic(paddr_t);
456 1.51 thorpej
457 1.46 thorpej void pmap_pte_init_generic(void);
458 1.69 thorpej #if defined(CPU_ARM8)
459 1.69 thorpej void pmap_pte_init_arm8(void);
460 1.69 thorpej #endif
461 1.46 thorpej #if defined(CPU_ARM9)
462 1.46 thorpej void pmap_pte_init_arm9(void);
463 1.46 thorpej #endif /* CPU_ARM9 */
464 1.76 rearnsha #if defined(CPU_ARM10)
465 1.76 rearnsha void pmap_pte_init_arm10(void);
466 1.76 rearnsha #endif /* CPU_ARM10 */
467 1.69 thorpej #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
468 1.69 thorpej
469 1.69 thorpej #if ARM_MMU_SA1 == 1
470 1.69 thorpej void pmap_pte_init_sa1(void);
471 1.69 thorpej #endif /* ARM_MMU_SA1 == 1 */
472 1.46 thorpej
473 1.52 thorpej #if ARM_MMU_XSCALE == 1
474 1.51 thorpej void pmap_copy_page_xscale(paddr_t, paddr_t);
475 1.51 thorpej void pmap_zero_page_xscale(paddr_t);
476 1.51 thorpej
477 1.46 thorpej void pmap_pte_init_xscale(void);
478 1.50 thorpej
479 1.50 thorpej void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
480 1.77 scw
481 1.77 scw #define PMAP_UAREA(va) pmap_uarea(va)
482 1.77 scw void pmap_uarea(vaddr_t);
483 1.52 thorpej #endif /* ARM_MMU_XSCALE == 1 */
484 1.46 thorpej
485 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mode;
486 1.49 thorpej extern pt_entry_t pte_l1_s_cache_mask;
487 1.49 thorpej
488 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mode;
489 1.49 thorpej extern pt_entry_t pte_l2_l_cache_mask;
490 1.49 thorpej
491 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mode;
492 1.49 thorpej extern pt_entry_t pte_l2_s_cache_mask;
493 1.46 thorpej
494 1.65 scw extern pt_entry_t pte_l1_s_cache_mode_pt;
495 1.65 scw extern pt_entry_t pte_l2_l_cache_mode_pt;
496 1.65 scw extern pt_entry_t pte_l2_s_cache_mode_pt;
497 1.65 scw
498 1.46 thorpej extern pt_entry_t pte_l2_s_prot_u;
499 1.46 thorpej extern pt_entry_t pte_l2_s_prot_w;
500 1.46 thorpej extern pt_entry_t pte_l2_s_prot_mask;
501 1.46 thorpej
502 1.46 thorpej extern pt_entry_t pte_l1_s_proto;
503 1.46 thorpej extern pt_entry_t pte_l1_c_proto;
504 1.46 thorpej extern pt_entry_t pte_l2_s_proto;
505 1.46 thorpej
506 1.51 thorpej extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
507 1.51 thorpej extern void (*pmap_zero_page_func)(paddr_t);
508 1.75 bsh
509 1.75 bsh #endif /* !_LOCORE */
510 1.51 thorpej
511 1.46 thorpej /*****************************************************************************/
512 1.46 thorpej
513 1.20 chs /*
514 1.65 scw * Definitions for MMU domains
515 1.65 scw */
516 1.65 scw #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
517 1.65 scw #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
518 1.45 thorpej
519 1.45 thorpej /*
520 1.45 thorpej * These macros define the various bit masks in the PTE.
521 1.45 thorpej *
522 1.45 thorpej * We use these macros since we use different bits on different processor
523 1.45 thorpej * models.
524 1.45 thorpej */
525 1.45 thorpej #define L1_S_PROT_U (L1_S_AP(AP_U))
526 1.45 thorpej #define L1_S_PROT_W (L1_S_AP(AP_W))
527 1.45 thorpej #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
528 1.45 thorpej
529 1.49 thorpej #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
530 1.85 matt #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
531 1.45 thorpej
532 1.45 thorpej #define L2_L_PROT_U (L2_AP(AP_U))
533 1.45 thorpej #define L2_L_PROT_W (L2_AP(AP_W))
534 1.45 thorpej #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
535 1.45 thorpej
536 1.49 thorpej #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
537 1.85 matt #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
538 1.49 thorpej
539 1.46 thorpej #define L2_S_PROT_U_generic (L2_AP(AP_U))
540 1.46 thorpej #define L2_S_PROT_W_generic (L2_AP(AP_W))
541 1.46 thorpej #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
542 1.46 thorpej
543 1.48 thorpej #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
544 1.48 thorpej #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
545 1.46 thorpej #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
546 1.46 thorpej
547 1.49 thorpej #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
548 1.85 matt #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
549 1.46 thorpej
550 1.46 thorpej #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
551 1.47 thorpej #define L1_S_PROTO_xscale (L1_TYPE_S)
552 1.46 thorpej
553 1.46 thorpej #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
554 1.47 thorpej #define L1_C_PROTO_xscale (L1_TYPE_C)
555 1.46 thorpej
556 1.46 thorpej #define L2_L_PROTO (L2_TYPE_L)
557 1.46 thorpej
558 1.46 thorpej #define L2_S_PROTO_generic (L2_TYPE_S)
559 1.85 matt #define L2_S_PROTO_xscale (L2_TYPE_XS)
560 1.45 thorpej
561 1.46 thorpej /*
562 1.46 thorpej * User-visible names for the ones that vary with MMU class.
563 1.46 thorpej */
564 1.46 thorpej
565 1.46 thorpej #if ARM_NMMUS > 1
566 1.46 thorpej /* More than one MMU class configured; use variables. */
567 1.46 thorpej #define L2_S_PROT_U pte_l2_s_prot_u
568 1.46 thorpej #define L2_S_PROT_W pte_l2_s_prot_w
569 1.46 thorpej #define L2_S_PROT_MASK pte_l2_s_prot_mask
570 1.46 thorpej
571 1.49 thorpej #define L1_S_CACHE_MASK pte_l1_s_cache_mask
572 1.49 thorpej #define L2_L_CACHE_MASK pte_l2_l_cache_mask
573 1.49 thorpej #define L2_S_CACHE_MASK pte_l2_s_cache_mask
574 1.49 thorpej
575 1.46 thorpej #define L1_S_PROTO pte_l1_s_proto
576 1.46 thorpej #define L1_C_PROTO pte_l1_c_proto
577 1.46 thorpej #define L2_S_PROTO pte_l2_s_proto
578 1.51 thorpej
579 1.51 thorpej #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
580 1.51 thorpej #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
581 1.85 matt #elif (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
582 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_generic
583 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_generic
584 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
585 1.46 thorpej
586 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
587 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
588 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
589 1.49 thorpej
590 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_generic
591 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_generic
592 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_generic
593 1.51 thorpej
594 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
595 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_generic((d))
596 1.46 thorpej #elif ARM_MMU_XSCALE == 1
597 1.46 thorpej #define L2_S_PROT_U L2_S_PROT_U_xscale
598 1.46 thorpej #define L2_S_PROT_W L2_S_PROT_W_xscale
599 1.46 thorpej #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
600 1.49 thorpej
601 1.49 thorpej #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
602 1.49 thorpej #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
603 1.49 thorpej #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
604 1.46 thorpej
605 1.46 thorpej #define L1_S_PROTO L1_S_PROTO_xscale
606 1.46 thorpej #define L1_C_PROTO L1_C_PROTO_xscale
607 1.46 thorpej #define L2_S_PROTO L2_S_PROTO_xscale
608 1.51 thorpej
609 1.51 thorpej #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
610 1.51 thorpej #define pmap_zero_page(d) pmap_zero_page_xscale((d))
611 1.46 thorpej #endif /* ARM_NMMUS > 1 */
612 1.20 chs
613 1.45 thorpej /*
614 1.45 thorpej * These macros return various bits based on kernel/user and protection.
615 1.45 thorpej * Note that the compiler will usually fold these at compile time.
616 1.45 thorpej */
617 1.45 thorpej #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
618 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
619 1.45 thorpej
620 1.45 thorpej #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
621 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
622 1.45 thorpej
623 1.45 thorpej #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
624 1.45 thorpej (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
625 1.66 thorpej
626 1.66 thorpej /*
627 1.66 thorpej * Macros to test if a mapping is mappable with an L1 Section mapping
628 1.66 thorpej * or an L2 Large Page mapping.
629 1.66 thorpej */
630 1.66 thorpej #define L1_S_MAPPABLE_P(va, pa, size) \
631 1.66 thorpej ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
632 1.66 thorpej
633 1.67 thorpej #define L2_L_MAPPABLE_P(va, pa, size) \
634 1.68 thorpej ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
635 1.64 thorpej
636 1.64 thorpej /*
637 1.64 thorpej * Hooks for the pool allocator.
638 1.64 thorpej */
639 1.64 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
640 1.18 thorpej
641 1.18 thorpej #endif /* _KERNEL */
642 1.1 reinoud
643 1.1 reinoud #endif /* _ARM32_PMAP_H_ */
644