pmap.h revision 1.116 1 /* $NetBSD: pmap.h,v 1.116 2012/12/10 06:53:52 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #endif
79 #include <arm/cpufunc.h>
80 #include <uvm/uvm_object.h>
81 #endif
82
83 /*
84 * a pmap describes a processes' 4GB virtual address space. this
85 * virtual address space can be broken up into 4096 1MB regions which
86 * are described by L1 PTEs in the L1 table.
87 *
88 * There is a line drawn at KERNEL_BASE. Everything below that line
89 * changes when the VM context is switched. Everything above that line
90 * is the same no matter which VM context is running. This is achieved
91 * by making the L1 PTEs for those slots above KERNEL_BASE reference
92 * kernel L2 tables.
93 *
94 * The basic layout of the virtual address space thus looks like this:
95 *
96 * 0xffffffff
97 * .
98 * .
99 * .
100 * KERNEL_BASE
101 * --------------------
102 * .
103 * .
104 * .
105 * 0x00000000
106 */
107
108 /*
109 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
110 * A bucket size of 16 provides for 16MB of contiguous virtual address
111 * space per l2_dtable. Most processes will, therefore, require only two or
112 * three of these to map their whole working set.
113 */
114 #define L2_BUCKET_LOG2 4
115 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
116
117 /*
118 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
119 * of l2_dtable structures required to track all possible page descriptors
120 * mappable by an L1 translation table is given by the following constants:
121 */
122 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
123 #define L2_SIZE (1 << L2_LOG2)
124
125 /*
126 * tell MI code that the cache is virtually-indexed.
127 * ARMv6 is physically-tagged but all others are virtually-tagged.
128 */
129 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
130 #define PMAP_CACHE_VIPT
131 #else
132 #define PMAP_CACHE_VIVT
133 #endif
134
135 #ifndef _LOCORE
136
137 struct l1_ttable;
138 struct l2_dtable;
139
140 /*
141 * Track cache/tlb occupancy using the following structure
142 */
143 union pmap_cache_state {
144 struct {
145 union {
146 uint8_t csu_cache_b[2];
147 uint16_t csu_cache;
148 } cs_cache_u;
149
150 union {
151 uint8_t csu_tlb_b[2];
152 uint16_t csu_tlb;
153 } cs_tlb_u;
154 } cs_s;
155 uint32_t cs_all;
156 };
157 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
158 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
159 #define cs_cache cs_s.cs_cache_u.csu_cache
160 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
161 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
162 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
163
164 /*
165 * Assigned to cs_all to force cacheops to work for a particular pmap
166 */
167 #define PMAP_CACHE_STATE_ALL 0xffffffffu
168
169 /*
170 * This structure is used by machine-dependent code to describe
171 * static mappings of devices, created at bootstrap time.
172 */
173 struct pmap_devmap {
174 vaddr_t pd_va; /* virtual address */
175 paddr_t pd_pa; /* physical address */
176 psize_t pd_size; /* size of region */
177 vm_prot_t pd_prot; /* protection code */
178 int pd_cache; /* cache attributes */
179 };
180
181 /*
182 * The pmap structure itself
183 */
184 struct pmap {
185 uint8_t pm_domain;
186 bool pm_remove_all;
187 bool pm_activated;
188 struct l1_ttable *pm_l1;
189 pd_entry_t *pm_pl1vec;
190 pd_entry_t pm_l1vec;
191 union pmap_cache_state pm_cstate;
192 struct uvm_object pm_obj;
193 kmutex_t pm_obj_lock;
194 #define pm_lock pm_obj.vmobjlock
195 struct l2_dtable *pm_l2[L2_SIZE];
196 struct pmap_statistics pm_stats;
197 LIST_ENTRY(pmap) pm_list;
198 };
199
200 /*
201 * Physical / virtual address structure. In a number of places (particularly
202 * during bootstrapping) we need to keep track of the physical and virtual
203 * addresses of various pages
204 */
205 typedef struct pv_addr {
206 SLIST_ENTRY(pv_addr) pv_list;
207 paddr_t pv_pa;
208 vaddr_t pv_va;
209 vsize_t pv_size;
210 uint8_t pv_cache;
211 uint8_t pv_prot;
212 } pv_addr_t;
213 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
214
215 extern pv_addrqh_t pmap_freeq;
216 extern pv_addr_t kernelstack;
217 extern pv_addr_t abtstack;
218 extern pv_addr_t fiqstack;
219 extern pv_addr_t irqstack;
220 extern pv_addr_t undstack;
221 extern pv_addr_t idlestack;
222 extern pv_addr_t systempage;
223 extern pv_addr_t kernel_l1pt;
224
225 /*
226 * Determine various modes for PTEs (user vs. kernel, cacheable
227 * vs. non-cacheable).
228 */
229 #define PTE_KERNEL 0
230 #define PTE_USER 1
231 #define PTE_NOCACHE 0
232 #define PTE_CACHE 1
233 #define PTE_PAGETABLE 2
234
235 /*
236 * Flags that indicate attributes of pages or mappings of pages.
237 *
238 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
239 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
240 * pv_entry's for each page. They live in the same "namespace" so
241 * that we can clear multiple attributes at a time.
242 *
243 * Note the "non-cacheable" flag generally means the page has
244 * multiple mappings in a given address space.
245 */
246 #define PVF_MOD 0x01 /* page is modified */
247 #define PVF_REF 0x02 /* page is referenced */
248 #define PVF_WIRED 0x04 /* mapping is wired */
249 #define PVF_WRITE 0x08 /* mapping is writable */
250 #define PVF_EXEC 0x10 /* mapping is executable */
251 #ifdef PMAP_CACHE_VIVT
252 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
253 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
254 #define PVF_NC (PVF_UNC|PVF_KNC)
255 #endif
256 #ifdef PMAP_CACHE_VIPT
257 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
258 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
259 #endif
260 #define PVF_COLORED 0x80 /* page has or had a color */
261 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
262 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
263 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
264 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
265 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
266 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
267
268 /*
269 * Commonly referenced structures
270 */
271 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
272 extern int arm_poolpage_vmfreelist;
273
274 /*
275 * Macros that we need to export
276 */
277 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
278 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
279
280 #define pmap_is_modified(pg) \
281 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
282 #define pmap_is_referenced(pg) \
283 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
284 #define pmap_is_page_colored_p(md) \
285 (((md)->pvh_attrs & PVF_COLORED) != 0)
286
287 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
288
289 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
290 u_int arm32_mmap_flags(paddr_t);
291 #define ARM32_MMAP_WRITECOMBINE 0x40000000
292 #define ARM32_MMAP_CACHEABLE 0x20000000
293 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
294
295 /*
296 * Functions that we need to export
297 */
298 void pmap_procwr(struct proc *, vaddr_t, int);
299 void pmap_remove_all(pmap_t);
300 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
301
302 #define PMAP_NEED_PROCWR
303 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
304 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
305
306 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
307 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
308 void pmap_prefer(vaddr_t, vaddr_t *, int);
309 #endif
310
311 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
312
313 /* Functions we use internally. */
314 #ifdef PMAP_STEAL_MEMORY
315 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
316 void pmap_boot_pageadd(pv_addr_t *);
317 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
318 #endif
319 void pmap_bootstrap(vaddr_t, vaddr_t);
320
321 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
322 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
323 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
324 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
325 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
326
327 void pmap_debug(int);
328 void pmap_postinit(void);
329
330 void vector_page_setprot(int);
331
332 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
333 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
334
335 /* Bootstrapping routines. */
336 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
337 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
338 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
339 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
340 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
341 void pmap_devmap_register(const struct pmap_devmap *);
342
343 /*
344 * Special page zero routine for use by the idle loop (no cache cleans).
345 */
346 bool pmap_pageidlezero(paddr_t);
347 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
348
349 /*
350 * used by dumpsys to record the PA of the L1 table
351 */
352 uint32_t pmap_kernel_L1_addr(void);
353 /*
354 * The current top of kernel VM
355 */
356 extern vaddr_t pmap_curmaxkvaddr;
357
358 /*
359 * Useful macros and constants
360 */
361
362 /* Virtual address to page table entry */
363 static inline pt_entry_t *
364 vtopte(vaddr_t va)
365 {
366 pd_entry_t *pdep;
367 pt_entry_t *ptep;
368
369 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
370 return (NULL);
371 return (ptep);
372 }
373
374 /*
375 * Virtual address to physical address
376 */
377 static inline paddr_t
378 vtophys(vaddr_t va)
379 {
380 paddr_t pa;
381
382 if (pmap_extract(pmap_kernel(), va, &pa) == false)
383 return (0); /* XXXSCW: Panic? */
384
385 return (pa);
386 }
387
388 /*
389 * The new pmap ensures that page-tables are always mapping Write-Thru.
390 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
391 * on every change.
392 *
393 * Unfortunately, not all CPUs have a write-through cache mode. So we
394 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
395 * and if there is the chance for PTE syncs to be needed, we define
396 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
397 * the code.
398 */
399 extern int pmap_needs_pte_sync;
400 #if defined(_KERNEL_OPT)
401 /*
402 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
403 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
404 * this at compile time.
405 */
406 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
407 #define PMAP_INCLUDE_PTE_SYNC
408 #if (ARM_MMU_V6 > 0)
409 #define PMAP_NEEDS_PTE_SYNC 1
410 #elif (ARM_MMU_SA1 == 0)
411 #define PMAP_NEEDS_PTE_SYNC 0
412 #endif
413 #endif
414 #endif /* _KERNEL_OPT */
415
416 /*
417 * Provide a fallback in case we were not able to determine it at
418 * compile-time.
419 */
420 #ifndef PMAP_NEEDS_PTE_SYNC
421 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
422 #define PMAP_INCLUDE_PTE_SYNC
423 #endif
424
425 static inline void
426 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
427 {
428 if (PMAP_NEEDS_PTE_SYNC)
429 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
430 #if ARM_MMU_V7 > 0
431 __asm("dsb");
432 #endif
433 }
434
435 #define PTE_SYNC(ptep) pmap_ptesync((ptep), 1)
436 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
437
438 #define l1pte_valid(pde) ((pde) != 0)
439 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
440 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
441 && ((pde) & L1_S_V6_SUPER) != 0)
442 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
443 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
444
445 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
446 #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
447 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
448 #define l2pte_minidata(pte) (((pte) & \
449 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
450 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
451
452 /* L1 and L2 page table macros */
453 #define pmap_pde_v(pde) l1pte_valid(*(pde))
454 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
455 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
456 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
457 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
458
459 #define pmap_pte_v(pte) l2pte_valid(*(pte))
460 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
461
462 /* Size of the kernel part of the L1 page table */
463 #define KERNEL_PD_SIZE \
464 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
465
466 /************************* ARM MMU configuration *****************************/
467
468 #ifdef FPU_VFP
469 void pmap_copy_page_vfp(paddr_t, paddr_t);
470 void pmap_zero_page_vfp(paddr_t);
471 #endif
472
473 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
474 void pmap_copy_page_generic(paddr_t, paddr_t);
475 void pmap_zero_page_generic(paddr_t);
476
477 void pmap_pte_init_generic(void);
478 #if defined(CPU_ARM8)
479 void pmap_pte_init_arm8(void);
480 #endif
481 #if defined(CPU_ARM9)
482 void pmap_pte_init_arm9(void);
483 #endif /* CPU_ARM9 */
484 #if defined(CPU_ARM10)
485 void pmap_pte_init_arm10(void);
486 #endif /* CPU_ARM10 */
487 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
488 void pmap_pte_init_arm11(void);
489 #endif /* CPU_ARM11 */
490 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
491 void pmap_pte_init_arm11mpcore(void);
492 #endif
493 #if ARM_MMU_V7 == 1
494 void pmap_pte_init_armv7(void);
495 #endif /* ARM_MMU_V7 */
496 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
497
498 #if ARM_MMU_SA1 == 1
499 void pmap_pte_init_sa1(void);
500 #endif /* ARM_MMU_SA1 == 1 */
501
502 #if ARM_MMU_XSCALE == 1
503 void pmap_copy_page_xscale(paddr_t, paddr_t);
504 void pmap_zero_page_xscale(paddr_t);
505
506 void pmap_pte_init_xscale(void);
507
508 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
509
510 #define PMAP_UAREA(va) pmap_uarea(va)
511 void pmap_uarea(vaddr_t);
512 #endif /* ARM_MMU_XSCALE == 1 */
513
514 extern pt_entry_t pte_l1_s_cache_mode;
515 extern pt_entry_t pte_l1_s_cache_mask;
516
517 extern pt_entry_t pte_l2_l_cache_mode;
518 extern pt_entry_t pte_l2_l_cache_mask;
519
520 extern pt_entry_t pte_l2_s_cache_mode;
521 extern pt_entry_t pte_l2_s_cache_mask;
522
523 extern pt_entry_t pte_l1_s_cache_mode_pt;
524 extern pt_entry_t pte_l2_l_cache_mode_pt;
525 extern pt_entry_t pte_l2_s_cache_mode_pt;
526
527 extern pt_entry_t pte_l1_s_wc_mode;
528 extern pt_entry_t pte_l2_l_wc_mode;
529 extern pt_entry_t pte_l2_s_wc_mode;
530
531 extern pt_entry_t pte_l1_s_prot_u;
532 extern pt_entry_t pte_l1_s_prot_w;
533 extern pt_entry_t pte_l1_s_prot_ro;
534 extern pt_entry_t pte_l1_s_prot_mask;
535
536 extern pt_entry_t pte_l2_s_prot_u;
537 extern pt_entry_t pte_l2_s_prot_w;
538 extern pt_entry_t pte_l2_s_prot_ro;
539 extern pt_entry_t pte_l2_s_prot_mask;
540
541 extern pt_entry_t pte_l2_l_prot_u;
542 extern pt_entry_t pte_l2_l_prot_w;
543 extern pt_entry_t pte_l2_l_prot_ro;
544 extern pt_entry_t pte_l2_l_prot_mask;
545
546 extern pt_entry_t pte_l1_ss_proto;
547 extern pt_entry_t pte_l1_s_proto;
548 extern pt_entry_t pte_l1_c_proto;
549 extern pt_entry_t pte_l2_s_proto;
550
551 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
552 extern void (*pmap_zero_page_func)(paddr_t);
553
554 #endif /* !_LOCORE */
555
556 /*****************************************************************************/
557
558 /*
559 * Definitions for MMU domains
560 */
561 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
562 #define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */
563
564 /*
565 * These macros define the various bit masks in the PTE.
566 *
567 * We use these macros since we use different bits on different processor
568 * models.
569 */
570 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
571 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
572 #define L1_S_PROT_RO_generic (0)
573 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
574
575 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
576 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
577 #define L1_S_PROT_RO_xscale (0)
578 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
579
580 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
581 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
582 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
583 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
584
585 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
586 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
587 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
588 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
589
590 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
591 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
592 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
593 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
594
595 #define L2_L_PROT_U_generic (L2_AP(AP_U))
596 #define L2_L_PROT_W_generic (L2_AP(AP_W))
597 #define L2_L_PROT_RO_generic (0)
598 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
599
600 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
601 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
602 #define L2_L_PROT_RO_xscale (0)
603 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
604
605 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
606 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
607 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
608 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
609
610 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
611 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
612 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
613 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
614
615 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
616 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
617 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
618 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
619
620 #define L2_S_PROT_U_generic (L2_AP(AP_U))
621 #define L2_S_PROT_W_generic (L2_AP(AP_W))
622 #define L2_S_PROT_RO_generic (0)
623 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
624
625 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
626 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
627 #define L2_S_PROT_RO_xscale (0)
628 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
629
630 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
631 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
632 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
633 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
634
635 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
636 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
637 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
638 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
639
640 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
641 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
642 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
643 #define L2_S_CACHE_MASK_armv6n L2_XS_CACHE_MASK_armv6
644 #ifdef ARMV6_EXTENDED_SMALL_PAGE
645 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
646 #else
647 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
648 #endif
649 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
650
651
652 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
653 #define L1_S_PROTO_xscale (L1_TYPE_S)
654 #define L1_S_PROTO_armv6 (L1_TYPE_S)
655 #define L1_S_PROTO_armv7 (L1_TYPE_S)
656
657 #define L1_SS_PROTO_generic 0
658 #define L1_SS_PROTO_xscale 0
659 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
660 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
661
662 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
663 #define L1_C_PROTO_xscale (L1_TYPE_C)
664 #define L1_C_PROTO_armv6 (L1_TYPE_C)
665 #define L1_C_PROTO_armv7 (L1_TYPE_C)
666
667 #define L2_L_PROTO (L2_TYPE_L)
668
669 #define L2_S_PROTO_generic (L2_TYPE_S)
670 #define L2_S_PROTO_xscale (L2_TYPE_XS)
671 #ifdef ARMV6_EXTENDED_SMALL_PAGE
672 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
673 #else
674 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
675 #endif
676 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
677 #define L2_S_PROTO_armv7 (L2_TYPE_S)
678
679 /*
680 * User-visible names for the ones that vary with MMU class.
681 */
682
683 #if ARM_NMMUS > 1
684 /* More than one MMU class configured; use variables. */
685 #define L1_S_PROT_U pte_l1_s_prot_u
686 #define L1_S_PROT_W pte_l1_s_prot_w
687 #define L1_S_PROT_RO pte_l1_s_prot_ro
688 #define L1_S_PROT_MASK pte_l1_s_prot_mask
689
690 #define L2_S_PROT_U pte_l2_s_prot_u
691 #define L2_S_PROT_W pte_l2_s_prot_w
692 #define L2_S_PROT_RO pte_l2_s_prot_ro
693 #define L2_S_PROT_MASK pte_l2_s_prot_mask
694
695 #define L2_L_PROT_U pte_l2_l_prot_u
696 #define L2_L_PROT_W pte_l2_l_prot_w
697 #define L2_L_PROT_RO pte_l2_l_prot_ro
698 #define L2_L_PROT_MASK pte_l2_l_prot_mask
699
700 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
701 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
702 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
703
704 #define L1_SS_PROTO pte_l1_ss_proto
705 #define L1_S_PROTO pte_l1_s_proto
706 #define L1_C_PROTO pte_l1_c_proto
707 #define L2_S_PROTO pte_l2_s_proto
708
709 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
710 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
711 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
712 #define L1_S_PROT_U L1_S_PROT_U_generic
713 #define L1_S_PROT_W L1_S_PROT_W_generic
714 #define L1_S_PROT_RO L1_S_PROT_RO_generic
715 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
716
717 #define L2_S_PROT_U L2_S_PROT_U_generic
718 #define L2_S_PROT_W L2_S_PROT_W_generic
719 #define L2_S_PROT_RO L2_S_PROT_RO_generic
720 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
721
722 #define L2_L_PROT_U L2_L_PROT_U_generic
723 #define L2_L_PROT_W L2_L_PROT_W_generic
724 #define L2_L_PROT_RO L2_L_PROT_RO_generic
725 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
726
727 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
728 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
729 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
730
731 #define L1_SS_PROTO L1_SS_PROTO_generic
732 #define L1_S_PROTO L1_S_PROTO_generic
733 #define L1_C_PROTO L1_C_PROTO_generic
734 #define L2_S_PROTO L2_S_PROTO_generic
735
736 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
737 #define pmap_zero_page(d) pmap_zero_page_generic((d))
738 #elif ARM_MMU_V6N != 0
739 #define L1_S_PROT_U L1_S_PROT_U_armv6
740 #define L1_S_PROT_W L1_S_PROT_W_armv6
741 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
742 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
743
744 #define L2_S_PROT_U L2_S_PROT_U_armv6n
745 #define L2_S_PROT_W L2_S_PROT_W_armv6n
746 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
747 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
748
749 #define L2_L_PROT_U L2_L_PROT_U_armv6n
750 #define L2_L_PROT_W L2_L_PROT_W_armv6n
751 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
752 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
753
754 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6
755 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6
756 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
757
758 /* These prototypes make writeable mappings, while the other MMU types
759 * make read-only mappings. */
760 #define L1_SS_PROTO L1_SS_PROTO_armv6
761 #define L1_S_PROTO L1_S_PROTO_armv6
762 #define L1_C_PROTO L1_C_PROTO_armv6
763 #define L2_S_PROTO L2_S_PROTO_armv6n
764
765 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
766 #define pmap_zero_page(d) pmap_zero_page_generic((d))
767 #elif ARM_MMU_V6C != 0
768 #define L1_S_PROT_U L1_S_PROT_U_generic
769 #define L1_S_PROT_W L1_S_PROT_W_generic
770 #define L1_S_PROT_RO L1_S_PROT_RO_generic
771 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
772
773 #define L2_S_PROT_U L2_S_PROT_U_generic
774 #define L2_S_PROT_W L2_S_PROT_W_generic
775 #define L2_S_PROT_RO L2_S_PROT_RO_generic
776 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
777
778 #define L2_L_PROT_U L2_L_PROT_U_generic
779 #define L2_L_PROT_W L2_L_PROT_W_generic
780 #define L2_L_PROT_RO L2_L_PROT_RO_generic
781 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
782
783 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
784 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
785 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
786
787 #define L1_SS_PROTO L1_SS_PROTO_generic
788 #define L1_S_PROTO L1_S_PROTO_generic
789 #define L1_C_PROTO L1_C_PROTO_generic
790 #define L2_S_PROTO L2_S_PROTO_generic
791
792 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
793 #define pmap_zero_page(d) pmap_zero_page_generic((d))
794 #elif ARM_MMU_XSCALE == 1
795 #define L1_S_PROT_U L1_S_PROT_U_generic
796 #define L1_S_PROT_W L1_S_PROT_W_generic
797 #define L1_S_PROT_RO L1_S_PROT_RO_generic
798 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
799
800 #define L2_S_PROT_U L2_S_PROT_U_xscale
801 #define L2_S_PROT_W L2_S_PROT_W_xscale
802 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
803 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
804
805 #define L2_L_PROT_U L2_L_PROT_U_generic
806 #define L2_L_PROT_W L2_L_PROT_W_generic
807 #define L2_L_PROT_RO L2_L_PROT_RO_generic
808 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
809
810 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
811 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
812 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
813
814 #define L1_SS_PROTO L1_SS_PROTO_xscale
815 #define L1_S_PROTO L1_S_PROTO_xscale
816 #define L1_C_PROTO L1_C_PROTO_xscale
817 #define L2_S_PROTO L2_S_PROTO_xscale
818
819 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
820 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
821 #elif ARM_MMU_V7 == 1
822 #define L1_S_PROT_U L1_S_PROT_U_armv7
823 #define L1_S_PROT_W L1_S_PROT_W_armv7
824 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
825 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
826
827 #define L2_S_PROT_U L2_S_PROT_U_armv7
828 #define L2_S_PROT_W L2_S_PROT_W_armv7
829 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
830 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
831
832 #define L2_L_PROT_U L2_L_PROT_U_armv7
833 #define L2_L_PROT_W L2_L_PROT_W_armv7
834 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
835 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
836
837 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
838 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
839 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
840
841 /* These prototypes make writeable mappings, while the other MMU types
842 * make read-only mappings. */
843 #define L1_SS_PROTO L1_SS_PROTO_armv7
844 #define L1_S_PROTO L1_S_PROTO_armv7
845 #define L1_C_PROTO L1_C_PROTO_armv7
846 #define L2_S_PROTO L2_S_PROTO_armv7
847
848 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
849 #define pmap_zero_page(d) pmap_zero_page_generic((d))
850 #endif /* ARM_NMMUS > 1 */
851
852 /*
853 * Macros to set and query the write permission on page descriptors.
854 */
855 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
856 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
857 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
858 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
859
860 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
861 (L2_S_PROT_RO == 0 || \
862 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
863
864 /*
865 * These macros return various bits based on kernel/user and protection.
866 * Note that the compiler will usually fold these at compile time.
867 */
868 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
869 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
870
871 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
872 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
873
874 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
875 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
876
877 /*
878 * Macros to test if a mapping is mappable with an L1 SuperSection,
879 * L1 Section, or an L2 Large Page mapping.
880 */
881 #define L1_SS_MAPPABLE_P(va, pa, size) \
882 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
883
884 #define L1_S_MAPPABLE_P(va, pa, size) \
885 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
886
887 #define L2_L_MAPPABLE_P(va, pa, size) \
888 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
889
890 /*
891 * Hooks for the pool allocator.
892 */
893 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
894 #ifdef PMAP_NEED_ALLOC_POOLPAGE
895 extern paddr_t physical_start;
896 struct vm_page *arm_pmap_alloc_poolpage(int);
897 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
898 #define PMAP_MAP_POOLPAGE(pa) \
899 ((vaddr_t)((paddr_t)(pa) - physical_start + KERNEL_BASE))
900 #define PMAP_UNMAP_POOLPAGE(va) \
901 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + physical_start))
902 #endif
903
904 #ifndef _LOCORE
905
906 /*
907 * pmap-specific data store in the vm_page structure.
908 */
909 #define __HAVE_VM_PAGE_MD
910 struct vm_page_md {
911 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
912 int pvh_attrs; /* page attributes */
913 u_int uro_mappings;
914 u_int urw_mappings;
915 union {
916 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
917 u_int i_mappings;
918 } k_u;
919 #define kro_mappings k_u.s_mappings[0]
920 #define krw_mappings k_u.s_mappings[1]
921 #define k_mappings k_u.i_mappings
922 };
923
924 /*
925 * Set the default color of each page.
926 */
927 #if ARM_MMU_V6 > 0
928 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
929 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
930 #else
931 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
932 (pg)->mdpage.pvh_attrs = 0
933 #endif
934
935 #define VM_MDPAGE_INIT(pg) \
936 do { \
937 SLIST_INIT(&(pg)->mdpage.pvh_list); \
938 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
939 (pg)->mdpage.uro_mappings = 0; \
940 (pg)->mdpage.urw_mappings = 0; \
941 (pg)->mdpage.k_mappings = 0; \
942 } while (/*CONSTCOND*/0)
943
944 #endif /* !_LOCORE */
945
946 #endif /* _KERNEL */
947
948 #endif /* _ARM32_PMAP_H_ */
949