pmap.h revision 1.120.2.1 1 /* $NetBSD: pmap.h,v 1.120.2.1 2013/08/28 23:59:12 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #endif
79 #include <arm/cpufunc.h>
80 #include <uvm/uvm_object.h>
81 #endif
82
83 /*
84 * a pmap describes a processes' 4GB virtual address space. this
85 * virtual address space can be broken up into 4096 1MB regions which
86 * are described by L1 PTEs in the L1 table.
87 *
88 * There is a line drawn at KERNEL_BASE. Everything below that line
89 * changes when the VM context is switched. Everything above that line
90 * is the same no matter which VM context is running. This is achieved
91 * by making the L1 PTEs for those slots above KERNEL_BASE reference
92 * kernel L2 tables.
93 *
94 * The basic layout of the virtual address space thus looks like this:
95 *
96 * 0xffffffff
97 * .
98 * .
99 * .
100 * KERNEL_BASE
101 * --------------------
102 * .
103 * .
104 * .
105 * 0x00000000
106 */
107
108 /*
109 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
110 * A bucket size of 16 provides for 16MB of contiguous virtual address
111 * space per l2_dtable. Most processes will, therefore, require only two or
112 * three of these to map their whole working set.
113 */
114 #define L2_BUCKET_LOG2 4
115 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
116
117 /*
118 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
119 * of l2_dtable structures required to track all possible page descriptors
120 * mappable by an L1 translation table is given by the following constants:
121 */
122 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
123 #define L2_SIZE (1 << L2_LOG2)
124
125 /*
126 * tell MI code that the cache is virtually-indexed.
127 * ARMv6 is physically-tagged but all others are virtually-tagged.
128 */
129 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
130 #define PMAP_CACHE_VIPT
131 #else
132 #define PMAP_CACHE_VIVT
133 #endif
134
135 #ifndef _LOCORE
136
137 struct l1_ttable;
138 struct l2_dtable;
139
140 /*
141 * Track cache/tlb occupancy using the following structure
142 */
143 union pmap_cache_state {
144 struct {
145 union {
146 uint8_t csu_cache_b[2];
147 uint16_t csu_cache;
148 } cs_cache_u;
149
150 union {
151 uint8_t csu_tlb_b[2];
152 uint16_t csu_tlb;
153 } cs_tlb_u;
154 } cs_s;
155 uint32_t cs_all;
156 };
157 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
158 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
159 #define cs_cache cs_s.cs_cache_u.csu_cache
160 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
161 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
162 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
163
164 /*
165 * Assigned to cs_all to force cacheops to work for a particular pmap
166 */
167 #define PMAP_CACHE_STATE_ALL 0xffffffffu
168
169 /*
170 * This structure is used by machine-dependent code to describe
171 * static mappings of devices, created at bootstrap time.
172 */
173 struct pmap_devmap {
174 vaddr_t pd_va; /* virtual address */
175 paddr_t pd_pa; /* physical address */
176 psize_t pd_size; /* size of region */
177 vm_prot_t pd_prot; /* protection code */
178 int pd_cache; /* cache attributes */
179 };
180
181 /*
182 * The pmap structure itself
183 */
184 struct pmap {
185 uint8_t pm_domain;
186 bool pm_remove_all;
187 bool pm_activated;
188 struct l1_ttable *pm_l1;
189 #ifndef ARM_HAS_VBAR
190 pd_entry_t *pm_pl1vec;
191 #endif
192 pd_entry_t pm_l1vec;
193 union pmap_cache_state pm_cstate;
194 struct uvm_object pm_obj;
195 kmutex_t pm_obj_lock;
196 #define pm_lock pm_obj.vmobjlock
197 struct l2_dtable *pm_l2[L2_SIZE];
198 struct pmap_statistics pm_stats;
199 LIST_ENTRY(pmap) pm_list;
200 };
201
202 /*
203 * Physical / virtual address structure. In a number of places (particularly
204 * during bootstrapping) we need to keep track of the physical and virtual
205 * addresses of various pages
206 */
207 typedef struct pv_addr {
208 SLIST_ENTRY(pv_addr) pv_list;
209 paddr_t pv_pa;
210 vaddr_t pv_va;
211 vsize_t pv_size;
212 uint8_t pv_cache;
213 uint8_t pv_prot;
214 } pv_addr_t;
215 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
216
217 extern pv_addrqh_t pmap_freeq;
218 extern pv_addr_t kernelstack;
219 extern pv_addr_t abtstack;
220 extern pv_addr_t fiqstack;
221 extern pv_addr_t irqstack;
222 extern pv_addr_t undstack;
223 extern pv_addr_t idlestack;
224 extern pv_addr_t systempage;
225 extern pv_addr_t kernel_l1pt;
226
227 /*
228 * Determine various modes for PTEs (user vs. kernel, cacheable
229 * vs. non-cacheable).
230 */
231 #define PTE_KERNEL 0
232 #define PTE_USER 1
233 #define PTE_NOCACHE 0
234 #define PTE_CACHE 1
235 #define PTE_PAGETABLE 2
236
237 /*
238 * Flags that indicate attributes of pages or mappings of pages.
239 *
240 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
241 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
242 * pv_entry's for each page. They live in the same "namespace" so
243 * that we can clear multiple attributes at a time.
244 *
245 * Note the "non-cacheable" flag generally means the page has
246 * multiple mappings in a given address space.
247 */
248 #define PVF_MOD 0x01 /* page is modified */
249 #define PVF_REF 0x02 /* page is referenced */
250 #define PVF_WIRED 0x04 /* mapping is wired */
251 #define PVF_WRITE 0x08 /* mapping is writable */
252 #define PVF_EXEC 0x10 /* mapping is executable */
253 #ifdef PMAP_CACHE_VIVT
254 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
255 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
256 #define PVF_NC (PVF_UNC|PVF_KNC)
257 #endif
258 #ifdef PMAP_CACHE_VIPT
259 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
260 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
261 #endif
262 #define PVF_COLORED 0x80 /* page has or had a color */
263 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
264 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
265 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
266 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
267 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
268 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
269
270 /*
271 * Commonly referenced structures
272 */
273 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
274 extern int arm_poolpage_vmfreelist;
275
276 /*
277 * Macros that we need to export
278 */
279 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
280 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
281
282 #define pmap_is_modified(pg) \
283 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
284 #define pmap_is_referenced(pg) \
285 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
286 #define pmap_is_page_colored_p(md) \
287 (((md)->pvh_attrs & PVF_COLORED) != 0)
288
289 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
290
291 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
292 u_int arm32_mmap_flags(paddr_t);
293 #define ARM32_MMAP_WRITECOMBINE 0x40000000
294 #define ARM32_MMAP_CACHEABLE 0x20000000
295 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
296
297 /*
298 * Functions that we need to export
299 */
300 void pmap_procwr(struct proc *, vaddr_t, int);
301 void pmap_remove_all(pmap_t);
302 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
303
304 #define PMAP_NEED_PROCWR
305 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
306 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
307
308 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
309 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
310 void pmap_prefer(vaddr_t, vaddr_t *, int);
311 #endif
312
313 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
314
315 /* Functions we use internally. */
316 #ifdef PMAP_STEAL_MEMORY
317 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
318 void pmap_boot_pageadd(pv_addr_t *);
319 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
320 #endif
321 void pmap_bootstrap(vaddr_t, vaddr_t);
322
323 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
324 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
325 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
326 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
327 struct pcb;
328 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
329
330 void pmap_debug(int);
331 void pmap_postinit(void);
332
333 void vector_page_setprot(int);
334
335 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
336 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
337
338 /* Bootstrapping routines. */
339 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
340 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
341 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
342 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
343 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
344 void pmap_devmap_register(const struct pmap_devmap *);
345
346 /*
347 * Special page zero routine for use by the idle loop (no cache cleans).
348 */
349 bool pmap_pageidlezero(paddr_t);
350 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
351
352 /*
353 * used by dumpsys to record the PA of the L1 table
354 */
355 uint32_t pmap_kernel_L1_addr(void);
356 /*
357 * The current top of kernel VM
358 */
359 extern vaddr_t pmap_curmaxkvaddr;
360
361 /*
362 * Useful macros and constants
363 */
364
365 /* Virtual address to page table entry */
366 static inline pt_entry_t *
367 vtopte(vaddr_t va)
368 {
369 pd_entry_t *pdep;
370 pt_entry_t *ptep;
371
372 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
373 return (NULL);
374 return (ptep);
375 }
376
377 /*
378 * Virtual address to physical address
379 */
380 static inline paddr_t
381 vtophys(vaddr_t va)
382 {
383 paddr_t pa;
384
385 if (pmap_extract(pmap_kernel(), va, &pa) == false)
386 return (0); /* XXXSCW: Panic? */
387
388 return (pa);
389 }
390
391 /*
392 * The new pmap ensures that page-tables are always mapping Write-Thru.
393 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
394 * on every change.
395 *
396 * Unfortunately, not all CPUs have a write-through cache mode. So we
397 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
398 * and if there is the chance for PTE syncs to be needed, we define
399 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
400 * the code.
401 */
402 extern int pmap_needs_pte_sync;
403 #if defined(_KERNEL_OPT)
404 /*
405 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
406 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
407 * this at compile time.
408 */
409 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
410 #define PMAP_INCLUDE_PTE_SYNC
411 #if (ARM_MMU_V6 > 0)
412 #define PMAP_NEEDS_PTE_SYNC 1
413 #elif (ARM_MMU_SA1 == 0)
414 #define PMAP_NEEDS_PTE_SYNC 0
415 #endif
416 #endif
417 #endif /* _KERNEL_OPT */
418
419 /*
420 * Provide a fallback in case we were not able to determine it at
421 * compile-time.
422 */
423 #ifndef PMAP_NEEDS_PTE_SYNC
424 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
425 #define PMAP_INCLUDE_PTE_SYNC
426 #endif
427
428 static inline void
429 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
430 {
431 if (PMAP_NEEDS_PTE_SYNC)
432 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
433 #if ARM_MMU_V7 > 0
434 __asm("dsb");
435 #endif
436 }
437
438 #define PTE_SYNC(ptep) pmap_ptesync((ptep), 1)
439 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
440
441 #define l1pte_valid(pde) ((pde) != 0)
442 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
443 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
444 && ((pde) & L1_S_V6_SUPER) != 0)
445 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
446 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
447
448 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
449 #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
450 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
451 #define l2pte_minidata(pte) (((pte) & \
452 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
453 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
454
455 static inline void
456 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
457 {
458 KASSERT(*ptep == opte);
459 *ptep = pte;
460 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
461 KASSERT(ptep[k] == opte ? opte + k * L2_S_SIZE : 0);
462 pte += L2_S_SIZE;
463 ptep[k] = pte;
464 }
465 }
466
467 static inline void
468 l2pte_reset(pt_entry_t *ptep)
469 {
470 *ptep = 0;
471 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
472 ptep[k] = 0;
473 }
474 }
475
476 /* L1 and L2 page table macros */
477 #define pmap_pde_v(pde) l1pte_valid(*(pde))
478 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
479 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
480 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
481 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
482
483 #define pmap_pte_v(pte) l2pte_valid(*(pte))
484 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
485
486 /* Size of the kernel part of the L1 page table */
487 #define KERNEL_PD_SIZE \
488 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
489
490 void bzero_page(vaddr_t);
491 void bcopy_page(vaddr_t, vaddr_t);
492
493 #ifdef FPU_VFP
494 void bzero_page_vfp(vaddr_t);
495 void bcopy_page_vfp(vaddr_t, vaddr_t);
496 #endif
497
498 /************************* ARM MMU configuration *****************************/
499
500 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
501 void pmap_copy_page_generic(paddr_t, paddr_t);
502 void pmap_zero_page_generic(paddr_t);
503
504 void pmap_pte_init_generic(void);
505 #if defined(CPU_ARM8)
506 void pmap_pte_init_arm8(void);
507 #endif
508 #if defined(CPU_ARM9)
509 void pmap_pte_init_arm9(void);
510 #endif /* CPU_ARM9 */
511 #if defined(CPU_ARM10)
512 void pmap_pte_init_arm10(void);
513 #endif /* CPU_ARM10 */
514 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
515 void pmap_pte_init_arm11(void);
516 #endif /* CPU_ARM11 */
517 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
518 void pmap_pte_init_arm11mpcore(void);
519 #endif
520 #if ARM_MMU_V7 == 1
521 void pmap_pte_init_armv7(void);
522 #endif /* ARM_MMU_V7 */
523 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
524
525 #if ARM_MMU_SA1 == 1
526 void pmap_pte_init_sa1(void);
527 #endif /* ARM_MMU_SA1 == 1 */
528
529 #if ARM_MMU_XSCALE == 1
530 void pmap_copy_page_xscale(paddr_t, paddr_t);
531 void pmap_zero_page_xscale(paddr_t);
532
533 void pmap_pte_init_xscale(void);
534
535 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
536
537 #define PMAP_UAREA(va) pmap_uarea(va)
538 void pmap_uarea(vaddr_t);
539 #endif /* ARM_MMU_XSCALE == 1 */
540
541 extern pt_entry_t pte_l1_s_cache_mode;
542 extern pt_entry_t pte_l1_s_cache_mask;
543
544 extern pt_entry_t pte_l2_l_cache_mode;
545 extern pt_entry_t pte_l2_l_cache_mask;
546
547 extern pt_entry_t pte_l2_s_cache_mode;
548 extern pt_entry_t pte_l2_s_cache_mask;
549
550 extern pt_entry_t pte_l1_s_cache_mode_pt;
551 extern pt_entry_t pte_l2_l_cache_mode_pt;
552 extern pt_entry_t pte_l2_s_cache_mode_pt;
553
554 extern pt_entry_t pte_l1_s_wc_mode;
555 extern pt_entry_t pte_l2_l_wc_mode;
556 extern pt_entry_t pte_l2_s_wc_mode;
557
558 extern pt_entry_t pte_l1_s_prot_u;
559 extern pt_entry_t pte_l1_s_prot_w;
560 extern pt_entry_t pte_l1_s_prot_ro;
561 extern pt_entry_t pte_l1_s_prot_mask;
562
563 extern pt_entry_t pte_l2_s_prot_u;
564 extern pt_entry_t pte_l2_s_prot_w;
565 extern pt_entry_t pte_l2_s_prot_ro;
566 extern pt_entry_t pte_l2_s_prot_mask;
567
568 extern pt_entry_t pte_l2_l_prot_u;
569 extern pt_entry_t pte_l2_l_prot_w;
570 extern pt_entry_t pte_l2_l_prot_ro;
571 extern pt_entry_t pte_l2_l_prot_mask;
572
573 extern pt_entry_t pte_l1_ss_proto;
574 extern pt_entry_t pte_l1_s_proto;
575 extern pt_entry_t pte_l1_c_proto;
576 extern pt_entry_t pte_l2_s_proto;
577
578 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
579 extern void (*pmap_zero_page_func)(paddr_t);
580
581 #endif /* !_LOCORE */
582
583 /*****************************************************************************/
584
585 /*
586 * Definitions for MMU domains
587 */
588 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
589 #define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */
590
591 /*
592 * These macros define the various bit masks in the PTE.
593 *
594 * We use these macros since we use different bits on different processor
595 * models.
596 */
597 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
598 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
599 #define L1_S_PROT_RO_generic (0)
600 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
601
602 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
603 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
604 #define L1_S_PROT_RO_xscale (0)
605 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
606
607 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
608 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
609 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
610 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
611
612 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
613 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
614 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
615 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
616
617 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
618 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
619 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
620 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
621
622 #define L2_L_PROT_U_generic (L2_AP(AP_U))
623 #define L2_L_PROT_W_generic (L2_AP(AP_W))
624 #define L2_L_PROT_RO_generic (0)
625 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
626
627 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
628 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
629 #define L2_L_PROT_RO_xscale (0)
630 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
631
632 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
633 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
634 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
635 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
636
637 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
638 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
639 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
640 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
641
642 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
643 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
644 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
645 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
646
647 #define L2_S_PROT_U_generic (L2_AP(AP_U))
648 #define L2_S_PROT_W_generic (L2_AP(AP_W))
649 #define L2_S_PROT_RO_generic (0)
650 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
651
652 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
653 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
654 #define L2_S_PROT_RO_xscale (0)
655 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
656
657 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
658 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
659 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
660 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
661
662 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
663 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
664 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
665 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
666
667 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
668 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
669 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
670 #define L2_S_CACHE_MASK_armv6n L2_XS_CACHE_MASK_armv6
671 #ifdef ARMV6_EXTENDED_SMALL_PAGE
672 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
673 #else
674 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
675 #endif
676 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
677
678
679 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
680 #define L1_S_PROTO_xscale (L1_TYPE_S)
681 #define L1_S_PROTO_armv6 (L1_TYPE_S)
682 #define L1_S_PROTO_armv7 (L1_TYPE_S)
683
684 #define L1_SS_PROTO_generic 0
685 #define L1_SS_PROTO_xscale 0
686 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
687 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
688
689 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
690 #define L1_C_PROTO_xscale (L1_TYPE_C)
691 #define L1_C_PROTO_armv6 (L1_TYPE_C)
692 #define L1_C_PROTO_armv7 (L1_TYPE_C)
693
694 #define L2_L_PROTO (L2_TYPE_L)
695
696 #define L2_S_PROTO_generic (L2_TYPE_S)
697 #define L2_S_PROTO_xscale (L2_TYPE_XS)
698 #ifdef ARMV6_EXTENDED_SMALL_PAGE
699 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
700 #else
701 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
702 #endif
703 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
704 #define L2_S_PROTO_armv7 (L2_TYPE_S)
705
706 /*
707 * User-visible names for the ones that vary with MMU class.
708 */
709
710 #if ARM_NMMUS > 1
711 /* More than one MMU class configured; use variables. */
712 #define L1_S_PROT_U pte_l1_s_prot_u
713 #define L1_S_PROT_W pte_l1_s_prot_w
714 #define L1_S_PROT_RO pte_l1_s_prot_ro
715 #define L1_S_PROT_MASK pte_l1_s_prot_mask
716
717 #define L2_S_PROT_U pte_l2_s_prot_u
718 #define L2_S_PROT_W pte_l2_s_prot_w
719 #define L2_S_PROT_RO pte_l2_s_prot_ro
720 #define L2_S_PROT_MASK pte_l2_s_prot_mask
721
722 #define L2_L_PROT_U pte_l2_l_prot_u
723 #define L2_L_PROT_W pte_l2_l_prot_w
724 #define L2_L_PROT_RO pte_l2_l_prot_ro
725 #define L2_L_PROT_MASK pte_l2_l_prot_mask
726
727 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
728 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
729 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
730
731 #define L1_SS_PROTO pte_l1_ss_proto
732 #define L1_S_PROTO pte_l1_s_proto
733 #define L1_C_PROTO pte_l1_c_proto
734 #define L2_S_PROTO pte_l2_s_proto
735
736 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
737 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
738 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
739 #define L1_S_PROT_U L1_S_PROT_U_generic
740 #define L1_S_PROT_W L1_S_PROT_W_generic
741 #define L1_S_PROT_RO L1_S_PROT_RO_generic
742 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
743
744 #define L2_S_PROT_U L2_S_PROT_U_generic
745 #define L2_S_PROT_W L2_S_PROT_W_generic
746 #define L2_S_PROT_RO L2_S_PROT_RO_generic
747 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
748
749 #define L2_L_PROT_U L2_L_PROT_U_generic
750 #define L2_L_PROT_W L2_L_PROT_W_generic
751 #define L2_L_PROT_RO L2_L_PROT_RO_generic
752 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
753
754 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
755 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
756 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
757
758 #define L1_SS_PROTO L1_SS_PROTO_generic
759 #define L1_S_PROTO L1_S_PROTO_generic
760 #define L1_C_PROTO L1_C_PROTO_generic
761 #define L2_S_PROTO L2_S_PROTO_generic
762
763 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
764 #define pmap_zero_page(d) pmap_zero_page_generic((d))
765 #elif ARM_MMU_V6N != 0
766 #define L1_S_PROT_U L1_S_PROT_U_armv6
767 #define L1_S_PROT_W L1_S_PROT_W_armv6
768 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
769 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
770
771 #define L2_S_PROT_U L2_S_PROT_U_armv6n
772 #define L2_S_PROT_W L2_S_PROT_W_armv6n
773 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
774 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
775
776 #define L2_L_PROT_U L2_L_PROT_U_armv6n
777 #define L2_L_PROT_W L2_L_PROT_W_armv6n
778 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
779 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
780
781 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6
782 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6
783 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
784
785 /* These prototypes make writeable mappings, while the other MMU types
786 * make read-only mappings. */
787 #define L1_SS_PROTO L1_SS_PROTO_armv6
788 #define L1_S_PROTO L1_S_PROTO_armv6
789 #define L1_C_PROTO L1_C_PROTO_armv6
790 #define L2_S_PROTO L2_S_PROTO_armv6n
791
792 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
793 #define pmap_zero_page(d) pmap_zero_page_generic((d))
794 #elif ARM_MMU_V6C != 0
795 #define L1_S_PROT_U L1_S_PROT_U_generic
796 #define L1_S_PROT_W L1_S_PROT_W_generic
797 #define L1_S_PROT_RO L1_S_PROT_RO_generic
798 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
799
800 #define L2_S_PROT_U L2_S_PROT_U_generic
801 #define L2_S_PROT_W L2_S_PROT_W_generic
802 #define L2_S_PROT_RO L2_S_PROT_RO_generic
803 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
804
805 #define L2_L_PROT_U L2_L_PROT_U_generic
806 #define L2_L_PROT_W L2_L_PROT_W_generic
807 #define L2_L_PROT_RO L2_L_PROT_RO_generic
808 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
809
810 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
811 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
812 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
813
814 #define L1_SS_PROTO L1_SS_PROTO_generic
815 #define L1_S_PROTO L1_S_PROTO_generic
816 #define L1_C_PROTO L1_C_PROTO_generic
817 #define L2_S_PROTO L2_S_PROTO_generic
818
819 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
820 #define pmap_zero_page(d) pmap_zero_page_generic((d))
821 #elif ARM_MMU_XSCALE == 1
822 #define L1_S_PROT_U L1_S_PROT_U_generic
823 #define L1_S_PROT_W L1_S_PROT_W_generic
824 #define L1_S_PROT_RO L1_S_PROT_RO_generic
825 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
826
827 #define L2_S_PROT_U L2_S_PROT_U_xscale
828 #define L2_S_PROT_W L2_S_PROT_W_xscale
829 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
830 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
831
832 #define L2_L_PROT_U L2_L_PROT_U_generic
833 #define L2_L_PROT_W L2_L_PROT_W_generic
834 #define L2_L_PROT_RO L2_L_PROT_RO_generic
835 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
836
837 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
838 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
839 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
840
841 #define L1_SS_PROTO L1_SS_PROTO_xscale
842 #define L1_S_PROTO L1_S_PROTO_xscale
843 #define L1_C_PROTO L1_C_PROTO_xscale
844 #define L2_S_PROTO L2_S_PROTO_xscale
845
846 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
847 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
848 #elif ARM_MMU_V7 == 1
849 #define L1_S_PROT_U L1_S_PROT_U_armv7
850 #define L1_S_PROT_W L1_S_PROT_W_armv7
851 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
852 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
853
854 #define L2_S_PROT_U L2_S_PROT_U_armv7
855 #define L2_S_PROT_W L2_S_PROT_W_armv7
856 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
857 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
858
859 #define L2_L_PROT_U L2_L_PROT_U_armv7
860 #define L2_L_PROT_W L2_L_PROT_W_armv7
861 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
862 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
863
864 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
865 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
866 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
867
868 /* These prototypes make writeable mappings, while the other MMU types
869 * make read-only mappings. */
870 #define L1_SS_PROTO L1_SS_PROTO_armv7
871 #define L1_S_PROTO L1_S_PROTO_armv7
872 #define L1_C_PROTO L1_C_PROTO_armv7
873 #define L2_S_PROTO L2_S_PROTO_armv7
874
875 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
876 #define pmap_zero_page(d) pmap_zero_page_generic((d))
877 #endif /* ARM_NMMUS > 1 */
878
879 /*
880 * Macros to set and query the write permission on page descriptors.
881 */
882 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
883 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
884 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
885 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
886
887 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
888 (L2_S_PROT_RO == 0 || \
889 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
890
891 /*
892 * These macros return various bits based on kernel/user and protection.
893 * Note that the compiler will usually fold these at compile time.
894 */
895 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
896 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
897
898 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
899 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
900
901 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
902 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
903
904 /*
905 * Macros to test if a mapping is mappable with an L1 SuperSection,
906 * L1 Section, or an L2 Large Page mapping.
907 */
908 #define L1_SS_MAPPABLE_P(va, pa, size) \
909 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
910
911 #define L1_S_MAPPABLE_P(va, pa, size) \
912 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
913
914 #define L2_L_MAPPABLE_P(va, pa, size) \
915 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
916
917 #ifndef _LOCORE
918 /*
919 * Hooks for the pool allocator.
920 */
921 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
922 extern paddr_t physical_start, physical_end;
923 #ifdef PMAP_NEED_ALLOC_POOLPAGE
924 struct vm_page *arm_pmap_alloc_poolpage(int);
925 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
926 #endif
927 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
928 #define PMAP_MAP_POOLPAGE(pa) \
929 ((vaddr_t)((paddr_t)(pa) - physical_start + KERNEL_BASE))
930 #define PMAP_UNMAP_POOLPAGE(va) \
931 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + physical_start))
932 #endif
933
934 /*
935 * pmap-specific data store in the vm_page structure.
936 */
937 #define __HAVE_VM_PAGE_MD
938 struct vm_page_md {
939 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
940 int pvh_attrs; /* page attributes */
941 u_int uro_mappings;
942 u_int urw_mappings;
943 union {
944 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
945 u_int i_mappings;
946 } k_u;
947 #define kro_mappings k_u.s_mappings[0]
948 #define krw_mappings k_u.s_mappings[1]
949 #define k_mappings k_u.i_mappings
950 };
951
952 /*
953 * Set the default color of each page.
954 */
955 #if ARM_MMU_V6 > 0
956 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
957 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
958 #else
959 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
960 (pg)->mdpage.pvh_attrs = 0
961 #endif
962
963 #define VM_MDPAGE_INIT(pg) \
964 do { \
965 SLIST_INIT(&(pg)->mdpage.pvh_list); \
966 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
967 (pg)->mdpage.uro_mappings = 0; \
968 (pg)->mdpage.urw_mappings = 0; \
969 (pg)->mdpage.k_mappings = 0; \
970 } while (/*CONSTCOND*/0)
971
972 #endif /* !_LOCORE */
973
974 #endif /* _KERNEL */
975
976 #endif /* _ARM32_PMAP_H_ */
977