Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.121
      1 /*	$NetBSD: pmap.h,v 1.121 2013/07/03 21:37:35 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #if defined(_KERNEL_OPT)
     77 #include "opt_arm32_pmap.h"
     78 #endif
     79 #include <arm/cpufunc.h>
     80 #include <uvm/uvm_object.h>
     81 #endif
     82 
     83 /*
     84  * a pmap describes a processes' 4GB virtual address space.  this
     85  * virtual address space can be broken up into 4096 1MB regions which
     86  * are described by L1 PTEs in the L1 table.
     87  *
     88  * There is a line drawn at KERNEL_BASE.  Everything below that line
     89  * changes when the VM context is switched.  Everything above that line
     90  * is the same no matter which VM context is running.  This is achieved
     91  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     92  * kernel L2 tables.
     93  *
     94  * The basic layout of the virtual address space thus looks like this:
     95  *
     96  *	0xffffffff
     97  *	.
     98  *	.
     99  *	.
    100  *	KERNEL_BASE
    101  *	--------------------
    102  *	.
    103  *	.
    104  *	.
    105  *	0x00000000
    106  */
    107 
    108 /*
    109  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    110  * A bucket size of 16 provides for 16MB of contiguous virtual address
    111  * space per l2_dtable. Most processes will, therefore, require only two or
    112  * three of these to map their whole working set.
    113  */
    114 #define	L2_BUCKET_LOG2	4
    115 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    116 
    117 /*
    118  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    119  * of l2_dtable structures required to track all possible page descriptors
    120  * mappable by an L1 translation table is given by the following constants:
    121  */
    122 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    123 #define	L2_SIZE		(1 << L2_LOG2)
    124 
    125 /*
    126  * tell MI code that the cache is virtually-indexed.
    127  * ARMv6 is physically-tagged but all others are virtually-tagged.
    128  */
    129 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    130 #define PMAP_CACHE_VIPT
    131 #else
    132 #define PMAP_CACHE_VIVT
    133 #endif
    134 
    135 #ifndef _LOCORE
    136 
    137 struct l1_ttable;
    138 struct l2_dtable;
    139 
    140 /*
    141  * Track cache/tlb occupancy using the following structure
    142  */
    143 union pmap_cache_state {
    144 	struct {
    145 		union {
    146 			uint8_t csu_cache_b[2];
    147 			uint16_t csu_cache;
    148 		} cs_cache_u;
    149 
    150 		union {
    151 			uint8_t csu_tlb_b[2];
    152 			uint16_t csu_tlb;
    153 		} cs_tlb_u;
    154 	} cs_s;
    155 	uint32_t cs_all;
    156 };
    157 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    158 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    159 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    160 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    161 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    162 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    163 
    164 /*
    165  * Assigned to cs_all to force cacheops to work for a particular pmap
    166  */
    167 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    168 
    169 /*
    170  * This structure is used by machine-dependent code to describe
    171  * static mappings of devices, created at bootstrap time.
    172  */
    173 struct pmap_devmap {
    174 	vaddr_t		pd_va;		/* virtual address */
    175 	paddr_t		pd_pa;		/* physical address */
    176 	psize_t		pd_size;	/* size of region */
    177 	vm_prot_t	pd_prot;	/* protection code */
    178 	int		pd_cache;	/* cache attributes */
    179 };
    180 
    181 /*
    182  * The pmap structure itself
    183  */
    184 struct pmap {
    185 	uint8_t			pm_domain;
    186 	bool			pm_remove_all;
    187 	bool			pm_activated;
    188 	struct l1_ttable	*pm_l1;
    189 #ifndef ARM_HAS_VBAR
    190 	pd_entry_t		*pm_pl1vec;
    191 #endif
    192 	pd_entry_t		pm_l1vec;
    193 	union pmap_cache_state	pm_cstate;
    194 	struct uvm_object	pm_obj;
    195 	kmutex_t		pm_obj_lock;
    196 #define	pm_lock pm_obj.vmobjlock
    197 	struct l2_dtable	*pm_l2[L2_SIZE];
    198 	struct pmap_statistics	pm_stats;
    199 	LIST_ENTRY(pmap)	pm_list;
    200 };
    201 
    202 /*
    203  * Physical / virtual address structure. In a number of places (particularly
    204  * during bootstrapping) we need to keep track of the physical and virtual
    205  * addresses of various pages
    206  */
    207 typedef struct pv_addr {
    208 	SLIST_ENTRY(pv_addr) pv_list;
    209 	paddr_t pv_pa;
    210 	vaddr_t pv_va;
    211 	vsize_t pv_size;
    212 	uint8_t pv_cache;
    213 	uint8_t pv_prot;
    214 } pv_addr_t;
    215 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
    216 
    217 extern pv_addrqh_t pmap_freeq;
    218 extern pv_addr_t kernelstack;
    219 extern pv_addr_t abtstack;
    220 extern pv_addr_t fiqstack;
    221 extern pv_addr_t irqstack;
    222 extern pv_addr_t undstack;
    223 extern pv_addr_t idlestack;
    224 extern pv_addr_t systempage;
    225 extern pv_addr_t kernel_l1pt;
    226 
    227 /*
    228  * Determine various modes for PTEs (user vs. kernel, cacheable
    229  * vs. non-cacheable).
    230  */
    231 #define	PTE_KERNEL	0
    232 #define	PTE_USER	1
    233 #define	PTE_NOCACHE	0
    234 #define	PTE_CACHE	1
    235 #define	PTE_PAGETABLE	2
    236 
    237 /*
    238  * Flags that indicate attributes of pages or mappings of pages.
    239  *
    240  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    241  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    242  * pv_entry's for each page.  They live in the same "namespace" so
    243  * that we can clear multiple attributes at a time.
    244  *
    245  * Note the "non-cacheable" flag generally means the page has
    246  * multiple mappings in a given address space.
    247  */
    248 #define	PVF_MOD		0x01		/* page is modified */
    249 #define	PVF_REF		0x02		/* page is referenced */
    250 #define	PVF_WIRED	0x04		/* mapping is wired */
    251 #define	PVF_WRITE	0x08		/* mapping is writable */
    252 #define	PVF_EXEC	0x10		/* mapping is executable */
    253 #ifdef PMAP_CACHE_VIVT
    254 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    255 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    256 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    257 #endif
    258 #ifdef PMAP_CACHE_VIPT
    259 #define	PVF_NC		0x20		/* mapping is 'kernel' non-cacheable */
    260 #define	PVF_MULTCLR	0x40		/* mapping is multi-colored */
    261 #endif
    262 #define	PVF_COLORED	0x80		/* page has or had a color */
    263 #define	PVF_KENTRY	0x0100		/* page entered via pmap_kenter_pa */
    264 #define	PVF_KMPAGE	0x0200		/* page is used for kmem */
    265 #define	PVF_DIRTY	0x0400		/* page may have dirty cache lines */
    266 #define	PVF_KMOD	0x0800		/* unmanaged page is modified  */
    267 #define	PVF_KWRITE	(PVF_KENTRY|PVF_WRITE)
    268 #define	PVF_DMOD	(PVF_MOD|PVF_KMOD|PVF_KMPAGE)
    269 
    270 /*
    271  * Commonly referenced structures
    272  */
    273 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    274 extern int		arm_poolpage_vmfreelist;
    275 
    276 /*
    277  * Macros that we need to export
    278  */
    279 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    280 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    281 
    282 #define	pmap_is_modified(pg)	\
    283 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    284 #define	pmap_is_referenced(pg)	\
    285 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    286 #define	pmap_is_page_colored_p(md)	\
    287 	(((md)->pvh_attrs & PVF_COLORED) != 0)
    288 
    289 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    290 
    291 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    292 u_int arm32_mmap_flags(paddr_t);
    293 #define ARM32_MMAP_WRITECOMBINE	0x40000000
    294 #define ARM32_MMAP_CACHEABLE		0x20000000
    295 #define pmap_mmap_flags(ppn)			arm32_mmap_flags(ppn)
    296 
    297 /*
    298  * Functions that we need to export
    299  */
    300 void	pmap_procwr(struct proc *, vaddr_t, int);
    301 void	pmap_remove_all(pmap_t);
    302 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
    303 
    304 #define	PMAP_NEED_PROCWR
    305 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    306 #define	PMAP_ENABLE_PMAP_KMPAGE	/* enable the PMAP_KMPAGE flag */
    307 
    308 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    309 #define	PMAP_PREFER(hint, vap, sz, td)	pmap_prefer((hint), (vap), (td))
    310 void	pmap_prefer(vaddr_t, vaddr_t *, int);
    311 #endif
    312 
    313 void	pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
    314 
    315 /* Functions we use internally. */
    316 #ifdef PMAP_STEAL_MEMORY
    317 void	pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
    318 void	pmap_boot_pageadd(pv_addr_t *);
    319 vaddr_t	pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    320 #endif
    321 void	pmap_bootstrap(vaddr_t, vaddr_t);
    322 
    323 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
    324 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    325 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    326 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    327 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    328 
    329 void	pmap_debug(int);
    330 void	pmap_postinit(void);
    331 
    332 void	vector_page_setprot(int);
    333 
    334 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    335 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    336 
    337 /* Bootstrapping routines. */
    338 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    339 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    340 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    341 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    342 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    343 void	pmap_devmap_register(const struct pmap_devmap *);
    344 
    345 /*
    346  * Special page zero routine for use by the idle loop (no cache cleans).
    347  */
    348 bool	pmap_pageidlezero(paddr_t);
    349 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    350 
    351 /*
    352  * used by dumpsys to record the PA of the L1 table
    353  */
    354 uint32_t pmap_kernel_L1_addr(void);
    355 /*
    356  * The current top of kernel VM
    357  */
    358 extern vaddr_t	pmap_curmaxkvaddr;
    359 
    360 /*
    361  * Useful macros and constants
    362  */
    363 
    364 /* Virtual address to page table entry */
    365 static inline pt_entry_t *
    366 vtopte(vaddr_t va)
    367 {
    368 	pd_entry_t *pdep;
    369 	pt_entry_t *ptep;
    370 
    371 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
    372 		return (NULL);
    373 	return (ptep);
    374 }
    375 
    376 /*
    377  * Virtual address to physical address
    378  */
    379 static inline paddr_t
    380 vtophys(vaddr_t va)
    381 {
    382 	paddr_t pa;
    383 
    384 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
    385 		return (0);	/* XXXSCW: Panic? */
    386 
    387 	return (pa);
    388 }
    389 
    390 /*
    391  * The new pmap ensures that page-tables are always mapping Write-Thru.
    392  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    393  * on every change.
    394  *
    395  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    396  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    397  * and if there is the chance for PTE syncs to be needed, we define
    398  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    399  * the code.
    400  */
    401 extern int pmap_needs_pte_sync;
    402 #if defined(_KERNEL_OPT)
    403 /*
    404  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    405  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    406  * this at compile time.
    407  */
    408 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
    409 #define	PMAP_INCLUDE_PTE_SYNC
    410 #if (ARM_MMU_V6 > 0)
    411 #define	PMAP_NEEDS_PTE_SYNC	1
    412 #elif (ARM_MMU_SA1 == 0)
    413 #define	PMAP_NEEDS_PTE_SYNC	0
    414 #endif
    415 #endif
    416 #endif /* _KERNEL_OPT */
    417 
    418 /*
    419  * Provide a fallback in case we were not able to determine it at
    420  * compile-time.
    421  */
    422 #ifndef PMAP_NEEDS_PTE_SYNC
    423 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    424 #define	PMAP_INCLUDE_PTE_SYNC
    425 #endif
    426 
    427 static inline void
    428 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
    429 {
    430 	if (PMAP_NEEDS_PTE_SYNC)
    431 		cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
    432 #if ARM_MMU_V7 > 0
    433 	__asm("dsb");
    434 #endif
    435 }
    436 
    437 #define	PTE_SYNC(ptep)			pmap_ptesync((ptep), 1)
    438 #define	PTE_SYNC_RANGE(ptep, cnt)	pmap_ptesync((ptep), (cnt))
    439 
    440 #define	l1pte_valid(pde)	((pde) != 0)
    441 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    442 #define	l1pte_supersection_p(pde) (l1pte_section_p(pde)	\
    443 				&& ((pde) & L1_S_V6_SUPER) != 0)
    444 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    445 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    446 
    447 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    448 #define	l2pte_valid(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
    449 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    450 #define l2pte_minidata(pte)	(((pte) & \
    451 				 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
    452 				 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
    453 
    454 static inline void
    455 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
    456 {
    457 	KASSERT(*ptep == opte);
    458 	*ptep = pte;
    459 	for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
    460 		KASSERT(ptep[k] == opte ? opte + k * L2_S_SIZE : 0);
    461 		pte += L2_S_SIZE;
    462 		ptep[k] = pte;
    463 	}
    464 }
    465 
    466 static inline void
    467 l2pte_reset(pt_entry_t *ptep)
    468 {
    469 	*ptep = 0;
    470 	for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
    471 		ptep[k] = 0;
    472 	}
    473 }
    474 
    475 /* L1 and L2 page table macros */
    476 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    477 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    478 #define pmap_pde_supersection(pde)	l1pte_supersection_p(*(pde))
    479 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    480 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    481 
    482 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    483 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    484 
    485 /* Size of the kernel part of the L1 page table */
    486 #define KERNEL_PD_SIZE	\
    487 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    488 
    489 void	bzero_page(vaddr_t);
    490 void	bcopy_page(vaddr_t, vaddr_t);
    491 
    492 #ifdef FPU_VFP
    493 void	bzero_page_vfp(vaddr_t);
    494 void	bcopy_page_vfp(vaddr_t, vaddr_t);
    495 #endif
    496 
    497 /************************* ARM MMU configuration *****************************/
    498 
    499 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
    500 void	pmap_copy_page_generic(paddr_t, paddr_t);
    501 void	pmap_zero_page_generic(paddr_t);
    502 
    503 void	pmap_pte_init_generic(void);
    504 #if defined(CPU_ARM8)
    505 void	pmap_pte_init_arm8(void);
    506 #endif
    507 #if defined(CPU_ARM9)
    508 void	pmap_pte_init_arm9(void);
    509 #endif /* CPU_ARM9 */
    510 #if defined(CPU_ARM10)
    511 void	pmap_pte_init_arm10(void);
    512 #endif /* CPU_ARM10 */
    513 #if defined(CPU_ARM11)	/* ARM_MMU_V6 */
    514 void	pmap_pte_init_arm11(void);
    515 #endif /* CPU_ARM11 */
    516 #if defined(CPU_ARM11MPCORE)	/* ARM_MMU_V6 */
    517 void	pmap_pte_init_arm11mpcore(void);
    518 #endif
    519 #if ARM_MMU_V7 == 1
    520 void	pmap_pte_init_armv7(void);
    521 #endif /* ARM_MMU_V7 */
    522 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    523 
    524 #if ARM_MMU_SA1 == 1
    525 void	pmap_pte_init_sa1(void);
    526 #endif /* ARM_MMU_SA1 == 1 */
    527 
    528 #if ARM_MMU_XSCALE == 1
    529 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    530 void	pmap_zero_page_xscale(paddr_t);
    531 
    532 void	pmap_pte_init_xscale(void);
    533 
    534 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    535 
    536 #define	PMAP_UAREA(va)		pmap_uarea(va)
    537 void	pmap_uarea(vaddr_t);
    538 #endif /* ARM_MMU_XSCALE == 1 */
    539 
    540 extern pt_entry_t		pte_l1_s_cache_mode;
    541 extern pt_entry_t		pte_l1_s_cache_mask;
    542 
    543 extern pt_entry_t		pte_l2_l_cache_mode;
    544 extern pt_entry_t		pte_l2_l_cache_mask;
    545 
    546 extern pt_entry_t		pte_l2_s_cache_mode;
    547 extern pt_entry_t		pte_l2_s_cache_mask;
    548 
    549 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    550 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    551 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    552 
    553 extern pt_entry_t		pte_l1_s_wc_mode;
    554 extern pt_entry_t		pte_l2_l_wc_mode;
    555 extern pt_entry_t		pte_l2_s_wc_mode;
    556 
    557 extern pt_entry_t		pte_l1_s_prot_u;
    558 extern pt_entry_t		pte_l1_s_prot_w;
    559 extern pt_entry_t		pte_l1_s_prot_ro;
    560 extern pt_entry_t		pte_l1_s_prot_mask;
    561 
    562 extern pt_entry_t		pte_l2_s_prot_u;
    563 extern pt_entry_t		pte_l2_s_prot_w;
    564 extern pt_entry_t		pte_l2_s_prot_ro;
    565 extern pt_entry_t		pte_l2_s_prot_mask;
    566 
    567 extern pt_entry_t		pte_l2_l_prot_u;
    568 extern pt_entry_t		pte_l2_l_prot_w;
    569 extern pt_entry_t		pte_l2_l_prot_ro;
    570 extern pt_entry_t		pte_l2_l_prot_mask;
    571 
    572 extern pt_entry_t		pte_l1_ss_proto;
    573 extern pt_entry_t		pte_l1_s_proto;
    574 extern pt_entry_t		pte_l1_c_proto;
    575 extern pt_entry_t		pte_l2_s_proto;
    576 
    577 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    578 extern void (*pmap_zero_page_func)(paddr_t);
    579 
    580 #endif /* !_LOCORE */
    581 
    582 /*****************************************************************************/
    583 
    584 /*
    585  * Definitions for MMU domains
    586  */
    587 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
    588 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
    589 
    590 /*
    591  * These macros define the various bit masks in the PTE.
    592  *
    593  * We use these macros since we use different bits on different processor
    594  * models.
    595  */
    596 #define	L1_S_PROT_U_generic	(L1_S_AP(AP_U))
    597 #define	L1_S_PROT_W_generic	(L1_S_AP(AP_W))
    598 #define	L1_S_PROT_RO_generic	(0)
    599 #define	L1_S_PROT_MASK_generic	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    600 
    601 #define	L1_S_PROT_U_xscale	(L1_S_AP(AP_U))
    602 #define	L1_S_PROT_W_xscale	(L1_S_AP(AP_W))
    603 #define	L1_S_PROT_RO_xscale	(0)
    604 #define	L1_S_PROT_MASK_xscale	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    605 
    606 #define	L1_S_PROT_U_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    607 #define	L1_S_PROT_W_armv6	(L1_S_AP(AP_W))
    608 #define	L1_S_PROT_RO_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    609 #define	L1_S_PROT_MASK_armv6	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    610 
    611 #define	L1_S_PROT_U_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    612 #define	L1_S_PROT_W_armv7	(L1_S_AP(AP_W))
    613 #define	L1_S_PROT_RO_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    614 #define	L1_S_PROT_MASK_armv7	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    615 
    616 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    617 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
    618 #define	L1_S_CACHE_MASK_armv6	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
    619 #define	L1_S_CACHE_MASK_armv7	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    620 
    621 #define	L2_L_PROT_U_generic	(L2_AP(AP_U))
    622 #define	L2_L_PROT_W_generic	(L2_AP(AP_W))
    623 #define	L2_L_PROT_RO_generic	(0)
    624 #define	L2_L_PROT_MASK_generic	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    625 
    626 #define	L2_L_PROT_U_xscale	(L2_AP(AP_U))
    627 #define	L2_L_PROT_W_xscale	(L2_AP(AP_W))
    628 #define	L2_L_PROT_RO_xscale	(0)
    629 #define	L2_L_PROT_MASK_xscale	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    630 
    631 #define	L2_L_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    632 #define	L2_L_PROT_W_armv6n	(L2_AP0(AP_W))
    633 #define	L2_L_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    634 #define	L2_L_PROT_MASK_armv6n	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    635 
    636 #define	L2_L_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    637 #define	L2_L_PROT_W_armv7	(L2_AP0(AP_W))
    638 #define	L2_L_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    639 #define	L2_L_PROT_MASK_armv7	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    640 
    641 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    642 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
    643 #define	L2_L_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
    644 #define	L2_L_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    645 
    646 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    647 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    648 #define	L2_S_PROT_RO_generic	(0)
    649 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    650 
    651 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    652 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    653 #define	L2_S_PROT_RO_xscale	(0)
    654 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    655 
    656 #define	L2_S_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    657 #define	L2_S_PROT_W_armv6n	(L2_AP0(AP_W))
    658 #define	L2_S_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    659 #define	L2_S_PROT_MASK_armv6n	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    660 
    661 #define	L2_S_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    662 #define	L2_S_PROT_W_armv7	(L2_AP0(AP_W))
    663 #define	L2_S_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    664 #define	L2_S_PROT_MASK_armv7	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    665 
    666 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    667 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
    668 #define	L2_XS_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
    669 #define	L2_S_CACHE_MASK_armv6n	L2_XS_CACHE_MASK_armv6
    670 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    671 #define	L2_S_CACHE_MASK_armv6c	L2_XS_CACHE_MASK_armv6
    672 #else
    673 #define	L2_S_CACHE_MASK_armv6c	L2_S_CACHE_MASK_generic
    674 #endif
    675 #define	L2_S_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    676 
    677 
    678 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    679 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    680 #define	L1_S_PROTO_armv6	(L1_TYPE_S)
    681 #define	L1_S_PROTO_armv7	(L1_TYPE_S)
    682 
    683 #define	L1_SS_PROTO_generic	0
    684 #define	L1_SS_PROTO_xscale	0
    685 #define	L1_SS_PROTO_armv6	(L1_TYPE_S | L1_S_V6_SS)
    686 #define	L1_SS_PROTO_armv7	(L1_TYPE_S | L1_S_V6_SS)
    687 
    688 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    689 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    690 #define	L1_C_PROTO_armv6	(L1_TYPE_C)
    691 #define	L1_C_PROTO_armv7	(L1_TYPE_C)
    692 
    693 #define	L2_L_PROTO		(L2_TYPE_L)
    694 
    695 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    696 #define	L2_S_PROTO_xscale	(L2_TYPE_XS)
    697 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    698 #define	L2_S_PROTO_armv6c	(L2_TYPE_XS)    /* XP=0, extended small page */
    699 #else
    700 #define	L2_S_PROTO_armv6c	(L2_TYPE_S)	/* XP=0, subpage APs */
    701 #endif
    702 #define	L2_S_PROTO_armv6n	(L2_TYPE_S)	/* with XP=1 */
    703 #define	L2_S_PROTO_armv7	(L2_TYPE_S)
    704 
    705 /*
    706  * User-visible names for the ones that vary with MMU class.
    707  */
    708 
    709 #if ARM_NMMUS > 1
    710 /* More than one MMU class configured; use variables. */
    711 #define	L1_S_PROT_U		pte_l1_s_prot_u
    712 #define	L1_S_PROT_W		pte_l1_s_prot_w
    713 #define	L1_S_PROT_RO		pte_l1_s_prot_ro
    714 #define	L1_S_PROT_MASK		pte_l1_s_prot_mask
    715 
    716 #define	L2_S_PROT_U		pte_l2_s_prot_u
    717 #define	L2_S_PROT_W		pte_l2_s_prot_w
    718 #define	L2_S_PROT_RO		pte_l2_s_prot_ro
    719 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    720 
    721 #define	L2_L_PROT_U		pte_l2_l_prot_u
    722 #define	L2_L_PROT_W		pte_l2_l_prot_w
    723 #define	L2_L_PROT_RO		pte_l2_l_prot_ro
    724 #define	L2_L_PROT_MASK		pte_l2_l_prot_mask
    725 
    726 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    727 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    728 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    729 
    730 #define	L1_SS_PROTO		pte_l1_ss_proto
    731 #define	L1_S_PROTO		pte_l1_s_proto
    732 #define	L1_C_PROTO		pte_l1_c_proto
    733 #define	L2_S_PROTO		pte_l2_s_proto
    734 
    735 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    736 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    737 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    738 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    739 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    740 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    741 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    742 
    743 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    744 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    745 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    746 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    747 
    748 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    749 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    750 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    751 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    752 
    753 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    754 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    755 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    756 
    757 #define	L1_SS_PROTO		L1_SS_PROTO_generic
    758 #define	L1_S_PROTO		L1_S_PROTO_generic
    759 #define	L1_C_PROTO		L1_C_PROTO_generic
    760 #define	L2_S_PROTO		L2_S_PROTO_generic
    761 
    762 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    763 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    764 #elif ARM_MMU_V6N != 0
    765 #define	L1_S_PROT_U		L1_S_PROT_U_armv6
    766 #define	L1_S_PROT_W		L1_S_PROT_W_armv6
    767 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv6
    768 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv6
    769 
    770 #define	L2_S_PROT_U		L2_S_PROT_U_armv6n
    771 #define	L2_S_PROT_W		L2_S_PROT_W_armv6n
    772 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv6n
    773 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv6n
    774 
    775 #define	L2_L_PROT_U		L2_L_PROT_U_armv6n
    776 #define	L2_L_PROT_W		L2_L_PROT_W_armv6n
    777 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv6n
    778 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv6n
    779 
    780 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv6
    781 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv6
    782 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv6n
    783 
    784 /* These prototypes make writeable mappings, while the other MMU types
    785  * make read-only mappings. */
    786 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
    787 #define	L1_S_PROTO		L1_S_PROTO_armv6
    788 #define	L1_C_PROTO		L1_C_PROTO_armv6
    789 #define	L2_S_PROTO		L2_S_PROTO_armv6n
    790 
    791 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    792 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    793 #elif ARM_MMU_V6C != 0
    794 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    795 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    796 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    797 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    798 
    799 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    800 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    801 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    802 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    803 
    804 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    805 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    806 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    807 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    808 
    809 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    810 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    811 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    812 
    813 #define	L1_SS_PROTO		L1_SS_PROTO_generic
    814 #define	L1_S_PROTO		L1_S_PROTO_generic
    815 #define	L1_C_PROTO		L1_C_PROTO_generic
    816 #define	L2_S_PROTO		L2_S_PROTO_generic
    817 
    818 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    819 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    820 #elif ARM_MMU_XSCALE == 1
    821 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    822 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    823 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    824 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    825 
    826 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    827 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    828 #define	L2_S_PROT_RO		L2_S_PROT_RO_xscale
    829 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    830 
    831 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    832 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    833 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    834 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    835 
    836 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    837 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    838 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    839 
    840 #define	L1_SS_PROTO		L1_SS_PROTO_xscale
    841 #define	L1_S_PROTO		L1_S_PROTO_xscale
    842 #define	L1_C_PROTO		L1_C_PROTO_xscale
    843 #define	L2_S_PROTO		L2_S_PROTO_xscale
    844 
    845 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    846 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    847 #elif ARM_MMU_V7 == 1
    848 #define	L1_S_PROT_U		L1_S_PROT_U_armv7
    849 #define	L1_S_PROT_W		L1_S_PROT_W_armv7
    850 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv7
    851 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv7
    852 
    853 #define	L2_S_PROT_U		L2_S_PROT_U_armv7
    854 #define	L2_S_PROT_W		L2_S_PROT_W_armv7
    855 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv7
    856 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv7
    857 
    858 #define	L2_L_PROT_U		L2_L_PROT_U_armv7
    859 #define	L2_L_PROT_W		L2_L_PROT_W_armv7
    860 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv7
    861 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv7
    862 
    863 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv7
    864 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv7
    865 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv7
    866 
    867 /* These prototypes make writeable mappings, while the other MMU types
    868  * make read-only mappings. */
    869 #define	L1_SS_PROTO		L1_SS_PROTO_armv7
    870 #define	L1_S_PROTO		L1_S_PROTO_armv7
    871 #define	L1_C_PROTO		L1_C_PROTO_armv7
    872 #define	L2_S_PROTO		L2_S_PROTO_armv7
    873 
    874 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    875 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    876 #endif /* ARM_NMMUS > 1 */
    877 
    878 /*
    879  * Macros to set and query the write permission on page descriptors.
    880  */
    881 #define l1pte_set_writable(pte)	(((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
    882 #define l1pte_set_readonly(pte)	(((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
    883 #define l2pte_set_writable(pte)	(((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
    884 #define l2pte_set_readonly(pte)	(((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
    885 
    886 #define l2pte_writable_p(pte)	(((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
    887 				 (L2_S_PROT_RO == 0 || \
    888 				  ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
    889 
    890 /*
    891  * These macros return various bits based on kernel/user and protection.
    892  * Note that the compiler will usually fold these at compile time.
    893  */
    894 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    895 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
    896 
    897 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    898 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
    899 
    900 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    901 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
    902 
    903 /*
    904  * Macros to test if a mapping is mappable with an L1 SuperSection,
    905  * L1 Section, or an L2 Large Page mapping.
    906  */
    907 #define	L1_SS_MAPPABLE_P(va, pa, size)					\
    908 	((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
    909 
    910 #define	L1_S_MAPPABLE_P(va, pa, size)					\
    911 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    912 
    913 #define	L2_L_MAPPABLE_P(va, pa, size)					\
    914 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    915 
    916 #ifndef _LOCORE
    917 /*
    918  * Hooks for the pool allocator.
    919  */
    920 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    921 extern paddr_t physical_start, physical_end;
    922 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    923 struct vm_page *arm_pmap_alloc_poolpage(int);
    924 #define	PMAP_ALLOC_POOLPAGE	arm_pmap_alloc_poolpage
    925 #endif
    926 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    927 #define	PMAP_MAP_POOLPAGE(pa) \
    928         ((vaddr_t)((paddr_t)(pa) - physical_start + KERNEL_BASE))
    929 #define PMAP_UNMAP_POOLPAGE(va) \
    930         ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + physical_start))
    931 #endif
    932 
    933 /*
    934  * pmap-specific data store in the vm_page structure.
    935  */
    936 #define	__HAVE_VM_PAGE_MD
    937 struct vm_page_md {
    938 	SLIST_HEAD(,pv_entry) pvh_list;		/* pv_entry list */
    939 	int pvh_attrs;				/* page attributes */
    940 	u_int uro_mappings;
    941 	u_int urw_mappings;
    942 	union {
    943 		u_short s_mappings[2];	/* Assume kernel count <= 65535 */
    944 		u_int i_mappings;
    945 	} k_u;
    946 #define	kro_mappings	k_u.s_mappings[0]
    947 #define	krw_mappings	k_u.s_mappings[1]
    948 #define	k_mappings	k_u.i_mappings
    949 };
    950 
    951 /*
    952  * Set the default color of each page.
    953  */
    954 #if ARM_MMU_V6 > 0
    955 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
    956 	(pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
    957 #else
    958 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
    959 	(pg)->mdpage.pvh_attrs = 0
    960 #endif
    961 
    962 #define	VM_MDPAGE_INIT(pg)						\
    963 do {									\
    964 	SLIST_INIT(&(pg)->mdpage.pvh_list);				\
    965 	VM_MDPAGE_PVH_ATTRS_INIT(pg);					\
    966 	(pg)->mdpage.uro_mappings = 0;					\
    967 	(pg)->mdpage.urw_mappings = 0;					\
    968 	(pg)->mdpage.k_mappings = 0;					\
    969 } while (/*CONSTCOND*/0)
    970 
    971 #endif /* !_LOCORE */
    972 
    973 #endif /* _KERNEL */
    974 
    975 #endif	/* _ARM32_PMAP_H_ */
    976