pmap.h revision 1.129 1 /* $NetBSD: pmap.h,v 1.129 2014/03/31 18:33:21 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #endif
79 #include <arm/cpufunc.h>
80 #include <uvm/uvm_object.h>
81 #endif
82
83 #ifdef ARM_MMU_EXTENDED
84 #define PMAP_TLB_MAX 1
85 #define PMAP_TLB_HWPAGEWALKER 1
86 #if PMAP_TLB_MAX > 1
87 #define PMAP_TLB_NEED_SHOOTDOWN 1
88 #endif
89 #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
90 #define PMAP_TLB_NUM_PIDS 256
91 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
92 #if PMAP_TLB_MAX > 1
93 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
94 #else
95 #define cpu_tlb_info(ci) (&pmap_tlb0_info)
96 #endif
97 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
98 #include <uvm/pmap/tlb.h>
99 #include <uvm/pmap/pmap_tlb.h>
100
101 /*
102 * If we have an EXTENDED MMU and the address space is split evenly between
103 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
104 * user and kernel address spaces.
105 */
106 #if (KERNEL_BASE & 0x80000000) == 0
107 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
108 #endif
109 #endif /* ARM_MMU_EXTENDED */
110
111 /*
112 * a pmap describes a processes' 4GB virtual address space. this
113 * virtual address space can be broken up into 4096 1MB regions which
114 * are described by L1 PTEs in the L1 table.
115 *
116 * There is a line drawn at KERNEL_BASE. Everything below that line
117 * changes when the VM context is switched. Everything above that line
118 * is the same no matter which VM context is running. This is achieved
119 * by making the L1 PTEs for those slots above KERNEL_BASE reference
120 * kernel L2 tables.
121 *
122 * The basic layout of the virtual address space thus looks like this:
123 *
124 * 0xffffffff
125 * .
126 * .
127 * .
128 * KERNEL_BASE
129 * --------------------
130 * .
131 * .
132 * .
133 * 0x00000000
134 */
135
136 /*
137 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
138 * A bucket size of 16 provides for 16MB of contiguous virtual address
139 * space per l2_dtable. Most processes will, therefore, require only two or
140 * three of these to map their whole working set.
141 */
142 #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
143 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
144 #define L2_BUCKET_LOG2 4
145 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
146
147 /*
148 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
149 * of l2_dtable structures required to track all possible page descriptors
150 * mappable by an L1 translation table is given by the following constants:
151 */
152 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
153 #define L2_SIZE (1 << L2_LOG2)
154
155 /*
156 * tell MI code that the cache is virtually-indexed.
157 * ARMv6 is physically-tagged but all others are virtually-tagged.
158 */
159 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
160 #define PMAP_CACHE_VIPT
161 #else
162 #define PMAP_CACHE_VIVT
163 #endif
164
165 #ifndef _LOCORE
166
167 #ifndef PMAP_MMU_EXTENDED
168 struct l1_ttable;
169 struct l2_dtable;
170
171 /*
172 * Track cache/tlb occupancy using the following structure
173 */
174 union pmap_cache_state {
175 struct {
176 union {
177 uint8_t csu_cache_b[2];
178 uint16_t csu_cache;
179 } cs_cache_u;
180
181 union {
182 uint8_t csu_tlb_b[2];
183 uint16_t csu_tlb;
184 } cs_tlb_u;
185 } cs_s;
186 uint32_t cs_all;
187 };
188 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
189 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
190 #define cs_cache cs_s.cs_cache_u.csu_cache
191 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
192 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
193 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
194
195 /*
196 * Assigned to cs_all to force cacheops to work for a particular pmap
197 */
198 #define PMAP_CACHE_STATE_ALL 0xffffffffu
199 #endif /* !ARM_MMU_EXTENDED */
200
201 /*
202 * This structure is used by machine-dependent code to describe
203 * static mappings of devices, created at bootstrap time.
204 */
205 struct pmap_devmap {
206 vaddr_t pd_va; /* virtual address */
207 paddr_t pd_pa; /* physical address */
208 psize_t pd_size; /* size of region */
209 vm_prot_t pd_prot; /* protection code */
210 int pd_cache; /* cache attributes */
211 };
212
213 /*
214 * The pmap structure itself
215 */
216 struct pmap {
217 struct uvm_object pm_obj;
218 kmutex_t pm_obj_lock;
219 #define pm_lock pm_obj.vmobjlock
220 #ifndef ARM_HAS_VBAR
221 pd_entry_t *pm_pl1vec;
222 pd_entry_t pm_l1vec;
223 #endif
224 struct l2_dtable *pm_l2[L2_SIZE];
225 struct pmap_statistics pm_stats;
226 LIST_ENTRY(pmap) pm_list;
227 #ifdef ARM_MMU_EXTENDED
228 pd_entry_t *pm_l1;
229 paddr_t pm_l1_pa;
230 bool pm_remove_all;
231 #ifdef MULTIPROCESSOR
232 kcpuset_t *pm_onproc;
233 kcpuset_t *pm_active;
234 #if PMAP_TLB_MAX > 1
235 u_int pm_shootdown_pending;
236 #endif
237 #endif
238 struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
239 #else
240 struct l1_ttable *pm_l1;
241 union pmap_cache_state pm_cstate;
242 uint8_t pm_domain;
243 bool pm_activated;
244 bool pm_remove_all;
245 #endif
246 };
247
248 struct pmap_kernel {
249 struct pmap kernel_pmap;
250 };
251
252 /*
253 * Physical / virtual address structure. In a number of places (particularly
254 * during bootstrapping) we need to keep track of the physical and virtual
255 * addresses of various pages
256 */
257 typedef struct pv_addr {
258 SLIST_ENTRY(pv_addr) pv_list;
259 paddr_t pv_pa;
260 vaddr_t pv_va;
261 vsize_t pv_size;
262 uint8_t pv_cache;
263 uint8_t pv_prot;
264 } pv_addr_t;
265 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
266
267 extern pv_addrqh_t pmap_freeq;
268 extern pv_addr_t kernelstack;
269 extern pv_addr_t abtstack;
270 extern pv_addr_t fiqstack;
271 extern pv_addr_t irqstack;
272 extern pv_addr_t undstack;
273 extern pv_addr_t idlestack;
274 extern pv_addr_t systempage;
275 extern pv_addr_t kernel_l1pt;
276
277 #ifdef ARM_MMU_EXTENDED
278 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
279 #endif
280
281 /*
282 * Determine various modes for PTEs (user vs. kernel, cacheable
283 * vs. non-cacheable).
284 */
285 #define PTE_KERNEL 0
286 #define PTE_USER 1
287 #define PTE_NOCACHE 0
288 #define PTE_CACHE 1
289 #define PTE_PAGETABLE 2
290
291 /*
292 * Flags that indicate attributes of pages or mappings of pages.
293 *
294 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
295 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
296 * pv_entry's for each page. They live in the same "namespace" so
297 * that we can clear multiple attributes at a time.
298 *
299 * Note the "non-cacheable" flag generally means the page has
300 * multiple mappings in a given address space.
301 */
302 #define PVF_MOD 0x01 /* page is modified */
303 #define PVF_REF 0x02 /* page is referenced */
304 #define PVF_WIRED 0x04 /* mapping is wired */
305 #define PVF_WRITE 0x08 /* mapping is writable */
306 #define PVF_EXEC 0x10 /* mapping is executable */
307 #ifdef PMAP_CACHE_VIVT
308 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
309 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
310 #define PVF_NC (PVF_UNC|PVF_KNC)
311 #endif
312 #ifdef PMAP_CACHE_VIPT
313 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
314 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
315 #endif
316 #define PVF_COLORED 0x80 /* page has or had a color */
317 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
318 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
319 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
320 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
321 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
322 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
323
324 /*
325 * Commonly referenced structures
326 */
327 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
328 extern int arm_poolpage_vmfreelist;
329
330 /*
331 * Macros that we need to export
332 */
333 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
334 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
335
336 #define pmap_is_modified(pg) \
337 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
338 #define pmap_is_referenced(pg) \
339 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
340 #define pmap_is_page_colored_p(md) \
341 (((md)->pvh_attrs & PVF_COLORED) != 0)
342
343 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
344
345 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
346 u_int arm32_mmap_flags(paddr_t);
347 #define ARM32_MMAP_WRITECOMBINE 0x40000000
348 #define ARM32_MMAP_CACHEABLE 0x20000000
349 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
350
351 #define PMAP_PTE 0x10000000 /* kenter_pa */
352
353 /*
354 * Functions that we need to export
355 */
356 void pmap_procwr(struct proc *, vaddr_t, int);
357 void pmap_remove_all(pmap_t);
358 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
359
360 #define PMAP_NEED_PROCWR
361 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
362 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
363
364 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
365 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
366 void pmap_prefer(vaddr_t, vaddr_t *, int);
367 #endif
368
369 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
370
371 /* Functions we use internally. */
372 #ifdef PMAP_STEAL_MEMORY
373 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
374 void pmap_boot_pageadd(pv_addr_t *);
375 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
376 #endif
377 void pmap_bootstrap(vaddr_t, vaddr_t);
378
379 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
380 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
381 int pmap_prefetchabt_fixup(void *);
382 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
383 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
384 struct pcb;
385 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
386
387 void pmap_debug(int);
388 void pmap_postinit(void);
389
390 void vector_page_setprot(int);
391
392 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
393 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
394
395 /* Bootstrapping routines. */
396 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
397 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
398 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
399 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
400 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
401 void pmap_devmap_register(const struct pmap_devmap *);
402
403 /*
404 * Special page zero routine for use by the idle loop (no cache cleans).
405 */
406 bool pmap_pageidlezero(paddr_t);
407 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
408
409 /*
410 * used by dumpsys to record the PA of the L1 table
411 */
412 uint32_t pmap_kernel_L1_addr(void);
413 /*
414 * The current top of kernel VM
415 */
416 extern vaddr_t pmap_curmaxkvaddr;
417
418 /*
419 * Useful macros and constants
420 */
421
422 /* Virtual address to page table entry */
423 static inline pt_entry_t *
424 vtopte(vaddr_t va)
425 {
426 pd_entry_t *pdep;
427 pt_entry_t *ptep;
428
429 KASSERT(trunc_page(va) == va);
430
431 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
432 return (NULL);
433 return (ptep);
434 }
435
436 /*
437 * Virtual address to physical address
438 */
439 static inline paddr_t
440 vtophys(vaddr_t va)
441 {
442 paddr_t pa;
443
444 if (pmap_extract(pmap_kernel(), va, &pa) == false)
445 return (0); /* XXXSCW: Panic? */
446
447 return (pa);
448 }
449
450 /*
451 * The new pmap ensures that page-tables are always mapping Write-Thru.
452 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
453 * on every change.
454 *
455 * Unfortunately, not all CPUs have a write-through cache mode. So we
456 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
457 * and if there is the chance for PTE syncs to be needed, we define
458 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
459 * the code.
460 */
461 extern int pmap_needs_pte_sync;
462 #if defined(_KERNEL_OPT)
463 /*
464 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
465 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
466 * this at compile time.
467 */
468 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
469 #define PMAP_INCLUDE_PTE_SYNC
470 #if (ARM_MMU_V6 > 0)
471 #define PMAP_NEEDS_PTE_SYNC 1
472 #elif (ARM_MMU_SA1 == 0)
473 #define PMAP_NEEDS_PTE_SYNC 0
474 #endif
475 #endif
476 #endif /* _KERNEL_OPT */
477
478 /*
479 * Provide a fallback in case we were not able to determine it at
480 * compile-time.
481 */
482 #ifndef PMAP_NEEDS_PTE_SYNC
483 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
484 #define PMAP_INCLUDE_PTE_SYNC
485 #endif
486
487 static inline void
488 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
489 {
490 if (PMAP_NEEDS_PTE_SYNC)
491 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
492 #if ARM_MMU_V7 > 0
493 __asm("dsb");
494 #endif
495 }
496
497 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
498 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
499 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
500 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
501
502 #define l1pte_valid_p(pde) ((pde) != 0)
503 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
504 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
505 && ((pde) & L1_S_V6_SUPER) != 0)
506 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
507 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
508 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
509 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
510 #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \
511 & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
512
513 static inline void
514 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
515 {
516 *pdep = pde;
517 }
518
519 static inline void
520 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
521 {
522 *pdep = pde;
523 if (l1pte_page_p(pde)) {
524 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
525 for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
526 pde += L2_T_SIZE;
527 pdep[k] = pde;
528 }
529 } else if (l1pte_supersection_p(pde)) {
530 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
531 for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
532 pdep[k] = pde;
533 }
534 }
535 }
536
537 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
538 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
539 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
540 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
541 #define l2pte_minidata_p(pte) (((pte) & \
542 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
543 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
544
545 static inline void
546 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
547 {
548 if (l1pte_lpage_p(pte)) {
549 for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
550 *ptep++ = pte;
551 }
552 } else {
553 for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
554 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
555 *ptep++ = pte;
556 pte += L2_S_SIZE;
557 if (opte)
558 opte += L2_S_SIZE;
559 }
560 }
561 }
562
563 static inline void
564 l2pte_reset(pt_entry_t *ptep)
565 {
566 *ptep = 0;
567 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
568 ptep[k] = 0;
569 }
570 }
571
572 /* L1 and L2 page table macros */
573 #define pmap_pde_v(pde) l1pte_valid(*(pde))
574 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
575 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
576 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
577 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
578
579 #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
580 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
581
582 /* Size of the kernel part of the L1 page table */
583 #define KERNEL_PD_SIZE \
584 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
585
586 void bzero_page(vaddr_t);
587 void bcopy_page(vaddr_t, vaddr_t);
588
589 #ifdef FPU_VFP
590 void bzero_page_vfp(vaddr_t);
591 void bcopy_page_vfp(vaddr_t, vaddr_t);
592 #endif
593
594 /************************* ARM MMU configuration *****************************/
595
596 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
597 void pmap_copy_page_generic(paddr_t, paddr_t);
598 void pmap_zero_page_generic(paddr_t);
599
600 void pmap_pte_init_generic(void);
601 #if defined(CPU_ARM8)
602 void pmap_pte_init_arm8(void);
603 #endif
604 #if defined(CPU_ARM9)
605 void pmap_pte_init_arm9(void);
606 #endif /* CPU_ARM9 */
607 #if defined(CPU_ARM10)
608 void pmap_pte_init_arm10(void);
609 #endif /* CPU_ARM10 */
610 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
611 void pmap_pte_init_arm11(void);
612 #endif /* CPU_ARM11 */
613 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
614 void pmap_pte_init_arm11mpcore(void);
615 #endif
616 #if ARM_MMU_V7 == 1
617 void pmap_pte_init_armv7(void);
618 #endif /* ARM_MMU_V7 */
619 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
620
621 #if ARM_MMU_SA1 == 1
622 void pmap_pte_init_sa1(void);
623 #endif /* ARM_MMU_SA1 == 1 */
624
625 #if ARM_MMU_XSCALE == 1
626 void pmap_copy_page_xscale(paddr_t, paddr_t);
627 void pmap_zero_page_xscale(paddr_t);
628
629 void pmap_pte_init_xscale(void);
630
631 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
632
633 #define PMAP_UAREA(va) pmap_uarea(va)
634 void pmap_uarea(vaddr_t);
635 #endif /* ARM_MMU_XSCALE == 1 */
636
637 extern pt_entry_t pte_l1_s_cache_mode;
638 extern pt_entry_t pte_l1_s_cache_mask;
639
640 extern pt_entry_t pte_l2_l_cache_mode;
641 extern pt_entry_t pte_l2_l_cache_mask;
642
643 extern pt_entry_t pte_l2_s_cache_mode;
644 extern pt_entry_t pte_l2_s_cache_mask;
645
646 extern pt_entry_t pte_l1_s_cache_mode_pt;
647 extern pt_entry_t pte_l2_l_cache_mode_pt;
648 extern pt_entry_t pte_l2_s_cache_mode_pt;
649
650 extern pt_entry_t pte_l1_s_wc_mode;
651 extern pt_entry_t pte_l2_l_wc_mode;
652 extern pt_entry_t pte_l2_s_wc_mode;
653
654 extern pt_entry_t pte_l1_s_prot_u;
655 extern pt_entry_t pte_l1_s_prot_w;
656 extern pt_entry_t pte_l1_s_prot_ro;
657 extern pt_entry_t pte_l1_s_prot_mask;
658
659 extern pt_entry_t pte_l2_s_prot_u;
660 extern pt_entry_t pte_l2_s_prot_w;
661 extern pt_entry_t pte_l2_s_prot_ro;
662 extern pt_entry_t pte_l2_s_prot_mask;
663
664 extern pt_entry_t pte_l2_l_prot_u;
665 extern pt_entry_t pte_l2_l_prot_w;
666 extern pt_entry_t pte_l2_l_prot_ro;
667 extern pt_entry_t pte_l2_l_prot_mask;
668
669 extern pt_entry_t pte_l1_ss_proto;
670 extern pt_entry_t pte_l1_s_proto;
671 extern pt_entry_t pte_l1_c_proto;
672 extern pt_entry_t pte_l2_s_proto;
673
674 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
675 extern void (*pmap_zero_page_func)(paddr_t);
676
677 #endif /* !_LOCORE */
678
679 /*****************************************************************************/
680
681 #define KERNEL_PID 0 /* The kernel uses ASID 0 */
682
683 /*
684 * Definitions for MMU domains
685 */
686 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
687 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
688 #ifdef ARM_MMU_EXTENDED
689 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
690 #endif
691
692 /*
693 * These macros define the various bit masks in the PTE.
694 *
695 * We use these macros since we use different bits on different processor
696 * models.
697 */
698 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
699 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
700 #define L1_S_PROT_RO_generic (0)
701 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
702
703 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
704 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
705 #define L1_S_PROT_RO_xscale (0)
706 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
707
708 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
709 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
710 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
711 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
712
713 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
714 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
715 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
716 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
717
718 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
719 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
720 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
721 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
722
723 #define L2_L_PROT_U_generic (L2_AP(AP_U))
724 #define L2_L_PROT_W_generic (L2_AP(AP_W))
725 #define L2_L_PROT_RO_generic (0)
726 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
727
728 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
729 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
730 #define L2_L_PROT_RO_xscale (0)
731 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
732
733 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
734 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
735 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
736 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
737
738 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
739 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
740 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
741 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
742
743 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
744 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
745 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
746 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
747
748 #define L2_S_PROT_U_generic (L2_AP(AP_U))
749 #define L2_S_PROT_W_generic (L2_AP(AP_W))
750 #define L2_S_PROT_RO_generic (0)
751 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
752
753 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
754 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
755 #define L2_S_PROT_RO_xscale (0)
756 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
757
758 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
759 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
760 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
761 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
762
763 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
764 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
765 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
766 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
767
768 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
769 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
770 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
771 #define L2_S_CACHE_MASK_armv6n L2_XS_CACHE_MASK_armv6
772 #ifdef ARMV6_EXTENDED_SMALL_PAGE
773 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
774 #else
775 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
776 #endif
777 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
778
779
780 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
781 #define L1_S_PROTO_xscale (L1_TYPE_S)
782 #define L1_S_PROTO_armv6 (L1_TYPE_S)
783 #define L1_S_PROTO_armv7 (L1_TYPE_S)
784
785 #define L1_SS_PROTO_generic 0
786 #define L1_SS_PROTO_xscale 0
787 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
788 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
789
790 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
791 #define L1_C_PROTO_xscale (L1_TYPE_C)
792 #define L1_C_PROTO_armv6 (L1_TYPE_C)
793 #define L1_C_PROTO_armv7 (L1_TYPE_C)
794
795 #define L2_L_PROTO (L2_TYPE_L)
796
797 #define L2_S_PROTO_generic (L2_TYPE_S)
798 #define L2_S_PROTO_xscale (L2_TYPE_XS)
799 #ifdef ARMV6_EXTENDED_SMALL_PAGE
800 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
801 #else
802 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
803 #endif
804 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
805 #ifdef ARM_MMU_EXTENDED
806 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
807 #else
808 #define L2_S_PROTO_armv7 (L2_TYPE_S)
809 #endif
810
811 /*
812 * User-visible names for the ones that vary with MMU class.
813 */
814
815 #if ARM_NMMUS > 1
816 /* More than one MMU class configured; use variables. */
817 #define L1_S_PROT_U pte_l1_s_prot_u
818 #define L1_S_PROT_W pte_l1_s_prot_w
819 #define L1_S_PROT_RO pte_l1_s_prot_ro
820 #define L1_S_PROT_MASK pte_l1_s_prot_mask
821
822 #define L2_S_PROT_U pte_l2_s_prot_u
823 #define L2_S_PROT_W pte_l2_s_prot_w
824 #define L2_S_PROT_RO pte_l2_s_prot_ro
825 #define L2_S_PROT_MASK pte_l2_s_prot_mask
826
827 #define L2_L_PROT_U pte_l2_l_prot_u
828 #define L2_L_PROT_W pte_l2_l_prot_w
829 #define L2_L_PROT_RO pte_l2_l_prot_ro
830 #define L2_L_PROT_MASK pte_l2_l_prot_mask
831
832 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
833 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
834 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
835
836 #define L1_SS_PROTO pte_l1_ss_proto
837 #define L1_S_PROTO pte_l1_s_proto
838 #define L1_C_PROTO pte_l1_c_proto
839 #define L2_S_PROTO pte_l2_s_proto
840
841 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
842 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
843 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
844 #define L1_S_PROT_U L1_S_PROT_U_generic
845 #define L1_S_PROT_W L1_S_PROT_W_generic
846 #define L1_S_PROT_RO L1_S_PROT_RO_generic
847 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
848
849 #define L2_S_PROT_U L2_S_PROT_U_generic
850 #define L2_S_PROT_W L2_S_PROT_W_generic
851 #define L2_S_PROT_RO L2_S_PROT_RO_generic
852 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
853
854 #define L2_L_PROT_U L2_L_PROT_U_generic
855 #define L2_L_PROT_W L2_L_PROT_W_generic
856 #define L2_L_PROT_RO L2_L_PROT_RO_generic
857 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
858
859 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
860 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
861 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
862
863 #define L1_SS_PROTO L1_SS_PROTO_generic
864 #define L1_S_PROTO L1_S_PROTO_generic
865 #define L1_C_PROTO L1_C_PROTO_generic
866 #define L2_S_PROTO L2_S_PROTO_generic
867
868 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
869 #define pmap_zero_page(d) pmap_zero_page_generic((d))
870 #elif ARM_MMU_V6N != 0
871 #define L1_S_PROT_U L1_S_PROT_U_armv6
872 #define L1_S_PROT_W L1_S_PROT_W_armv6
873 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
874 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
875
876 #define L2_S_PROT_U L2_S_PROT_U_armv6n
877 #define L2_S_PROT_W L2_S_PROT_W_armv6n
878 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
879 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
880
881 #define L2_L_PROT_U L2_L_PROT_U_armv6n
882 #define L2_L_PROT_W L2_L_PROT_W_armv6n
883 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
884 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
885
886 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6
887 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6
888 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
889
890 /* These prototypes make writeable mappings, while the other MMU types
891 * make read-only mappings. */
892 #define L1_SS_PROTO L1_SS_PROTO_armv6
893 #define L1_S_PROTO L1_S_PROTO_armv6
894 #define L1_C_PROTO L1_C_PROTO_armv6
895 #define L2_S_PROTO L2_S_PROTO_armv6n
896
897 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
898 #define pmap_zero_page(d) pmap_zero_page_generic((d))
899 #elif ARM_MMU_V6C != 0
900 #define L1_S_PROT_U L1_S_PROT_U_generic
901 #define L1_S_PROT_W L1_S_PROT_W_generic
902 #define L1_S_PROT_RO L1_S_PROT_RO_generic
903 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
904
905 #define L2_S_PROT_U L2_S_PROT_U_generic
906 #define L2_S_PROT_W L2_S_PROT_W_generic
907 #define L2_S_PROT_RO L2_S_PROT_RO_generic
908 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
909
910 #define L2_L_PROT_U L2_L_PROT_U_generic
911 #define L2_L_PROT_W L2_L_PROT_W_generic
912 #define L2_L_PROT_RO L2_L_PROT_RO_generic
913 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
914
915 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
916 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
917 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
918
919 #define L1_SS_PROTO L1_SS_PROTO_generic
920 #define L1_S_PROTO L1_S_PROTO_generic
921 #define L1_C_PROTO L1_C_PROTO_generic
922 #define L2_S_PROTO L2_S_PROTO_generic
923
924 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
925 #define pmap_zero_page(d) pmap_zero_page_generic((d))
926 #elif ARM_MMU_XSCALE == 1
927 #define L1_S_PROT_U L1_S_PROT_U_generic
928 #define L1_S_PROT_W L1_S_PROT_W_generic
929 #define L1_S_PROT_RO L1_S_PROT_RO_generic
930 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
931
932 #define L2_S_PROT_U L2_S_PROT_U_xscale
933 #define L2_S_PROT_W L2_S_PROT_W_xscale
934 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
935 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
936
937 #define L2_L_PROT_U L2_L_PROT_U_generic
938 #define L2_L_PROT_W L2_L_PROT_W_generic
939 #define L2_L_PROT_RO L2_L_PROT_RO_generic
940 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
941
942 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
943 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
944 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
945
946 #define L1_SS_PROTO L1_SS_PROTO_xscale
947 #define L1_S_PROTO L1_S_PROTO_xscale
948 #define L1_C_PROTO L1_C_PROTO_xscale
949 #define L2_S_PROTO L2_S_PROTO_xscale
950
951 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
952 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
953 #elif ARM_MMU_V7 == 1
954 #define L1_S_PROT_U L1_S_PROT_U_armv7
955 #define L1_S_PROT_W L1_S_PROT_W_armv7
956 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
957 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
958
959 #define L2_S_PROT_U L2_S_PROT_U_armv7
960 #define L2_S_PROT_W L2_S_PROT_W_armv7
961 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
962 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
963
964 #define L2_L_PROT_U L2_L_PROT_U_armv7
965 #define L2_L_PROT_W L2_L_PROT_W_armv7
966 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
967 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
968
969 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
970 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
971 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
972
973 /* These prototypes make writeable mappings, while the other MMU types
974 * make read-only mappings. */
975 #define L1_SS_PROTO L1_SS_PROTO_armv7
976 #define L1_S_PROTO L1_S_PROTO_armv7
977 #define L1_C_PROTO L1_C_PROTO_armv7
978 #define L2_S_PROTO L2_S_PROTO_armv7
979
980 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
981 #define pmap_zero_page(d) pmap_zero_page_generic((d))
982 #endif /* ARM_NMMUS > 1 */
983
984 /*
985 * Macros to set and query the write permission on page descriptors.
986 */
987 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
988 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
989 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
990 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
991
992 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
993 (L2_S_PROT_RO == 0 || \
994 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
995
996 /*
997 * These macros return various bits based on kernel/user and protection.
998 * Note that the compiler will usually fold these at compile time.
999 */
1000 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
1001 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
1002
1003 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
1004 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
1005
1006 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
1007 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
1008
1009 /*
1010 * Macros to test if a mapping is mappable with an L1 SuperSection,
1011 * L1 Section, or an L2 Large Page mapping.
1012 */
1013 #define L1_SS_MAPPABLE_P(va, pa, size) \
1014 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1015
1016 #define L1_S_MAPPABLE_P(va, pa, size) \
1017 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1018
1019 #define L2_L_MAPPABLE_P(va, pa, size) \
1020 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1021
1022 #ifndef _LOCORE
1023 /*
1024 * Hooks for the pool allocator.
1025 */
1026 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1027 extern paddr_t physical_start, physical_end;
1028 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1029 struct vm_page *arm_pmap_alloc_poolpage(int);
1030 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1031 #endif
1032 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1033 #define PMAP_MAP_POOLPAGE(pa) \
1034 ((vaddr_t)((paddr_t)(pa) - physical_start + KERNEL_BASE))
1035 #define PMAP_UNMAP_POOLPAGE(va) \
1036 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + physical_start))
1037 #endif
1038
1039 /*
1040 * pmap-specific data store in the vm_page structure.
1041 */
1042 #define __HAVE_VM_PAGE_MD
1043 struct vm_page_md {
1044 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1045 int pvh_attrs; /* page attributes */
1046 u_int uro_mappings;
1047 u_int urw_mappings;
1048 union {
1049 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1050 u_int i_mappings;
1051 } k_u;
1052 #define kro_mappings k_u.s_mappings[0]
1053 #define krw_mappings k_u.s_mappings[1]
1054 #define k_mappings k_u.i_mappings
1055 };
1056
1057 /*
1058 * Set the default color of each page.
1059 */
1060 #if ARM_MMU_V6 > 0
1061 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1062 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
1063 #else
1064 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1065 (pg)->mdpage.pvh_attrs = 0
1066 #endif
1067
1068 #define VM_MDPAGE_INIT(pg) \
1069 do { \
1070 SLIST_INIT(&(pg)->mdpage.pvh_list); \
1071 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1072 (pg)->mdpage.uro_mappings = 0; \
1073 (pg)->mdpage.urw_mappings = 0; \
1074 (pg)->mdpage.k_mappings = 0; \
1075 } while (/*CONSTCOND*/0)
1076
1077 #endif /* !_LOCORE */
1078
1079 #endif /* _KERNEL */
1080
1081 #endif /* _ARM32_PMAP_H_ */
1082