pmap.h revision 1.134 1 /* $NetBSD: pmap.h,v 1.134 2014/07/27 21:31:34 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #endif
79 #include <arm/cpufunc.h>
80 #include <uvm/uvm_object.h>
81 #endif
82
83 #ifdef ARM_MMU_EXTENDED
84 #define PMAP_TLB_MAX 1
85 #define PMAP_TLB_HWPAGEWALKER 1
86 #if PMAP_TLB_MAX > 1
87 #define PMAP_NEED_TLB_SHOOTDOWN 1
88 #endif
89 #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
90 #define PMAP_TLB_NUM_PIDS 256
91 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
92 #if PMAP_TLB_MAX > 1
93 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
94 #else
95 #define cpu_tlb_info(ci) (&pmap_tlb0_info)
96 #endif
97 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
98 #include <uvm/pmap/tlb.h>
99 #include <uvm/pmap/pmap_tlb.h>
100
101 /*
102 * If we have an EXTENDED MMU and the address space is split evenly between
103 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
104 * user and kernel address spaces.
105 */
106 #if (KERNEL_BASE & 0x80000000) == 0
107 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
108 #endif
109 #endif /* ARM_MMU_EXTENDED */
110
111 /*
112 * a pmap describes a processes' 4GB virtual address space. this
113 * virtual address space can be broken up into 4096 1MB regions which
114 * are described by L1 PTEs in the L1 table.
115 *
116 * There is a line drawn at KERNEL_BASE. Everything below that line
117 * changes when the VM context is switched. Everything above that line
118 * is the same no matter which VM context is running. This is achieved
119 * by making the L1 PTEs for those slots above KERNEL_BASE reference
120 * kernel L2 tables.
121 *
122 * The basic layout of the virtual address space thus looks like this:
123 *
124 * 0xffffffff
125 * .
126 * .
127 * .
128 * KERNEL_BASE
129 * --------------------
130 * .
131 * .
132 * .
133 * 0x00000000
134 */
135
136 /*
137 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
138 * A bucket size of 16 provides for 16MB of contiguous virtual address
139 * space per l2_dtable. Most processes will, therefore, require only two or
140 * three of these to map their whole working set.
141 */
142 #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
143 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
144 #define L2_BUCKET_LOG2 4
145 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
146
147 /*
148 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
149 * of l2_dtable structures required to track all possible page descriptors
150 * mappable by an L1 translation table is given by the following constants:
151 */
152 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
153 #define L2_SIZE (1 << L2_LOG2)
154
155 /*
156 * tell MI code that the cache is virtually-indexed.
157 * ARMv6 is physically-tagged but all others are virtually-tagged.
158 */
159 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
160 #define PMAP_CACHE_VIPT
161 #else
162 #define PMAP_CACHE_VIVT
163 #endif
164
165 #ifndef _LOCORE
166
167 #ifndef PMAP_MMU_EXTENDED
168 struct l1_ttable;
169 struct l2_dtable;
170
171 /*
172 * Track cache/tlb occupancy using the following structure
173 */
174 union pmap_cache_state {
175 struct {
176 union {
177 uint8_t csu_cache_b[2];
178 uint16_t csu_cache;
179 } cs_cache_u;
180
181 union {
182 uint8_t csu_tlb_b[2];
183 uint16_t csu_tlb;
184 } cs_tlb_u;
185 } cs_s;
186 uint32_t cs_all;
187 };
188 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
189 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
190 #define cs_cache cs_s.cs_cache_u.csu_cache
191 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
192 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
193 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
194
195 /*
196 * Assigned to cs_all to force cacheops to work for a particular pmap
197 */
198 #define PMAP_CACHE_STATE_ALL 0xffffffffu
199 #endif /* !ARM_MMU_EXTENDED */
200
201 /*
202 * This structure is used by machine-dependent code to describe
203 * static mappings of devices, created at bootstrap time.
204 */
205 struct pmap_devmap {
206 vaddr_t pd_va; /* virtual address */
207 paddr_t pd_pa; /* physical address */
208 psize_t pd_size; /* size of region */
209 vm_prot_t pd_prot; /* protection code */
210 int pd_cache; /* cache attributes */
211 };
212
213 /*
214 * The pmap structure itself
215 */
216 struct pmap {
217 struct uvm_object pm_obj;
218 kmutex_t pm_obj_lock;
219 #define pm_lock pm_obj.vmobjlock
220 #ifndef ARM_HAS_VBAR
221 pd_entry_t *pm_pl1vec;
222 pd_entry_t pm_l1vec;
223 #endif
224 struct l2_dtable *pm_l2[L2_SIZE];
225 struct pmap_statistics pm_stats;
226 LIST_ENTRY(pmap) pm_list;
227 #ifdef ARM_MMU_EXTENDED
228 pd_entry_t *pm_l1;
229 paddr_t pm_l1_pa;
230 bool pm_remove_all;
231 #ifdef MULTIPROCESSOR
232 kcpuset_t *pm_onproc;
233 kcpuset_t *pm_active;
234 #if PMAP_TLB_MAX > 1
235 u_int pm_shootdown_pending;
236 #endif
237 #endif
238 struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
239 #else
240 struct l1_ttable *pm_l1;
241 union pmap_cache_state pm_cstate;
242 uint8_t pm_domain;
243 bool pm_activated;
244 bool pm_remove_all;
245 #endif
246 };
247
248 struct pmap_kernel {
249 struct pmap kernel_pmap;
250 };
251
252 /*
253 * Physical / virtual address structure. In a number of places (particularly
254 * during bootstrapping) we need to keep track of the physical and virtual
255 * addresses of various pages
256 */
257 typedef struct pv_addr {
258 SLIST_ENTRY(pv_addr) pv_list;
259 paddr_t pv_pa;
260 vaddr_t pv_va;
261 vsize_t pv_size;
262 uint8_t pv_cache;
263 uint8_t pv_prot;
264 } pv_addr_t;
265 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
266
267 extern pv_addrqh_t pmap_freeq;
268 extern pv_addr_t kernelstack;
269 extern pv_addr_t abtstack;
270 extern pv_addr_t fiqstack;
271 extern pv_addr_t irqstack;
272 extern pv_addr_t undstack;
273 extern pv_addr_t idlestack;
274 extern pv_addr_t systempage;
275 extern pv_addr_t kernel_l1pt;
276
277 #ifdef ARM_MMU_EXTENDED
278 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
279 #endif
280
281 /*
282 * Determine various modes for PTEs (user vs. kernel, cacheable
283 * vs. non-cacheable).
284 */
285 #define PTE_KERNEL 0
286 #define PTE_USER 1
287 #define PTE_NOCACHE 0
288 #define PTE_CACHE 1
289 #define PTE_PAGETABLE 2
290
291 /*
292 * Flags that indicate attributes of pages or mappings of pages.
293 *
294 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
295 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
296 * pv_entry's for each page. They live in the same "namespace" so
297 * that we can clear multiple attributes at a time.
298 *
299 * Note the "non-cacheable" flag generally means the page has
300 * multiple mappings in a given address space.
301 */
302 #define PVF_MOD 0x01 /* page is modified */
303 #define PVF_REF 0x02 /* page is referenced */
304 #define PVF_WIRED 0x04 /* mapping is wired */
305 #define PVF_WRITE 0x08 /* mapping is writable */
306 #define PVF_EXEC 0x10 /* mapping is executable */
307 #ifdef PMAP_CACHE_VIVT
308 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
309 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
310 #define PVF_NC (PVF_UNC|PVF_KNC)
311 #endif
312 #ifdef PMAP_CACHE_VIPT
313 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
314 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
315 #endif
316 #define PVF_COLORED 0x80 /* page has or had a color */
317 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
318 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
319 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
320 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
321 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
322 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
323
324 /*
325 * Commonly referenced structures
326 */
327 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
328 extern int arm_poolpage_vmfreelist;
329
330 /*
331 * Macros that we need to export
332 */
333 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
334 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
335
336 #define pmap_is_modified(pg) \
337 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
338 #define pmap_is_referenced(pg) \
339 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
340 #define pmap_is_page_colored_p(md) \
341 (((md)->pvh_attrs & PVF_COLORED) != 0)
342
343 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
344
345 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
346 u_int arm32_mmap_flags(paddr_t);
347 #define ARM32_MMAP_WRITECOMBINE 0x40000000
348 #define ARM32_MMAP_CACHEABLE 0x20000000
349 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
350
351 #define PMAP_PTE 0x10000000 /* kenter_pa */
352
353 /*
354 * Functions that we need to export
355 */
356 void pmap_procwr(struct proc *, vaddr_t, int);
357 void pmap_remove_all(pmap_t);
358 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
359
360 #define PMAP_NEED_PROCWR
361 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
362 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
363
364 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
365 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
366 void pmap_prefer(vaddr_t, vaddr_t *, int);
367 #endif
368
369 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
370
371 /* Functions we use internally. */
372 #ifdef PMAP_STEAL_MEMORY
373 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
374 void pmap_boot_pageadd(pv_addr_t *);
375 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
376 #endif
377 void pmap_bootstrap(vaddr_t, vaddr_t);
378
379 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
380 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
381 int pmap_prefetchabt_fixup(void *);
382 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
383 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
384 struct pcb;
385 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
386
387 void pmap_debug(int);
388 void pmap_postinit(void);
389
390 void vector_page_setprot(int);
391
392 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
393 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
394
395 /* Bootstrapping routines. */
396 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
397 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
398 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
399 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
400 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
401 void pmap_devmap_register(const struct pmap_devmap *);
402
403 /*
404 * Special page zero routine for use by the idle loop (no cache cleans).
405 */
406 bool pmap_pageidlezero(paddr_t);
407 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
408
409 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
410 /*
411 * For the pmap, this is a more useful way to map a direct mapped page.
412 * It returns either the direct-mapped VA or the VA supplied if it can't
413 * be direct mapped.
414 */
415 vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
416 #endif
417
418 /*
419 * used by dumpsys to record the PA of the L1 table
420 */
421 uint32_t pmap_kernel_L1_addr(void);
422 /*
423 * The current top of kernel VM
424 */
425 extern vaddr_t pmap_curmaxkvaddr;
426
427 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
428 /*
429 * Starting VA of direct mapped memory (usually KERNEL_BASE).
430 */
431 extern vaddr_t pmap_directbase;
432 #endif
433
434 /*
435 * Useful macros and constants
436 */
437
438 /* Virtual address to page table entry */
439 static inline pt_entry_t *
440 vtopte(vaddr_t va)
441 {
442 pd_entry_t *pdep;
443 pt_entry_t *ptep;
444
445 KASSERT(trunc_page(va) == va);
446
447 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
448 return (NULL);
449 return (ptep);
450 }
451
452 /*
453 * Virtual address to physical address
454 */
455 static inline paddr_t
456 vtophys(vaddr_t va)
457 {
458 paddr_t pa;
459
460 if (pmap_extract(pmap_kernel(), va, &pa) == false)
461 return (0); /* XXXSCW: Panic? */
462
463 return (pa);
464 }
465
466 /*
467 * The new pmap ensures that page-tables are always mapping Write-Thru.
468 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
469 * on every change.
470 *
471 * Unfortunately, not all CPUs have a write-through cache mode. So we
472 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
473 * and if there is the chance for PTE syncs to be needed, we define
474 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
475 * the code.
476 */
477 extern int pmap_needs_pte_sync;
478 #if defined(_KERNEL_OPT)
479 /*
480 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
481 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
482 * this at compile time.
483 */
484 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
485 #define PMAP_INCLUDE_PTE_SYNC
486 #if (ARM_MMU_V6 > 0)
487 #define PMAP_NEEDS_PTE_SYNC 1
488 #elif (ARM_MMU_SA1 == 0)
489 #define PMAP_NEEDS_PTE_SYNC 0
490 #endif
491 #endif
492 #endif /* _KERNEL_OPT */
493
494 /*
495 * Provide a fallback in case we were not able to determine it at
496 * compile-time.
497 */
498 #ifndef PMAP_NEEDS_PTE_SYNC
499 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
500 #define PMAP_INCLUDE_PTE_SYNC
501 #endif
502
503 static inline void
504 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
505 {
506 if (PMAP_NEEDS_PTE_SYNC) {
507 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
508 #ifdef SHEEVA_L2_CACHE
509 cpu_sdcache_wb_range((vaddr_t)ptep, -1,
510 cnt * sizeof(pt_entry_t));
511 #endif
512 }
513 #if ARM_MMU_V7 > 0
514 __asm("dsb");
515 #endif
516 }
517
518 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
519 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
520 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
521 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
522
523 #define l1pte_valid_p(pde) ((pde) != 0)
524 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
525 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
526 && ((pde) & L1_S_V6_SUPER) != 0)
527 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
528 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
529 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
530 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
531 #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \
532 & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
533
534 static inline void
535 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
536 {
537 *pdep = pde;
538 }
539
540 static inline void
541 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
542 {
543 *pdep = pde;
544 if (l1pte_page_p(pde)) {
545 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
546 for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
547 pde += L2_T_SIZE;
548 pdep[k] = pde;
549 }
550 } else if (l1pte_supersection_p(pde)) {
551 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
552 for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
553 pdep[k] = pde;
554 }
555 }
556 }
557
558 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
559 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
560 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
561 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
562 #define l2pte_minidata_p(pte) (((pte) & \
563 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
564 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
565
566 static inline void
567 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
568 {
569 if (l1pte_lpage_p(pte)) {
570 for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
571 *ptep++ = pte;
572 }
573 } else {
574 for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
575 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
576 *ptep++ = pte;
577 pte += L2_S_SIZE;
578 if (opte)
579 opte += L2_S_SIZE;
580 }
581 }
582 }
583
584 static inline void
585 l2pte_reset(pt_entry_t *ptep)
586 {
587 *ptep = 0;
588 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
589 ptep[k] = 0;
590 }
591 }
592
593 /* L1 and L2 page table macros */
594 #define pmap_pde_v(pde) l1pte_valid(*(pde))
595 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
596 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
597 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
598 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
599
600 #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
601 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
602
603 /* Size of the kernel part of the L1 page table */
604 #define KERNEL_PD_SIZE \
605 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
606
607 void bzero_page(vaddr_t);
608 void bcopy_page(vaddr_t, vaddr_t);
609
610 #ifdef FPU_VFP
611 void bzero_page_vfp(vaddr_t);
612 void bcopy_page_vfp(vaddr_t, vaddr_t);
613 #endif
614
615 /************************* ARM MMU configuration *****************************/
616
617 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
618 void pmap_copy_page_generic(paddr_t, paddr_t);
619 void pmap_zero_page_generic(paddr_t);
620
621 void pmap_pte_init_generic(void);
622 #if defined(CPU_ARM8)
623 void pmap_pte_init_arm8(void);
624 #endif
625 #if defined(CPU_ARM9)
626 void pmap_pte_init_arm9(void);
627 #endif /* CPU_ARM9 */
628 #if defined(CPU_ARM10)
629 void pmap_pte_init_arm10(void);
630 #endif /* CPU_ARM10 */
631 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
632 void pmap_pte_init_arm11(void);
633 #endif /* CPU_ARM11 */
634 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
635 void pmap_pte_init_arm11mpcore(void);
636 #endif
637 #if ARM_MMU_V7 == 1
638 void pmap_pte_init_armv7(void);
639 #endif /* ARM_MMU_V7 */
640 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
641
642 #if ARM_MMU_SA1 == 1
643 void pmap_pte_init_sa1(void);
644 #endif /* ARM_MMU_SA1 == 1 */
645
646 #if ARM_MMU_XSCALE == 1
647 void pmap_copy_page_xscale(paddr_t, paddr_t);
648 void pmap_zero_page_xscale(paddr_t);
649
650 void pmap_pte_init_xscale(void);
651
652 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
653
654 #define PMAP_UAREA(va) pmap_uarea(va)
655 void pmap_uarea(vaddr_t);
656 #endif /* ARM_MMU_XSCALE == 1 */
657
658 extern pt_entry_t pte_l1_s_cache_mode;
659 extern pt_entry_t pte_l1_s_cache_mask;
660
661 extern pt_entry_t pte_l2_l_cache_mode;
662 extern pt_entry_t pte_l2_l_cache_mask;
663
664 extern pt_entry_t pte_l2_s_cache_mode;
665 extern pt_entry_t pte_l2_s_cache_mask;
666
667 extern pt_entry_t pte_l1_s_cache_mode_pt;
668 extern pt_entry_t pte_l2_l_cache_mode_pt;
669 extern pt_entry_t pte_l2_s_cache_mode_pt;
670
671 extern pt_entry_t pte_l1_s_wc_mode;
672 extern pt_entry_t pte_l2_l_wc_mode;
673 extern pt_entry_t pte_l2_s_wc_mode;
674
675 extern pt_entry_t pte_l1_s_prot_u;
676 extern pt_entry_t pte_l1_s_prot_w;
677 extern pt_entry_t pte_l1_s_prot_ro;
678 extern pt_entry_t pte_l1_s_prot_mask;
679
680 extern pt_entry_t pte_l2_s_prot_u;
681 extern pt_entry_t pte_l2_s_prot_w;
682 extern pt_entry_t pte_l2_s_prot_ro;
683 extern pt_entry_t pte_l2_s_prot_mask;
684
685 extern pt_entry_t pte_l2_l_prot_u;
686 extern pt_entry_t pte_l2_l_prot_w;
687 extern pt_entry_t pte_l2_l_prot_ro;
688 extern pt_entry_t pte_l2_l_prot_mask;
689
690 extern pt_entry_t pte_l1_ss_proto;
691 extern pt_entry_t pte_l1_s_proto;
692 extern pt_entry_t pte_l1_c_proto;
693 extern pt_entry_t pte_l2_s_proto;
694
695 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
696 extern void (*pmap_zero_page_func)(paddr_t);
697
698 #endif /* !_LOCORE */
699
700 /*****************************************************************************/
701
702 #define KERNEL_PID 0 /* The kernel uses ASID 0 */
703
704 /*
705 * Definitions for MMU domains
706 */
707 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
708 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
709 #ifdef ARM_MMU_EXTENDED
710 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
711 #endif
712
713 /*
714 * These macros define the various bit masks in the PTE.
715 *
716 * We use these macros since we use different bits on different processor
717 * models.
718 */
719 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
720 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
721 #define L1_S_PROT_RO_generic (0)
722 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
723
724 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
725 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
726 #define L1_S_PROT_RO_xscale (0)
727 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
728
729 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
730 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
731 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
732 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
733
734 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
735 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
736 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
737 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
738
739 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
740 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
741 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
742 #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
743 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
744
745 #define L2_L_PROT_U_generic (L2_AP(AP_U))
746 #define L2_L_PROT_W_generic (L2_AP(AP_W))
747 #define L2_L_PROT_RO_generic (0)
748 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
749
750 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
751 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
752 #define L2_L_PROT_RO_xscale (0)
753 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
754
755 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
756 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
757 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
758 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
759
760 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
761 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
762 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
763 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
764
765 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
766 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
767 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
768 #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
769 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
770
771 #define L2_S_PROT_U_generic (L2_AP(AP_U))
772 #define L2_S_PROT_W_generic (L2_AP(AP_W))
773 #define L2_S_PROT_RO_generic (0)
774 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
775
776 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
777 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
778 #define L2_S_PROT_RO_xscale (0)
779 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
780
781 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
782 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
783 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
784 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
785
786 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
787 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
788 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
789 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
790
791 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
792 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
793 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
794 #define L2_S_CACHE_MASK_armv6n L2_XS_CACHE_MASK_armv6
795 #ifdef ARMV6_EXTENDED_SMALL_PAGE
796 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
797 #else
798 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
799 #endif
800 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
801
802
803 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
804 #define L1_S_PROTO_xscale (L1_TYPE_S)
805 #define L1_S_PROTO_armv6 (L1_TYPE_S)
806 #define L1_S_PROTO_armv7 (L1_TYPE_S)
807
808 #define L1_SS_PROTO_generic 0
809 #define L1_SS_PROTO_xscale 0
810 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
811 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
812
813 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
814 #define L1_C_PROTO_xscale (L1_TYPE_C)
815 #define L1_C_PROTO_armv6 (L1_TYPE_C)
816 #define L1_C_PROTO_armv7 (L1_TYPE_C)
817
818 #define L2_L_PROTO (L2_TYPE_L)
819
820 #define L2_S_PROTO_generic (L2_TYPE_S)
821 #define L2_S_PROTO_xscale (L2_TYPE_XS)
822 #ifdef ARMV6_EXTENDED_SMALL_PAGE
823 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
824 #else
825 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
826 #endif
827 #ifdef ARM_MMU_EXTENDED
828 #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
829 #else
830 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
831 #endif
832 #ifdef ARM_MMU_EXTENDED
833 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
834 #else
835 #define L2_S_PROTO_armv7 (L2_TYPE_S)
836 #endif
837
838 /*
839 * User-visible names for the ones that vary with MMU class.
840 */
841
842 #if ARM_NMMUS > 1
843 /* More than one MMU class configured; use variables. */
844 #define L1_S_PROT_U pte_l1_s_prot_u
845 #define L1_S_PROT_W pte_l1_s_prot_w
846 #define L1_S_PROT_RO pte_l1_s_prot_ro
847 #define L1_S_PROT_MASK pte_l1_s_prot_mask
848
849 #define L2_S_PROT_U pte_l2_s_prot_u
850 #define L2_S_PROT_W pte_l2_s_prot_w
851 #define L2_S_PROT_RO pte_l2_s_prot_ro
852 #define L2_S_PROT_MASK pte_l2_s_prot_mask
853
854 #define L2_L_PROT_U pte_l2_l_prot_u
855 #define L2_L_PROT_W pte_l2_l_prot_w
856 #define L2_L_PROT_RO pte_l2_l_prot_ro
857 #define L2_L_PROT_MASK pte_l2_l_prot_mask
858
859 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
860 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
861 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
862
863 #define L1_SS_PROTO pte_l1_ss_proto
864 #define L1_S_PROTO pte_l1_s_proto
865 #define L1_C_PROTO pte_l1_c_proto
866 #define L2_S_PROTO pte_l2_s_proto
867
868 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
869 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
870 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
871 #define L1_S_PROT_U L1_S_PROT_U_generic
872 #define L1_S_PROT_W L1_S_PROT_W_generic
873 #define L1_S_PROT_RO L1_S_PROT_RO_generic
874 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
875
876 #define L2_S_PROT_U L2_S_PROT_U_generic
877 #define L2_S_PROT_W L2_S_PROT_W_generic
878 #define L2_S_PROT_RO L2_S_PROT_RO_generic
879 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
880
881 #define L2_L_PROT_U L2_L_PROT_U_generic
882 #define L2_L_PROT_W L2_L_PROT_W_generic
883 #define L2_L_PROT_RO L2_L_PROT_RO_generic
884 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
885
886 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
887 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
888 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
889
890 #define L1_SS_PROTO L1_SS_PROTO_generic
891 #define L1_S_PROTO L1_S_PROTO_generic
892 #define L1_C_PROTO L1_C_PROTO_generic
893 #define L2_S_PROTO L2_S_PROTO_generic
894
895 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
896 #define pmap_zero_page(d) pmap_zero_page_generic((d))
897 #elif ARM_MMU_V6N != 0
898 #define L1_S_PROT_U L1_S_PROT_U_armv6
899 #define L1_S_PROT_W L1_S_PROT_W_armv6
900 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
901 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
902
903 #define L2_S_PROT_U L2_S_PROT_U_armv6n
904 #define L2_S_PROT_W L2_S_PROT_W_armv6n
905 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
906 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
907
908 #define L2_L_PROT_U L2_L_PROT_U_armv6n
909 #define L2_L_PROT_W L2_L_PROT_W_armv6n
910 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
911 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
912
913 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
914 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
915 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
916
917 /* These prototypes make writeable mappings, while the other MMU types
918 * make read-only mappings. */
919 #define L1_SS_PROTO L1_SS_PROTO_armv6
920 #define L1_S_PROTO L1_S_PROTO_armv6
921 #define L1_C_PROTO L1_C_PROTO_armv6
922 #define L2_S_PROTO L2_S_PROTO_armv6n
923
924 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
925 #define pmap_zero_page(d) pmap_zero_page_generic((d))
926 #elif ARM_MMU_V6C != 0
927 #define L1_S_PROT_U L1_S_PROT_U_generic
928 #define L1_S_PROT_W L1_S_PROT_W_generic
929 #define L1_S_PROT_RO L1_S_PROT_RO_generic
930 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
931
932 #define L2_S_PROT_U L2_S_PROT_U_generic
933 #define L2_S_PROT_W L2_S_PROT_W_generic
934 #define L2_S_PROT_RO L2_S_PROT_RO_generic
935 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
936
937 #define L2_L_PROT_U L2_L_PROT_U_generic
938 #define L2_L_PROT_W L2_L_PROT_W_generic
939 #define L2_L_PROT_RO L2_L_PROT_RO_generic
940 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
941
942 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
943 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
944 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
945
946 #define L1_SS_PROTO L1_SS_PROTO_armv6
947 #define L1_S_PROTO L1_S_PROTO_generic
948 #define L1_C_PROTO L1_C_PROTO_generic
949 #define L2_S_PROTO L2_S_PROTO_generic
950
951 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
952 #define pmap_zero_page(d) pmap_zero_page_generic((d))
953 #elif ARM_MMU_XSCALE == 1
954 #define L1_S_PROT_U L1_S_PROT_U_generic
955 #define L1_S_PROT_W L1_S_PROT_W_generic
956 #define L1_S_PROT_RO L1_S_PROT_RO_generic
957 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
958
959 #define L2_S_PROT_U L2_S_PROT_U_xscale
960 #define L2_S_PROT_W L2_S_PROT_W_xscale
961 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
962 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
963
964 #define L2_L_PROT_U L2_L_PROT_U_generic
965 #define L2_L_PROT_W L2_L_PROT_W_generic
966 #define L2_L_PROT_RO L2_L_PROT_RO_generic
967 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
968
969 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
970 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
971 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
972
973 #define L1_SS_PROTO L1_SS_PROTO_xscale
974 #define L1_S_PROTO L1_S_PROTO_xscale
975 #define L1_C_PROTO L1_C_PROTO_xscale
976 #define L2_S_PROTO L2_S_PROTO_xscale
977
978 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
979 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
980 #elif ARM_MMU_V7 == 1
981 #define L1_S_PROT_U L1_S_PROT_U_armv7
982 #define L1_S_PROT_W L1_S_PROT_W_armv7
983 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
984 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
985
986 #define L2_S_PROT_U L2_S_PROT_U_armv7
987 #define L2_S_PROT_W L2_S_PROT_W_armv7
988 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
989 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
990
991 #define L2_L_PROT_U L2_L_PROT_U_armv7
992 #define L2_L_PROT_W L2_L_PROT_W_armv7
993 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
994 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
995
996 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
997 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
998 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
999
1000 /* These prototypes make writeable mappings, while the other MMU types
1001 * make read-only mappings. */
1002 #define L1_SS_PROTO L1_SS_PROTO_armv7
1003 #define L1_S_PROTO L1_S_PROTO_armv7
1004 #define L1_C_PROTO L1_C_PROTO_armv7
1005 #define L2_S_PROTO L2_S_PROTO_armv7
1006
1007 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1008 #define pmap_zero_page(d) pmap_zero_page_generic((d))
1009 #endif /* ARM_NMMUS > 1 */
1010
1011 /*
1012 * Macros to set and query the write permission on page descriptors.
1013 */
1014 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1015 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1016 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1017 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1018
1019 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1020 (L2_S_PROT_RO == 0 || \
1021 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1022
1023 /*
1024 * These macros return various bits based on kernel/user and protection.
1025 * Note that the compiler will usually fold these at compile time.
1026 */
1027 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
1028 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
1029
1030 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
1031 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
1032
1033 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
1034 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
1035
1036 /*
1037 * Macros to test if a mapping is mappable with an L1 SuperSection,
1038 * L1 Section, or an L2 Large Page mapping.
1039 */
1040 #define L1_SS_MAPPABLE_P(va, pa, size) \
1041 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1042
1043 #define L1_S_MAPPABLE_P(va, pa, size) \
1044 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1045
1046 #define L2_L_MAPPABLE_P(va, pa, size) \
1047 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1048
1049 #ifndef _LOCORE
1050 /*
1051 * Hooks for the pool allocator.
1052 */
1053 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1054 extern paddr_t physical_start, physical_end;
1055 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1056 struct vm_page *arm_pmap_alloc_poolpage(int);
1057 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1058 #endif
1059 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1060 vaddr_t pmap_map_poolpage(paddr_t);
1061 paddr_t pmap_unmap_poolpage(vaddr_t);
1062 #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1063 #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1064 #endif
1065
1066 /*
1067 * pmap-specific data store in the vm_page structure.
1068 */
1069 #define __HAVE_VM_PAGE_MD
1070 struct vm_page_md {
1071 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1072 int pvh_attrs; /* page attributes */
1073 u_int uro_mappings;
1074 u_int urw_mappings;
1075 union {
1076 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1077 u_int i_mappings;
1078 } k_u;
1079 #define kro_mappings k_u.s_mappings[0]
1080 #define krw_mappings k_u.s_mappings[1]
1081 #define k_mappings k_u.i_mappings
1082 };
1083
1084 /*
1085 * Set the default color of each page.
1086 */
1087 #if ARM_MMU_V6 > 0
1088 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1089 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
1090 #else
1091 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1092 (pg)->mdpage.pvh_attrs = 0
1093 #endif
1094
1095 #define VM_MDPAGE_INIT(pg) \
1096 do { \
1097 SLIST_INIT(&(pg)->mdpage.pvh_list); \
1098 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1099 (pg)->mdpage.uro_mappings = 0; \
1100 (pg)->mdpage.urw_mappings = 0; \
1101 (pg)->mdpage.k_mappings = 0; \
1102 } while (/*CONSTCOND*/0)
1103
1104 #endif /* !_LOCORE */
1105
1106 #endif /* _KERNEL */
1107
1108 #endif /* _ARM32_PMAP_H_ */
1109