Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.140
      1 /*	$NetBSD: pmap.h,v 1.140 2015/05/30 23:59:33 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #if defined(_KERNEL_OPT)
     77 #include "opt_arm32_pmap.h"
     78 #include "opt_multiprocessor.h"
     79 #endif
     80 #include <arm/cpufunc.h>
     81 #include <arm/locore.h>
     82 #include <uvm/uvm_object.h>
     83 #endif
     84 
     85 #ifdef ARM_MMU_EXTENDED
     86 #define PMAP_TLB_MAX			1
     87 #define PMAP_TLB_HWPAGEWALKER		1
     88 #if PMAP_TLB_MAX > 1
     89 #define PMAP_NEED_TLB_SHOOTDOWN		1
     90 #endif
     91 #define PMAP_TLB_FLUSH_ASID_ON_RESET	(arm_has_tlbiasid_p)
     92 #define PMAP_TLB_NUM_PIDS		256
     93 #define cpu_set_tlb_info(ci, ti)        ((void)((ci)->ci_tlb_info = (ti)))
     94 #if PMAP_TLB_MAX > 1
     95 #define cpu_tlb_info(ci)		((ci)->ci_tlb_info)
     96 #else
     97 #define cpu_tlb_info(ci)		(&pmap_tlb0_info)
     98 #endif
     99 #define pmap_md_tlb_asid_max()		(PMAP_TLB_NUM_PIDS - 1)
    100 #include <uvm/pmap/tlb.h>
    101 #include <uvm/pmap/pmap_tlb.h>
    102 
    103 /*
    104  * If we have an EXTENDED MMU and the address space is split evenly between
    105  * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
    106  * user and kernel address spaces.
    107  */
    108 #if (KERNEL_BASE & 0x80000000) == 0
    109 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
    110 #endif
    111 #endif  /* ARM_MMU_EXTENDED */
    112 
    113 /*
    114  * a pmap describes a processes' 4GB virtual address space.  this
    115  * virtual address space can be broken up into 4096 1MB regions which
    116  * are described by L1 PTEs in the L1 table.
    117  *
    118  * There is a line drawn at KERNEL_BASE.  Everything below that line
    119  * changes when the VM context is switched.  Everything above that line
    120  * is the same no matter which VM context is running.  This is achieved
    121  * by making the L1 PTEs for those slots above KERNEL_BASE reference
    122  * kernel L2 tables.
    123  *
    124  * The basic layout of the virtual address space thus looks like this:
    125  *
    126  *	0xffffffff
    127  *	.
    128  *	.
    129  *	.
    130  *	KERNEL_BASE
    131  *	--------------------
    132  *	.
    133  *	.
    134  *	.
    135  *	0x00000000
    136  */
    137 
    138 /*
    139  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    140  * A bucket size of 16 provides for 16MB of contiguous virtual address
    141  * space per l2_dtable. Most processes will, therefore, require only two or
    142  * three of these to map their whole working set.
    143  */
    144 #define	L2_BUCKET_XLOG2	(L1_S_SHIFT)
    145 #define L2_BUCKET_XSIZE	(1 << L2_BUCKET_XLOG2)
    146 #define	L2_BUCKET_LOG2	4
    147 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    148 
    149 /*
    150  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    151  * of l2_dtable structures required to track all possible page descriptors
    152  * mappable by an L1 translation table is given by the following constants:
    153  */
    154 #define	L2_LOG2		(32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
    155 #define	L2_SIZE		(1 << L2_LOG2)
    156 
    157 /*
    158  * tell MI code that the cache is virtually-indexed.
    159  * ARMv6 is physically-tagged but all others are virtually-tagged.
    160  */
    161 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    162 #define PMAP_CACHE_VIPT
    163 #else
    164 #define PMAP_CACHE_VIVT
    165 #endif
    166 
    167 #ifndef _LOCORE
    168 
    169 #ifndef PMAP_MMU_EXTENDED
    170 struct l1_ttable;
    171 struct l2_dtable;
    172 
    173 /*
    174  * Track cache/tlb occupancy using the following structure
    175  */
    176 union pmap_cache_state {
    177 	struct {
    178 		union {
    179 			uint8_t csu_cache_b[2];
    180 			uint16_t csu_cache;
    181 		} cs_cache_u;
    182 
    183 		union {
    184 			uint8_t csu_tlb_b[2];
    185 			uint16_t csu_tlb;
    186 		} cs_tlb_u;
    187 	} cs_s;
    188 	uint32_t cs_all;
    189 };
    190 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    191 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    192 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    193 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    194 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    195 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    196 
    197 /*
    198  * Assigned to cs_all to force cacheops to work for a particular pmap
    199  */
    200 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    201 #endif /* !ARM_MMU_EXTENDED */
    202 
    203 /*
    204  * This structure is used by machine-dependent code to describe
    205  * static mappings of devices, created at bootstrap time.
    206  */
    207 struct pmap_devmap {
    208 	vaddr_t		pd_va;		/* virtual address */
    209 	paddr_t		pd_pa;		/* physical address */
    210 	psize_t		pd_size;	/* size of region */
    211 	vm_prot_t	pd_prot;	/* protection code */
    212 	int		pd_cache;	/* cache attributes */
    213 };
    214 
    215 /*
    216  * The pmap structure itself
    217  */
    218 struct pmap {
    219 	struct uvm_object	pm_obj;
    220 	kmutex_t		pm_obj_lock;
    221 #define	pm_lock pm_obj.vmobjlock
    222 #ifndef ARM_HAS_VBAR
    223 	pd_entry_t		*pm_pl1vec;
    224 	pd_entry_t		pm_l1vec;
    225 #endif
    226 	struct l2_dtable	*pm_l2[L2_SIZE];
    227 	struct pmap_statistics	pm_stats;
    228 	LIST_ENTRY(pmap)	pm_list;
    229 #ifdef ARM_MMU_EXTENDED
    230 	pd_entry_t		*pm_l1;
    231 	paddr_t			pm_l1_pa;
    232 	bool			pm_remove_all;
    233 #ifdef MULTIPROCESSOR
    234 	kcpuset_t		*pm_onproc;
    235 	kcpuset_t		*pm_active;
    236 #if PMAP_TLB_MAX > 1
    237 	u_int			pm_shootdown_pending;
    238 #endif
    239 #endif
    240 	struct pmap_asid_info	pm_pai[PMAP_TLB_MAX];
    241 #else
    242 	struct l1_ttable	*pm_l1;
    243 	union pmap_cache_state	pm_cstate;
    244 	uint8_t			pm_domain;
    245 	bool			pm_activated;
    246 	bool			pm_remove_all;
    247 #endif
    248 };
    249 
    250 struct pmap_kernel {
    251 	struct pmap		kernel_pmap;
    252 };
    253 
    254 /*
    255  * Physical / virtual address structure. In a number of places (particularly
    256  * during bootstrapping) we need to keep track of the physical and virtual
    257  * addresses of various pages
    258  */
    259 typedef struct pv_addr {
    260 	SLIST_ENTRY(pv_addr) pv_list;
    261 	paddr_t pv_pa;
    262 	vaddr_t pv_va;
    263 	vsize_t pv_size;
    264 	uint8_t pv_cache;
    265 	uint8_t pv_prot;
    266 } pv_addr_t;
    267 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
    268 
    269 extern pv_addrqh_t pmap_freeq;
    270 extern pv_addr_t kernelstack;
    271 extern pv_addr_t abtstack;
    272 extern pv_addr_t fiqstack;
    273 extern pv_addr_t irqstack;
    274 extern pv_addr_t undstack;
    275 extern pv_addr_t idlestack;
    276 extern pv_addr_t systempage;
    277 extern pv_addr_t kernel_l1pt;
    278 
    279 #ifdef ARM_MMU_EXTENDED
    280 extern bool arm_has_tlbiasid_p;	/* also in <arm/locore.h> */
    281 #endif
    282 
    283 /*
    284  * Determine various modes for PTEs (user vs. kernel, cacheable
    285  * vs. non-cacheable).
    286  */
    287 #define	PTE_KERNEL	0
    288 #define	PTE_USER	1
    289 #define	PTE_NOCACHE	0
    290 #define	PTE_CACHE	1
    291 #define	PTE_PAGETABLE	2
    292 
    293 /*
    294  * Flags that indicate attributes of pages or mappings of pages.
    295  *
    296  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    297  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    298  * pv_entry's for each page.  They live in the same "namespace" so
    299  * that we can clear multiple attributes at a time.
    300  *
    301  * Note the "non-cacheable" flag generally means the page has
    302  * multiple mappings in a given address space.
    303  */
    304 #define	PVF_MOD		0x01		/* page is modified */
    305 #define	PVF_REF		0x02		/* page is referenced */
    306 #define	PVF_WIRED	0x04		/* mapping is wired */
    307 #define	PVF_WRITE	0x08		/* mapping is writable */
    308 #define	PVF_EXEC	0x10		/* mapping is executable */
    309 #ifdef PMAP_CACHE_VIVT
    310 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    311 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    312 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    313 #endif
    314 #ifdef PMAP_CACHE_VIPT
    315 #define	PVF_NC		0x20		/* mapping is 'kernel' non-cacheable */
    316 #define	PVF_MULTCLR	0x40		/* mapping is multi-colored */
    317 #endif
    318 #define	PVF_COLORED	0x80		/* page has or had a color */
    319 #define	PVF_KENTRY	0x0100		/* page entered via pmap_kenter_pa */
    320 #define	PVF_KMPAGE	0x0200		/* page is used for kmem */
    321 #define	PVF_DIRTY	0x0400		/* page may have dirty cache lines */
    322 #define	PVF_KMOD	0x0800		/* unmanaged page is modified  */
    323 #define	PVF_KWRITE	(PVF_KENTRY|PVF_WRITE)
    324 #define	PVF_DMOD	(PVF_MOD|PVF_KMOD|PVF_KMPAGE)
    325 
    326 /*
    327  * Commonly referenced structures
    328  */
    329 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    330 extern int		arm_poolpage_vmfreelist;
    331 
    332 /*
    333  * Macros that we need to export
    334  */
    335 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    336 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    337 
    338 #define	pmap_is_modified(pg)	\
    339 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    340 #define	pmap_is_referenced(pg)	\
    341 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    342 #define	pmap_is_page_colored_p(md)	\
    343 	(((md)->pvh_attrs & PVF_COLORED) != 0)
    344 
    345 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    346 
    347 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    348 u_int arm32_mmap_flags(paddr_t);
    349 #define ARM32_MMAP_WRITECOMBINE		0x40000000
    350 #define ARM32_MMAP_CACHEABLE		0x20000000
    351 #define pmap_mmap_flags(ppn)		arm32_mmap_flags(ppn)
    352 
    353 #define	PMAP_PTE			0x10000000 /* kenter_pa */
    354 
    355 /*
    356  * Functions that we need to export
    357  */
    358 void	pmap_procwr(struct proc *, vaddr_t, int);
    359 void	pmap_remove_all(pmap_t);
    360 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
    361 
    362 #define	PMAP_NEED_PROCWR
    363 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    364 #define	PMAP_ENABLE_PMAP_KMPAGE	/* enable the PMAP_KMPAGE flag */
    365 
    366 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    367 #define	PMAP_PREFER(hint, vap, sz, td)	pmap_prefer((hint), (vap), (td))
    368 void	pmap_prefer(vaddr_t, vaddr_t *, int);
    369 #endif
    370 
    371 void	pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
    372 
    373 /* Functions we use internally. */
    374 #ifdef PMAP_STEAL_MEMORY
    375 void	pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
    376 void	pmap_boot_pageadd(pv_addr_t *);
    377 vaddr_t	pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    378 #endif
    379 void	pmap_bootstrap(vaddr_t, vaddr_t);
    380 
    381 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
    382 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    383 int	pmap_prefetchabt_fixup(void *);
    384 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    385 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    386 struct pcb;
    387 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    388 
    389 void	pmap_debug(int);
    390 void	pmap_postinit(void);
    391 
    392 void	vector_page_setprot(int);
    393 
    394 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    395 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    396 
    397 /* Bootstrapping routines. */
    398 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    399 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    400 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    401 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    402 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    403 void	pmap_devmap_register(const struct pmap_devmap *);
    404 
    405 /*
    406  * Special page zero routine for use by the idle loop (no cache cleans).
    407  */
    408 bool	pmap_pageidlezero(paddr_t);
    409 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    410 
    411 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    412 /*
    413  * For the pmap, this is a more useful way to map a direct mapped page.
    414  * It returns either the direct-mapped VA or the VA supplied if it can't
    415  * be direct mapped.
    416  */
    417 vaddr_t	pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
    418 #endif
    419 
    420 /*
    421  * used by dumpsys to record the PA of the L1 table
    422  */
    423 uint32_t pmap_kernel_L1_addr(void);
    424 /*
    425  * The current top of kernel VM
    426  */
    427 extern vaddr_t	pmap_curmaxkvaddr;
    428 
    429 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    430 /*
    431  * Starting VA of direct mapped memory (usually KERNEL_BASE).
    432  */
    433 extern vaddr_t pmap_directbase;
    434 extern vaddr_t pmap_directlimit;
    435 #endif
    436 
    437 /*
    438  * Useful macros and constants
    439  */
    440 
    441 /* Virtual address to page table entry */
    442 static inline pt_entry_t *
    443 vtopte(vaddr_t va)
    444 {
    445 	pd_entry_t *pdep;
    446 	pt_entry_t *ptep;
    447 
    448 	KASSERT(trunc_page(va) == va);
    449 
    450 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
    451 		return (NULL);
    452 	return (ptep);
    453 }
    454 
    455 /*
    456  * Virtual address to physical address
    457  */
    458 static inline paddr_t
    459 vtophys(vaddr_t va)
    460 {
    461 	paddr_t pa;
    462 
    463 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
    464 		return (0);	/* XXXSCW: Panic? */
    465 
    466 	return (pa);
    467 }
    468 
    469 /*
    470  * The new pmap ensures that page-tables are always mapping Write-Thru.
    471  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    472  * on every change.
    473  *
    474  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    475  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    476  * and if there is the chance for PTE syncs to be needed, we define
    477  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    478  * the code.
    479  */
    480 extern int pmap_needs_pte_sync;
    481 #if defined(_KERNEL_OPT)
    482 /*
    483  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    484  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    485  * this at compile time.
    486  */
    487 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
    488 #define	PMAP_INCLUDE_PTE_SYNC
    489 #if (ARM_MMU_V6 > 0)
    490 #define	PMAP_NEEDS_PTE_SYNC	1
    491 #elif (ARM_MMU_SA1 == 0)
    492 #define	PMAP_NEEDS_PTE_SYNC	0
    493 #endif
    494 #endif
    495 #endif /* _KERNEL_OPT */
    496 
    497 /*
    498  * Provide a fallback in case we were not able to determine it at
    499  * compile-time.
    500  */
    501 #ifndef PMAP_NEEDS_PTE_SYNC
    502 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    503 #define	PMAP_INCLUDE_PTE_SYNC
    504 #endif
    505 
    506 static inline void
    507 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
    508 {
    509 	if (PMAP_NEEDS_PTE_SYNC) {
    510 		cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
    511 #ifdef SHEEVA_L2_CACHE
    512 		cpu_sdcache_wb_range((vaddr_t)ptep, -1,
    513 		    cnt * sizeof(pt_entry_t));
    514 #endif
    515 	}
    516 	arm_dsb();
    517 }
    518 
    519 #define	PDE_SYNC(pdep)			pmap_ptesync((pdep), 1)
    520 #define	PDE_SYNC_RANGE(pdep, cnt)	pmap_ptesync((pdep), (cnt))
    521 #define	PTE_SYNC(ptep)			pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
    522 #define	PTE_SYNC_RANGE(ptep, cnt)	pmap_ptesync((ptep), (cnt))
    523 
    524 #define l1pte_valid_p(pde)	((pde) != 0)
    525 #define l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    526 #define l1pte_supersection_p(pde) (l1pte_section_p(pde)	\
    527 				&& ((pde) & L1_S_V6_SUPER) != 0)
    528 #define l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    529 #define l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    530 #define l1pte_pa(pde)		((pde) & L1_C_ADDR_MASK)
    531 #define l1pte_index(v)		((vaddr_t)(v) >> L1_S_SHIFT)
    532 #define l1pte_pgindex(v)	l1pte_index((v) & L1_ADDR_BITS \
    533 		& ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
    534 
    535 static inline void
    536 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
    537 {
    538 	*pdep = pde;
    539 }
    540 
    541 static inline void
    542 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
    543 {
    544 	*pdep = pde;
    545 	if (l1pte_page_p(pde)) {
    546 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
    547 		for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
    548 			pde += L2_T_SIZE;
    549 			pdep[k] = pde;
    550 		}
    551 	} else if (l1pte_supersection_p(pde)) {
    552 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
    553 		for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
    554 			pdep[k] = pde;
    555 		}
    556 	}
    557 }
    558 
    559 #define l2pte_index(v)		((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
    560 #define l2pte_valid_p(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
    561 #define l2pte_pa(pte)		((pte) & L2_S_FRAME)
    562 #define l1pte_lpage_p(pte)	(((pte) & L2_TYPE_MASK) == L2_TYPE_L)
    563 #define l2pte_minidata_p(pte)	(((pte) & \
    564 				 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
    565 				 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
    566 
    567 static inline void
    568 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
    569 {
    570 	if (l1pte_lpage_p(pte)) {
    571 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    572 		for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
    573 			*ptep++ = pte;
    574 		}
    575 	} else {
    576 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    577 		for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
    578 			KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
    579 			*ptep++ = pte;
    580 			pte += L2_S_SIZE;
    581 			if (opte)
    582 				opte += L2_S_SIZE;
    583 		}
    584 	}
    585 }
    586 
    587 static inline void
    588 l2pte_reset(pt_entry_t *ptep)
    589 {
    590 	KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    591 	*ptep = 0;
    592 	for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
    593 		ptep[k] = 0;
    594 	}
    595 }
    596 
    597 /* L1 and L2 page table macros */
    598 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    599 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    600 #define pmap_pde_supersection(pde)	l1pte_supersection_p(*(pde))
    601 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    602 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    603 
    604 #define	pmap_pte_v(pte)		l2pte_valid_p(*(pte))
    605 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    606 
    607 /* Size of the kernel part of the L1 page table */
    608 #define KERNEL_PD_SIZE	\
    609 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    610 
    611 void	bzero_page(vaddr_t);
    612 void	bcopy_page(vaddr_t, vaddr_t);
    613 
    614 #ifdef FPU_VFP
    615 void	bzero_page_vfp(vaddr_t);
    616 void	bcopy_page_vfp(vaddr_t, vaddr_t);
    617 #endif
    618 
    619 /************************* ARM MMU configuration *****************************/
    620 
    621 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
    622 void	pmap_copy_page_generic(paddr_t, paddr_t);
    623 void	pmap_zero_page_generic(paddr_t);
    624 
    625 void	pmap_pte_init_generic(void);
    626 #if defined(CPU_ARM8)
    627 void	pmap_pte_init_arm8(void);
    628 #endif
    629 #if defined(CPU_ARM9)
    630 void	pmap_pte_init_arm9(void);
    631 #endif /* CPU_ARM9 */
    632 #if defined(CPU_ARM10)
    633 void	pmap_pte_init_arm10(void);
    634 #endif /* CPU_ARM10 */
    635 #if defined(CPU_ARM11)	/* ARM_MMU_V6 */
    636 void	pmap_pte_init_arm11(void);
    637 #endif /* CPU_ARM11 */
    638 #if defined(CPU_ARM11MPCORE)	/* ARM_MMU_V6 */
    639 void	pmap_pte_init_arm11mpcore(void);
    640 #endif
    641 #if ARM_MMU_V7 == 1
    642 void	pmap_pte_init_armv7(void);
    643 #endif /* ARM_MMU_V7 */
    644 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    645 
    646 #if ARM_MMU_SA1 == 1
    647 void	pmap_pte_init_sa1(void);
    648 #endif /* ARM_MMU_SA1 == 1 */
    649 
    650 #if ARM_MMU_XSCALE == 1
    651 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    652 void	pmap_zero_page_xscale(paddr_t);
    653 
    654 void	pmap_pte_init_xscale(void);
    655 
    656 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    657 
    658 #define	PMAP_UAREA(va)		pmap_uarea(va)
    659 void	pmap_uarea(vaddr_t);
    660 #endif /* ARM_MMU_XSCALE == 1 */
    661 
    662 extern pt_entry_t		pte_l1_s_cache_mode;
    663 extern pt_entry_t		pte_l1_s_cache_mask;
    664 
    665 extern pt_entry_t		pte_l2_l_cache_mode;
    666 extern pt_entry_t		pte_l2_l_cache_mask;
    667 
    668 extern pt_entry_t		pte_l2_s_cache_mode;
    669 extern pt_entry_t		pte_l2_s_cache_mask;
    670 
    671 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    672 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    673 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    674 
    675 extern pt_entry_t		pte_l1_s_wc_mode;
    676 extern pt_entry_t		pte_l2_l_wc_mode;
    677 extern pt_entry_t		pte_l2_s_wc_mode;
    678 
    679 extern pt_entry_t		pte_l1_s_prot_u;
    680 extern pt_entry_t		pte_l1_s_prot_w;
    681 extern pt_entry_t		pte_l1_s_prot_ro;
    682 extern pt_entry_t		pte_l1_s_prot_mask;
    683 
    684 extern pt_entry_t		pte_l2_s_prot_u;
    685 extern pt_entry_t		pte_l2_s_prot_w;
    686 extern pt_entry_t		pte_l2_s_prot_ro;
    687 extern pt_entry_t		pte_l2_s_prot_mask;
    688 
    689 extern pt_entry_t		pte_l2_l_prot_u;
    690 extern pt_entry_t		pte_l2_l_prot_w;
    691 extern pt_entry_t		pte_l2_l_prot_ro;
    692 extern pt_entry_t		pte_l2_l_prot_mask;
    693 
    694 extern pt_entry_t		pte_l1_ss_proto;
    695 extern pt_entry_t		pte_l1_s_proto;
    696 extern pt_entry_t		pte_l1_c_proto;
    697 extern pt_entry_t		pte_l2_s_proto;
    698 
    699 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    700 extern void (*pmap_zero_page_func)(paddr_t);
    701 
    702 #endif /* !_LOCORE */
    703 
    704 /*****************************************************************************/
    705 
    706 #define	KERNEL_PID		0	/* The kernel uses ASID 0 */
    707 
    708 /*
    709  * Definitions for MMU domains
    710  */
    711 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
    712 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel pmap uses domain #0 */
    713 #ifdef ARM_MMU_EXTENDED
    714 #define	PMAP_DOMAIN_USER	1	/* User pmaps use domain #1 */
    715 #endif
    716 
    717 /*
    718  * These macros define the various bit masks in the PTE.
    719  *
    720  * We use these macros since we use different bits on different processor
    721  * models.
    722  */
    723 #define	L1_S_PROT_U_generic	(L1_S_AP(AP_U))
    724 #define	L1_S_PROT_W_generic	(L1_S_AP(AP_W))
    725 #define	L1_S_PROT_RO_generic	(0)
    726 #define	L1_S_PROT_MASK_generic	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    727 
    728 #define	L1_S_PROT_U_xscale	(L1_S_AP(AP_U))
    729 #define	L1_S_PROT_W_xscale	(L1_S_AP(AP_W))
    730 #define	L1_S_PROT_RO_xscale	(0)
    731 #define	L1_S_PROT_MASK_xscale	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    732 
    733 #define	L1_S_PROT_U_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    734 #define	L1_S_PROT_W_armv6	(L1_S_AP(AP_W))
    735 #define	L1_S_PROT_RO_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    736 #define	L1_S_PROT_MASK_armv6	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    737 
    738 #define	L1_S_PROT_U_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    739 #define	L1_S_PROT_W_armv7	(L1_S_AP(AP_W))
    740 #define	L1_S_PROT_RO_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    741 #define	L1_S_PROT_MASK_armv7	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    742 
    743 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    744 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
    745 #define	L1_S_CACHE_MASK_armv6	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
    746 #define	L1_S_CACHE_MASK_armv6n	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    747 #define	L1_S_CACHE_MASK_armv7	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    748 
    749 #define	L2_L_PROT_U_generic	(L2_AP(AP_U))
    750 #define	L2_L_PROT_W_generic	(L2_AP(AP_W))
    751 #define	L2_L_PROT_RO_generic	(0)
    752 #define	L2_L_PROT_MASK_generic	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    753 
    754 #define	L2_L_PROT_U_xscale	(L2_AP(AP_U))
    755 #define	L2_L_PROT_W_xscale	(L2_AP(AP_W))
    756 #define	L2_L_PROT_RO_xscale	(0)
    757 #define	L2_L_PROT_MASK_xscale	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    758 
    759 #define	L2_L_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    760 #define	L2_L_PROT_W_armv6n	(L2_AP0(AP_W))
    761 #define	L2_L_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    762 #define	L2_L_PROT_MASK_armv6n	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    763 
    764 #define	L2_L_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    765 #define	L2_L_PROT_W_armv7	(L2_AP0(AP_W))
    766 #define	L2_L_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    767 #define	L2_L_PROT_MASK_armv7	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    768 
    769 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    770 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
    771 #define	L2_L_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
    772 #define	L2_L_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    773 #define	L2_L_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    774 
    775 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    776 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    777 #define	L2_S_PROT_RO_generic	(0)
    778 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    779 
    780 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    781 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    782 #define	L2_S_PROT_RO_xscale	(0)
    783 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    784 
    785 #define	L2_S_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    786 #define	L2_S_PROT_W_armv6n	(L2_AP0(AP_W))
    787 #define	L2_S_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    788 #define	L2_S_PROT_MASK_armv6n	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    789 
    790 #define	L2_S_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    791 #define	L2_S_PROT_W_armv7	(L2_AP0(AP_W))
    792 #define	L2_S_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    793 #define	L2_S_PROT_MASK_armv7	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    794 
    795 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    796 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
    797 #define	L2_XS_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
    798 #define	L2_S_CACHE_MASK_armv6n	L2_XS_CACHE_MASK_armv6
    799 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    800 #define	L2_S_CACHE_MASK_armv6c	L2_XS_CACHE_MASK_armv6
    801 #else
    802 #define	L2_S_CACHE_MASK_armv6c	L2_S_CACHE_MASK_generic
    803 #endif
    804 #define	L2_S_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    805 
    806 
    807 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    808 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    809 #define	L1_S_PROTO_armv6	(L1_TYPE_S)
    810 #define	L1_S_PROTO_armv7	(L1_TYPE_S)
    811 
    812 #define	L1_SS_PROTO_generic	0
    813 #define	L1_SS_PROTO_xscale	0
    814 #define	L1_SS_PROTO_armv6	(L1_TYPE_S | L1_S_V6_SS)
    815 #define	L1_SS_PROTO_armv7	(L1_TYPE_S | L1_S_V6_SS)
    816 
    817 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    818 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    819 #define	L1_C_PROTO_armv6	(L1_TYPE_C)
    820 #define	L1_C_PROTO_armv7	(L1_TYPE_C)
    821 
    822 #define	L2_L_PROTO		(L2_TYPE_L)
    823 
    824 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    825 #define	L2_S_PROTO_xscale	(L2_TYPE_XS)
    826 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    827 #define	L2_S_PROTO_armv6c	(L2_TYPE_XS)    /* XP=0, extended small page */
    828 #else
    829 #define	L2_S_PROTO_armv6c	(L2_TYPE_S)	/* XP=0, subpage APs */
    830 #endif
    831 #ifdef ARM_MMU_EXTENDED
    832 #define	L2_S_PROTO_armv6n	(L2_TYPE_S|L2_XS_XN)
    833 #else
    834 #define	L2_S_PROTO_armv6n	(L2_TYPE_S)	/* with XP=1 */
    835 #endif
    836 #ifdef ARM_MMU_EXTENDED
    837 #define	L2_S_PROTO_armv7	(L2_TYPE_S|L2_XS_XN)
    838 #else
    839 #define	L2_S_PROTO_armv7	(L2_TYPE_S)
    840 #endif
    841 
    842 /*
    843  * User-visible names for the ones that vary with MMU class.
    844  */
    845 
    846 #if ARM_NMMUS > 1
    847 /* More than one MMU class configured; use variables. */
    848 #define	L1_S_PROT_U		pte_l1_s_prot_u
    849 #define	L1_S_PROT_W		pte_l1_s_prot_w
    850 #define	L1_S_PROT_RO		pte_l1_s_prot_ro
    851 #define	L1_S_PROT_MASK		pte_l1_s_prot_mask
    852 
    853 #define	L2_S_PROT_U		pte_l2_s_prot_u
    854 #define	L2_S_PROT_W		pte_l2_s_prot_w
    855 #define	L2_S_PROT_RO		pte_l2_s_prot_ro
    856 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    857 
    858 #define	L2_L_PROT_U		pte_l2_l_prot_u
    859 #define	L2_L_PROT_W		pte_l2_l_prot_w
    860 #define	L2_L_PROT_RO		pte_l2_l_prot_ro
    861 #define	L2_L_PROT_MASK		pte_l2_l_prot_mask
    862 
    863 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    864 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    865 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    866 
    867 #define	L1_SS_PROTO		pte_l1_ss_proto
    868 #define	L1_S_PROTO		pte_l1_s_proto
    869 #define	L1_C_PROTO		pte_l1_c_proto
    870 #define	L2_S_PROTO		pte_l2_s_proto
    871 
    872 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    873 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    874 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    875 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    876 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    877 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    878 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    879 
    880 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    881 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    882 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    883 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    884 
    885 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    886 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    887 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    888 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    889 
    890 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    891 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    892 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    893 
    894 #define	L1_SS_PROTO		L1_SS_PROTO_generic
    895 #define	L1_S_PROTO		L1_S_PROTO_generic
    896 #define	L1_C_PROTO		L1_C_PROTO_generic
    897 #define	L2_S_PROTO		L2_S_PROTO_generic
    898 
    899 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    900 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    901 #elif ARM_MMU_V6N != 0
    902 #define	L1_S_PROT_U		L1_S_PROT_U_armv6
    903 #define	L1_S_PROT_W		L1_S_PROT_W_armv6
    904 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv6
    905 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv6
    906 
    907 #define	L2_S_PROT_U		L2_S_PROT_U_armv6n
    908 #define	L2_S_PROT_W		L2_S_PROT_W_armv6n
    909 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv6n
    910 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv6n
    911 
    912 #define	L2_L_PROT_U		L2_L_PROT_U_armv6n
    913 #define	L2_L_PROT_W		L2_L_PROT_W_armv6n
    914 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv6n
    915 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv6n
    916 
    917 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv6n
    918 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv6n
    919 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv6n
    920 
    921 /* These prototypes make writeable mappings, while the other MMU types
    922  * make read-only mappings. */
    923 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
    924 #define	L1_S_PROTO		L1_S_PROTO_armv6
    925 #define	L1_C_PROTO		L1_C_PROTO_armv6
    926 #define	L2_S_PROTO		L2_S_PROTO_armv6n
    927 
    928 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    929 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    930 #elif ARM_MMU_V6C != 0
    931 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    932 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    933 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    934 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    935 
    936 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    937 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    938 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    939 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    940 
    941 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    942 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    943 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    944 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    945 
    946 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    947 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    948 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    949 
    950 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
    951 #define	L1_S_PROTO		L1_S_PROTO_generic
    952 #define	L1_C_PROTO		L1_C_PROTO_generic
    953 #define	L2_S_PROTO		L2_S_PROTO_generic
    954 
    955 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    956 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    957 #elif ARM_MMU_XSCALE == 1
    958 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    959 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    960 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    961 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    962 
    963 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    964 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    965 #define	L2_S_PROT_RO		L2_S_PROT_RO_xscale
    966 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    967 
    968 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    969 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    970 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    971 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    972 
    973 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    974 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    975 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    976 
    977 #define	L1_SS_PROTO		L1_SS_PROTO_xscale
    978 #define	L1_S_PROTO		L1_S_PROTO_xscale
    979 #define	L1_C_PROTO		L1_C_PROTO_xscale
    980 #define	L2_S_PROTO		L2_S_PROTO_xscale
    981 
    982 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    983 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    984 #elif ARM_MMU_V7 == 1
    985 #define	L1_S_PROT_U		L1_S_PROT_U_armv7
    986 #define	L1_S_PROT_W		L1_S_PROT_W_armv7
    987 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv7
    988 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv7
    989 
    990 #define	L2_S_PROT_U		L2_S_PROT_U_armv7
    991 #define	L2_S_PROT_W		L2_S_PROT_W_armv7
    992 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv7
    993 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv7
    994 
    995 #define	L2_L_PROT_U		L2_L_PROT_U_armv7
    996 #define	L2_L_PROT_W		L2_L_PROT_W_armv7
    997 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv7
    998 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv7
    999 
   1000 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv7
   1001 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv7
   1002 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv7
   1003 
   1004 /* These prototypes make writeable mappings, while the other MMU types
   1005  * make read-only mappings. */
   1006 #define	L1_SS_PROTO		L1_SS_PROTO_armv7
   1007 #define	L1_S_PROTO		L1_S_PROTO_armv7
   1008 #define	L1_C_PROTO		L1_C_PROTO_armv7
   1009 #define	L2_S_PROTO		L2_S_PROTO_armv7
   1010 
   1011 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
   1012 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
   1013 #endif /* ARM_NMMUS > 1 */
   1014 
   1015 /*
   1016  * Macros to set and query the write permission on page descriptors.
   1017  */
   1018 #define l1pte_set_writable(pte)	(((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
   1019 #define l1pte_set_readonly(pte)	(((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
   1020 #define l2pte_set_writable(pte)	(((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
   1021 #define l2pte_set_readonly(pte)	(((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
   1022 
   1023 #define l2pte_writable_p(pte)	(((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
   1024 				 (L2_S_PROT_RO == 0 || \
   1025 				  ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
   1026 
   1027 /*
   1028  * These macros return various bits based on kernel/user and protection.
   1029  * Note that the compiler will usually fold these at compile time.
   1030  */
   1031 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
   1032 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
   1033 
   1034 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
   1035 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
   1036 
   1037 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
   1038 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
   1039 
   1040 /*
   1041  * Macros to test if a mapping is mappable with an L1 SuperSection,
   1042  * L1 Section, or an L2 Large Page mapping.
   1043  */
   1044 #define	L1_SS_MAPPABLE_P(va, pa, size)					\
   1045 	((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
   1046 
   1047 #define	L1_S_MAPPABLE_P(va, pa, size)					\
   1048 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
   1049 
   1050 #define	L2_L_MAPPABLE_P(va, pa, size)					\
   1051 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
   1052 
   1053 #ifndef _LOCORE
   1054 /*
   1055  * Hooks for the pool allocator.
   1056  */
   1057 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
   1058 extern paddr_t physical_start, physical_end;
   1059 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1060 struct vm_page *arm_pmap_alloc_poolpage(int);
   1061 #define	PMAP_ALLOC_POOLPAGE	arm_pmap_alloc_poolpage
   1062 #endif
   1063 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   1064 vaddr_t	pmap_map_poolpage(paddr_t);
   1065 paddr_t	pmap_unmap_poolpage(vaddr_t);
   1066 #define	PMAP_MAP_POOLPAGE(pa)	pmap_map_poolpage(pa)
   1067 #define PMAP_UNMAP_POOLPAGE(va)	pmap_unmap_poolpage(va)
   1068 #endif
   1069 
   1070 /*
   1071  * pmap-specific data store in the vm_page structure.
   1072  */
   1073 #define	__HAVE_VM_PAGE_MD
   1074 struct vm_page_md {
   1075 	SLIST_HEAD(,pv_entry) pvh_list;		/* pv_entry list */
   1076 	int pvh_attrs;				/* page attributes */
   1077 	u_int uro_mappings;
   1078 	u_int urw_mappings;
   1079 	union {
   1080 		u_short s_mappings[2];	/* Assume kernel count <= 65535 */
   1081 		u_int i_mappings;
   1082 	} k_u;
   1083 #define	kro_mappings	k_u.s_mappings[0]
   1084 #define	krw_mappings	k_u.s_mappings[1]
   1085 #define	k_mappings	k_u.i_mappings
   1086 };
   1087 
   1088 /*
   1089  * Set the default color of each page.
   1090  */
   1091 #if ARM_MMU_V6 > 0
   1092 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
   1093 	(pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
   1094 #else
   1095 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
   1096 	(pg)->mdpage.pvh_attrs = 0
   1097 #endif
   1098 
   1099 #define	VM_MDPAGE_INIT(pg)						\
   1100 do {									\
   1101 	SLIST_INIT(&(pg)->mdpage.pvh_list);				\
   1102 	VM_MDPAGE_PVH_ATTRS_INIT(pg);					\
   1103 	(pg)->mdpage.uro_mappings = 0;					\
   1104 	(pg)->mdpage.urw_mappings = 0;					\
   1105 	(pg)->mdpage.k_mappings = 0;					\
   1106 } while (/*CONSTCOND*/0)
   1107 
   1108 #endif /* !_LOCORE */
   1109 
   1110 #endif /* _KERNEL */
   1111 
   1112 #endif	/* _ARM32_PMAP_H_ */
   1113