pmap.h revision 1.148 1 /* $NetBSD: pmap.h,v 1.148 2017/07/06 06:31:24 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #include "opt_multiprocessor.h"
79 #endif
80 #include <arm/cpufunc.h>
81 #include <arm/locore.h>
82 #include <uvm/uvm_object.h>
83 #include <uvm/pmap/pmap_pvt.h>
84 #endif
85
86 #ifdef ARM_MMU_EXTENDED
87 #define PMAP_HWPAGEWALKER 1
88 #define PMAP_TLB_MAX 1
89 #if PMAP_TLB_MAX > 1
90 #define PMAP_TLB_NEED_SHOOTDOWN 1
91 #endif
92 #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
93 #define PMAP_TLB_NUM_PIDS 256
94 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
95 #if PMAP_TLB_MAX > 1
96 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
97 #else
98 #define cpu_tlb_info(ci) (&pmap_tlb0_info)
99 #endif
100 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
101 #include <uvm/pmap/tlb.h>
102 #include <uvm/pmap/pmap_tlb.h>
103
104 /*
105 * If we have an EXTENDED MMU and the address space is split evenly between
106 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
107 * user and kernel address spaces.
108 */
109 #if (KERNEL_BASE & 0x80000000) == 0
110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
111 #endif
112 #endif /* ARM_MMU_EXTENDED */
113
114 /*
115 * a pmap describes a processes' 4GB virtual address space. this
116 * virtual address space can be broken up into 4096 1MB regions which
117 * are described by L1 PTEs in the L1 table.
118 *
119 * There is a line drawn at KERNEL_BASE. Everything below that line
120 * changes when the VM context is switched. Everything above that line
121 * is the same no matter which VM context is running. This is achieved
122 * by making the L1 PTEs for those slots above KERNEL_BASE reference
123 * kernel L2 tables.
124 *
125 * The basic layout of the virtual address space thus looks like this:
126 *
127 * 0xffffffff
128 * .
129 * .
130 * .
131 * KERNEL_BASE
132 * --------------------
133 * .
134 * .
135 * .
136 * 0x00000000
137 */
138
139 /*
140 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141 * A bucket size of 16 provides for 16MB of contiguous virtual address
142 * space per l2_dtable. Most processes will, therefore, require only two or
143 * three of these to map their whole working set.
144 */
145 #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
146 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
147 #define L2_BUCKET_LOG2 4
148 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
149
150 /*
151 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152 * of l2_dtable structures required to track all possible page descriptors
153 * mappable by an L1 translation table is given by the following constants:
154 */
155 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
156 #define L2_SIZE (1 << L2_LOG2)
157
158 /*
159 * tell MI code that the cache is virtually-indexed.
160 * ARMv6 is physically-tagged but all others are virtually-tagged.
161 */
162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
163 #define PMAP_CACHE_VIPT
164 #else
165 #define PMAP_CACHE_VIVT
166 #endif
167
168 #ifndef _LOCORE
169
170 #ifndef ARM_MMU_EXTENDED
171 struct l1_ttable;
172 struct l2_dtable;
173
174 /*
175 * Track cache/tlb occupancy using the following structure
176 */
177 union pmap_cache_state {
178 struct {
179 union {
180 uint8_t csu_cache_b[2];
181 uint16_t csu_cache;
182 } cs_cache_u;
183
184 union {
185 uint8_t csu_tlb_b[2];
186 uint16_t csu_tlb;
187 } cs_tlb_u;
188 } cs_s;
189 uint32_t cs_all;
190 };
191 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
192 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
193 #define cs_cache cs_s.cs_cache_u.csu_cache
194 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
195 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
196 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
197
198 /*
199 * Assigned to cs_all to force cacheops to work for a particular pmap
200 */
201 #define PMAP_CACHE_STATE_ALL 0xffffffffu
202 #endif /* !ARM_MMU_EXTENDED */
203
204 /*
205 * This structure is used by machine-dependent code to describe
206 * static mappings of devices, created at bootstrap time.
207 */
208 struct pmap_devmap {
209 vaddr_t pd_va; /* virtual address */
210 paddr_t pd_pa; /* physical address */
211 psize_t pd_size; /* size of region */
212 vm_prot_t pd_prot; /* protection code */
213 int pd_cache; /* cache attributes */
214 };
215
216 /*
217 * The pmap structure itself
218 */
219 struct pmap {
220 struct uvm_object pm_obj;
221 kmutex_t pm_obj_lock;
222 #define pm_lock pm_obj.vmobjlock
223 #ifndef ARM_HAS_VBAR
224 pd_entry_t *pm_pl1vec;
225 pd_entry_t pm_l1vec;
226 #endif
227 struct l2_dtable *pm_l2[L2_SIZE];
228 struct pmap_statistics pm_stats;
229 LIST_ENTRY(pmap) pm_list;
230 #ifdef ARM_MMU_EXTENDED
231 pd_entry_t *pm_l1;
232 paddr_t pm_l1_pa;
233 bool pm_remove_all;
234 #ifdef MULTIPROCESSOR
235 kcpuset_t *pm_onproc;
236 kcpuset_t *pm_active;
237 #if PMAP_TLB_MAX > 1
238 u_int pm_shootdown_pending;
239 #endif
240 #endif
241 struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
242 #else
243 struct l1_ttable *pm_l1;
244 union pmap_cache_state pm_cstate;
245 uint8_t pm_domain;
246 bool pm_activated;
247 bool pm_remove_all;
248 #endif
249 };
250
251 struct pmap_kernel {
252 struct pmap kernel_pmap;
253 };
254
255 /*
256 * Physical / virtual address structure. In a number of places (particularly
257 * during bootstrapping) we need to keep track of the physical and virtual
258 * addresses of various pages
259 */
260 typedef struct pv_addr {
261 SLIST_ENTRY(pv_addr) pv_list;
262 paddr_t pv_pa;
263 vaddr_t pv_va;
264 vsize_t pv_size;
265 uint8_t pv_cache;
266 uint8_t pv_prot;
267 } pv_addr_t;
268 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
269
270 extern pv_addrqh_t pmap_freeq;
271 extern pv_addr_t kernelstack;
272 extern pv_addr_t abtstack;
273 extern pv_addr_t fiqstack;
274 extern pv_addr_t irqstack;
275 extern pv_addr_t undstack;
276 extern pv_addr_t idlestack;
277 extern pv_addr_t systempage;
278 extern pv_addr_t kernel_l1pt;
279
280 #ifdef ARM_MMU_EXTENDED
281 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
282 #endif
283
284 /*
285 * Determine various modes for PTEs (user vs. kernel, cacheable
286 * vs. non-cacheable).
287 */
288 #define PTE_KERNEL 0
289 #define PTE_USER 1
290 #define PTE_NOCACHE 0
291 #define PTE_CACHE 1
292 #define PTE_PAGETABLE 2
293
294 /*
295 * Flags that indicate attributes of pages or mappings of pages.
296 *
297 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
298 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
299 * pv_entry's for each page. They live in the same "namespace" so
300 * that we can clear multiple attributes at a time.
301 *
302 * Note the "non-cacheable" flag generally means the page has
303 * multiple mappings in a given address space.
304 */
305 #define PVF_MOD 0x01 /* page is modified */
306 #define PVF_REF 0x02 /* page is referenced */
307 #define PVF_WIRED 0x04 /* mapping is wired */
308 #define PVF_WRITE 0x08 /* mapping is writable */
309 #define PVF_EXEC 0x10 /* mapping is executable */
310 #ifdef PMAP_CACHE_VIVT
311 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
312 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
313 #define PVF_NC (PVF_UNC|PVF_KNC)
314 #endif
315 #ifdef PMAP_CACHE_VIPT
316 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
317 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
318 #endif
319 #define PVF_COLORED 0x80 /* page has or had a color */
320 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
321 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
322 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
323 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
324 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
325 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
326
327 /*
328 * Commonly referenced structures
329 */
330 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
331 extern int arm_poolpage_vmfreelist;
332
333 /*
334 * Macros that we need to export
335 */
336 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
337 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
338
339 #define pmap_is_modified(pg) \
340 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
341 #define pmap_is_referenced(pg) \
342 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
343 #define pmap_is_page_colored_p(md) \
344 (((md)->pvh_attrs & PVF_COLORED) != 0)
345
346 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
347
348 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
349 u_int arm32_mmap_flags(paddr_t);
350 #define ARM32_MMAP_WRITECOMBINE 0x40000000
351 #define ARM32_MMAP_CACHEABLE 0x20000000
352 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
353
354 #define PMAP_PTE 0x10000000 /* kenter_pa */
355
356 /*
357 * Functions that we need to export
358 */
359 void pmap_procwr(struct proc *, vaddr_t, int);
360 void pmap_remove_all(pmap_t);
361 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
362
363 #define PMAP_NEED_PROCWR
364 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
365 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
366
367 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
368 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
369 void pmap_prefer(vaddr_t, vaddr_t *, int);
370 #endif
371
372 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
373
374 /* Functions we use internally. */
375 #ifdef PMAP_STEAL_MEMORY
376 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
377 void pmap_boot_pageadd(pv_addr_t *);
378 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
379 #endif
380 void pmap_bootstrap(vaddr_t, vaddr_t);
381
382 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
383 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
384 int pmap_prefetchabt_fixup(void *);
385 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
386 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
387 struct pcb;
388 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
389
390 void pmap_debug(int);
391 void pmap_postinit(void);
392
393 void vector_page_setprot(int);
394
395 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
396 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
397
398 /* Bootstrapping routines. */
399 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
400 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
401 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
402 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
403 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
404 void pmap_devmap_register(const struct pmap_devmap *);
405
406 /*
407 * Special page zero routine for use by the idle loop (no cache cleans).
408 */
409 bool pmap_pageidlezero(paddr_t);
410 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
411
412 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
413 /*
414 * For the pmap, this is a more useful way to map a direct mapped page.
415 * It returns either the direct-mapped VA or the VA supplied if it can't
416 * be direct mapped.
417 */
418 vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
419 #endif
420
421 /*
422 * used by dumpsys to record the PA of the L1 table
423 */
424 uint32_t pmap_kernel_L1_addr(void);
425 /*
426 * The current top of kernel VM
427 */
428 extern vaddr_t pmap_curmaxkvaddr;
429
430 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
431 /*
432 * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
433 */
434 extern vaddr_t pmap_directlimit;
435 #endif
436
437 /*
438 * Useful macros and constants
439 */
440
441 /* Virtual address to page table entry */
442 static inline pt_entry_t *
443 vtopte(vaddr_t va)
444 {
445 pd_entry_t *pdep;
446 pt_entry_t *ptep;
447
448 KASSERT(trunc_page(va) == va);
449
450 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
451 return (NULL);
452 return (ptep);
453 }
454
455 /*
456 * Virtual address to physical address
457 */
458 static inline paddr_t
459 vtophys(vaddr_t va)
460 {
461 paddr_t pa;
462
463 if (pmap_extract(pmap_kernel(), va, &pa) == false)
464 return (0); /* XXXSCW: Panic? */
465
466 return (pa);
467 }
468
469 /*
470 * The new pmap ensures that page-tables are always mapping Write-Thru.
471 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
472 * on every change.
473 *
474 * Unfortunately, not all CPUs have a write-through cache mode. So we
475 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
476 * and if there is the chance for PTE syncs to be needed, we define
477 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
478 * the code.
479 */
480 extern int pmap_needs_pte_sync;
481 #if defined(_KERNEL_OPT)
482 /*
483 * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
484 * single MMU type is selected.
485 *
486 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
487 * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
488 * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
489 *
490 * Use run time evaluation for all other cases.
491 *
492 */
493 #if (ARM_NMMUS == 1)
494 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
495 #define PMAP_INCLUDE_PTE_SYNC
496 #define PMAP_NEEDS_PTE_SYNC 1
497 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
498 #define PMAP_NEEDS_PTE_SYNC 0
499 #endif
500 #endif
501 #endif /* _KERNEL_OPT */
502
503 /*
504 * Provide a fallback in case we were not able to determine it at
505 * compile-time.
506 */
507 #ifndef PMAP_NEEDS_PTE_SYNC
508 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
509 #define PMAP_INCLUDE_PTE_SYNC
510 #endif
511
512 static inline void
513 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
514 {
515 if (PMAP_NEEDS_PTE_SYNC) {
516 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
517 #ifdef SHEEVA_L2_CACHE
518 cpu_sdcache_wb_range((vaddr_t)ptep, -1,
519 cnt * sizeof(pt_entry_t));
520 #endif
521 }
522 arm_dsb();
523 }
524
525 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
526 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
527 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
528 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
529
530 #define l1pte_valid_p(pde) ((pde) != 0)
531 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
532 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
533 && ((pde) & L1_S_V6_SUPER) != 0)
534 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
535 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
536 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
537 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
538 #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \
539 & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
540
541 static inline void
542 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
543 {
544 *pdep = pde;
545 }
546
547 static inline void
548 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
549 {
550 *pdep = pde;
551 if (l1pte_page_p(pde)) {
552 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
553 for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
554 pde += L2_T_SIZE;
555 pdep[k] = pde;
556 }
557 } else if (l1pte_supersection_p(pde)) {
558 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
559 for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
560 pdep[k] = pde;
561 }
562 }
563 }
564
565 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
566 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
567 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
568 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
569 #define l2pte_minidata_p(pte) (((pte) & \
570 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
571 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
572
573 static inline void
574 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
575 {
576 if (l1pte_lpage_p(pte)) {
577 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
578 for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
579 *ptep++ = pte;
580 }
581 } else {
582 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
583 for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
584 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
585 *ptep++ = pte;
586 pte += L2_S_SIZE;
587 if (opte)
588 opte += L2_S_SIZE;
589 }
590 }
591 }
592
593 static inline void
594 l2pte_reset(pt_entry_t *ptep)
595 {
596 KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
597 *ptep = 0;
598 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
599 ptep[k] = 0;
600 }
601 }
602
603 /* L1 and L2 page table macros */
604 #define pmap_pde_v(pde) l1pte_valid(*(pde))
605 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
606 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
607 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
608 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
609
610 #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
611 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
612
613 /* Size of the kernel part of the L1 page table */
614 #define KERNEL_PD_SIZE \
615 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
616
617 void bzero_page(vaddr_t);
618 void bcopy_page(vaddr_t, vaddr_t);
619
620 #ifdef FPU_VFP
621 void bzero_page_vfp(vaddr_t);
622 void bcopy_page_vfp(vaddr_t, vaddr_t);
623 #endif
624
625 /************************* ARM MMU configuration *****************************/
626
627 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
628 void pmap_copy_page_generic(paddr_t, paddr_t);
629 void pmap_zero_page_generic(paddr_t);
630
631 void pmap_pte_init_generic(void);
632 #if defined(CPU_ARM8)
633 void pmap_pte_init_arm8(void);
634 #endif
635 #if defined(CPU_ARM9)
636 void pmap_pte_init_arm9(void);
637 #endif /* CPU_ARM9 */
638 #if defined(CPU_ARM10)
639 void pmap_pte_init_arm10(void);
640 #endif /* CPU_ARM10 */
641 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
642 void pmap_pte_init_arm11(void);
643 #endif /* CPU_ARM11 */
644 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
645 void pmap_pte_init_arm11mpcore(void);
646 #endif
647 #if ARM_MMU_V7 == 1
648 void pmap_pte_init_armv7(void);
649 #endif /* ARM_MMU_V7 */
650 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
651
652 #if ARM_MMU_SA1 == 1
653 void pmap_pte_init_sa1(void);
654 #endif /* ARM_MMU_SA1 == 1 */
655
656 #if ARM_MMU_XSCALE == 1
657 void pmap_copy_page_xscale(paddr_t, paddr_t);
658 void pmap_zero_page_xscale(paddr_t);
659
660 void pmap_pte_init_xscale(void);
661
662 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
663
664 #define PMAP_UAREA(va) pmap_uarea(va)
665 void pmap_uarea(vaddr_t);
666 #endif /* ARM_MMU_XSCALE == 1 */
667
668 extern pt_entry_t pte_l1_s_cache_mode;
669 extern pt_entry_t pte_l1_s_cache_mask;
670
671 extern pt_entry_t pte_l2_l_cache_mode;
672 extern pt_entry_t pte_l2_l_cache_mask;
673
674 extern pt_entry_t pte_l2_s_cache_mode;
675 extern pt_entry_t pte_l2_s_cache_mask;
676
677 extern pt_entry_t pte_l1_s_cache_mode_pt;
678 extern pt_entry_t pte_l2_l_cache_mode_pt;
679 extern pt_entry_t pte_l2_s_cache_mode_pt;
680
681 extern pt_entry_t pte_l1_s_wc_mode;
682 extern pt_entry_t pte_l2_l_wc_mode;
683 extern pt_entry_t pte_l2_s_wc_mode;
684
685 extern pt_entry_t pte_l1_s_prot_u;
686 extern pt_entry_t pte_l1_s_prot_w;
687 extern pt_entry_t pte_l1_s_prot_ro;
688 extern pt_entry_t pte_l1_s_prot_mask;
689
690 extern pt_entry_t pte_l2_s_prot_u;
691 extern pt_entry_t pte_l2_s_prot_w;
692 extern pt_entry_t pte_l2_s_prot_ro;
693 extern pt_entry_t pte_l2_s_prot_mask;
694
695 extern pt_entry_t pte_l2_l_prot_u;
696 extern pt_entry_t pte_l2_l_prot_w;
697 extern pt_entry_t pte_l2_l_prot_ro;
698 extern pt_entry_t pte_l2_l_prot_mask;
699
700 extern pt_entry_t pte_l1_ss_proto;
701 extern pt_entry_t pte_l1_s_proto;
702 extern pt_entry_t pte_l1_c_proto;
703 extern pt_entry_t pte_l2_s_proto;
704
705 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
706 extern void (*pmap_zero_page_func)(paddr_t);
707
708 #endif /* !_LOCORE */
709
710 /*****************************************************************************/
711
712 #define KERNEL_PID 0 /* The kernel uses ASID 0 */
713
714 /*
715 * Definitions for MMU domains
716 */
717 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
718 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
719 #ifdef ARM_MMU_EXTENDED
720 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
721 #endif
722
723 /*
724 * These macros define the various bit masks in the PTE.
725 *
726 * We use these macros since we use different bits on different processor
727 * models.
728 */
729 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
730 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
731 #define L1_S_PROT_RO_generic (0)
732 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
733
734 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
735 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
736 #define L1_S_PROT_RO_xscale (0)
737 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
738
739 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
740 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
741 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
742 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
743
744 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
745 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
746 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
747 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
748
749 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
750 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
751 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
752 #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
753 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
754
755 #define L2_L_PROT_U_generic (L2_AP(AP_U))
756 #define L2_L_PROT_W_generic (L2_AP(AP_W))
757 #define L2_L_PROT_RO_generic (0)
758 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
759
760 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
761 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
762 #define L2_L_PROT_RO_xscale (0)
763 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
764
765 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
766 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
767 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
768 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
769
770 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
771 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
772 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
773 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
774
775 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
776 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
777 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
778 #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
779 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
780
781 #define L2_S_PROT_U_generic (L2_AP(AP_U))
782 #define L2_S_PROT_W_generic (L2_AP(AP_W))
783 #define L2_S_PROT_RO_generic (0)
784 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
785
786 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
787 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
788 #define L2_S_PROT_RO_xscale (0)
789 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
790
791 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
792 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
793 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
794 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
795
796 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
797 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
798 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
799 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
800
801 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
802 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
803 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
804 #ifdef ARMV6_EXTENDED_SMALL_PAGE
805 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
806 #else
807 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
808 #endif
809 #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
810 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
811
812
813 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
814 #define L1_S_PROTO_xscale (L1_TYPE_S)
815 #define L1_S_PROTO_armv6 (L1_TYPE_S)
816 #define L1_S_PROTO_armv7 (L1_TYPE_S)
817
818 #define L1_SS_PROTO_generic 0
819 #define L1_SS_PROTO_xscale 0
820 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
821 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
822
823 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
824 #define L1_C_PROTO_xscale (L1_TYPE_C)
825 #define L1_C_PROTO_armv6 (L1_TYPE_C)
826 #define L1_C_PROTO_armv7 (L1_TYPE_C)
827
828 #define L2_L_PROTO (L2_TYPE_L)
829
830 #define L2_S_PROTO_generic (L2_TYPE_S)
831 #define L2_S_PROTO_xscale (L2_TYPE_XS)
832 #ifdef ARMV6_EXTENDED_SMALL_PAGE
833 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
834 #else
835 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
836 #endif
837 #ifdef ARM_MMU_EXTENDED
838 #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
839 #else
840 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
841 #endif
842 #ifdef ARM_MMU_EXTENDED
843 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
844 #else
845 #define L2_S_PROTO_armv7 (L2_TYPE_S)
846 #endif
847
848 /*
849 * User-visible names for the ones that vary with MMU class.
850 */
851
852 #if ARM_NMMUS > 1
853 /* More than one MMU class configured; use variables. */
854 #define L1_S_PROT_U pte_l1_s_prot_u
855 #define L1_S_PROT_W pte_l1_s_prot_w
856 #define L1_S_PROT_RO pte_l1_s_prot_ro
857 #define L1_S_PROT_MASK pte_l1_s_prot_mask
858
859 #define L2_S_PROT_U pte_l2_s_prot_u
860 #define L2_S_PROT_W pte_l2_s_prot_w
861 #define L2_S_PROT_RO pte_l2_s_prot_ro
862 #define L2_S_PROT_MASK pte_l2_s_prot_mask
863
864 #define L2_L_PROT_U pte_l2_l_prot_u
865 #define L2_L_PROT_W pte_l2_l_prot_w
866 #define L2_L_PROT_RO pte_l2_l_prot_ro
867 #define L2_L_PROT_MASK pte_l2_l_prot_mask
868
869 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
870 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
871 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
872
873 #define L1_SS_PROTO pte_l1_ss_proto
874 #define L1_S_PROTO pte_l1_s_proto
875 #define L1_C_PROTO pte_l1_c_proto
876 #define L2_S_PROTO pte_l2_s_proto
877
878 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
879 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
880 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
881 #define L1_S_PROT_U L1_S_PROT_U_generic
882 #define L1_S_PROT_W L1_S_PROT_W_generic
883 #define L1_S_PROT_RO L1_S_PROT_RO_generic
884 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
885
886 #define L2_S_PROT_U L2_S_PROT_U_generic
887 #define L2_S_PROT_W L2_S_PROT_W_generic
888 #define L2_S_PROT_RO L2_S_PROT_RO_generic
889 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
890
891 #define L2_L_PROT_U L2_L_PROT_U_generic
892 #define L2_L_PROT_W L2_L_PROT_W_generic
893 #define L2_L_PROT_RO L2_L_PROT_RO_generic
894 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
895
896 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
897 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
898 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
899
900 #define L1_SS_PROTO L1_SS_PROTO_generic
901 #define L1_S_PROTO L1_S_PROTO_generic
902 #define L1_C_PROTO L1_C_PROTO_generic
903 #define L2_S_PROTO L2_S_PROTO_generic
904
905 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
906 #define pmap_zero_page(d) pmap_zero_page_generic((d))
907 #elif ARM_MMU_V6N != 0
908 #define L1_S_PROT_U L1_S_PROT_U_armv6
909 #define L1_S_PROT_W L1_S_PROT_W_armv6
910 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
911 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
912
913 #define L2_S_PROT_U L2_S_PROT_U_armv6n
914 #define L2_S_PROT_W L2_S_PROT_W_armv6n
915 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
916 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
917
918 #define L2_L_PROT_U L2_L_PROT_U_armv6n
919 #define L2_L_PROT_W L2_L_PROT_W_armv6n
920 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
921 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
922
923 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
924 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
925 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
926
927 /* These prototypes make writeable mappings, while the other MMU types
928 * make read-only mappings. */
929 #define L1_SS_PROTO L1_SS_PROTO_armv6
930 #define L1_S_PROTO L1_S_PROTO_armv6
931 #define L1_C_PROTO L1_C_PROTO_armv6
932 #define L2_S_PROTO L2_S_PROTO_armv6n
933
934 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
935 #define pmap_zero_page(d) pmap_zero_page_generic((d))
936 #elif ARM_MMU_V6C != 0
937 #define L1_S_PROT_U L1_S_PROT_U_generic
938 #define L1_S_PROT_W L1_S_PROT_W_generic
939 #define L1_S_PROT_RO L1_S_PROT_RO_generic
940 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
941
942 #define L2_S_PROT_U L2_S_PROT_U_generic
943 #define L2_S_PROT_W L2_S_PROT_W_generic
944 #define L2_S_PROT_RO L2_S_PROT_RO_generic
945 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
946
947 #define L2_L_PROT_U L2_L_PROT_U_generic
948 #define L2_L_PROT_W L2_L_PROT_W_generic
949 #define L2_L_PROT_RO L2_L_PROT_RO_generic
950 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
951
952 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
953 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
954 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
955
956 #define L1_SS_PROTO L1_SS_PROTO_armv6
957 #define L1_S_PROTO L1_S_PROTO_generic
958 #define L1_C_PROTO L1_C_PROTO_generic
959 #define L2_S_PROTO L2_S_PROTO_generic
960
961 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
962 #define pmap_zero_page(d) pmap_zero_page_generic((d))
963 #elif ARM_MMU_XSCALE == 1
964 #define L1_S_PROT_U L1_S_PROT_U_generic
965 #define L1_S_PROT_W L1_S_PROT_W_generic
966 #define L1_S_PROT_RO L1_S_PROT_RO_generic
967 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
968
969 #define L2_S_PROT_U L2_S_PROT_U_xscale
970 #define L2_S_PROT_W L2_S_PROT_W_xscale
971 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
972 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
973
974 #define L2_L_PROT_U L2_L_PROT_U_generic
975 #define L2_L_PROT_W L2_L_PROT_W_generic
976 #define L2_L_PROT_RO L2_L_PROT_RO_generic
977 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
978
979 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
980 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
981 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
982
983 #define L1_SS_PROTO L1_SS_PROTO_xscale
984 #define L1_S_PROTO L1_S_PROTO_xscale
985 #define L1_C_PROTO L1_C_PROTO_xscale
986 #define L2_S_PROTO L2_S_PROTO_xscale
987
988 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
989 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
990 #elif ARM_MMU_V7 == 1
991 #define L1_S_PROT_U L1_S_PROT_U_armv7
992 #define L1_S_PROT_W L1_S_PROT_W_armv7
993 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
994 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
995
996 #define L2_S_PROT_U L2_S_PROT_U_armv7
997 #define L2_S_PROT_W L2_S_PROT_W_armv7
998 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
999 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1000
1001 #define L2_L_PROT_U L2_L_PROT_U_armv7
1002 #define L2_L_PROT_W L2_L_PROT_W_armv7
1003 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1004 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1005
1006 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1007 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1008 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1009
1010 /* These prototypes make writeable mappings, while the other MMU types
1011 * make read-only mappings. */
1012 #define L1_SS_PROTO L1_SS_PROTO_armv7
1013 #define L1_S_PROTO L1_S_PROTO_armv7
1014 #define L1_C_PROTO L1_C_PROTO_armv7
1015 #define L2_S_PROTO L2_S_PROTO_armv7
1016
1017 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1018 #define pmap_zero_page(d) pmap_zero_page_generic((d))
1019 #endif /* ARM_NMMUS > 1 */
1020
1021 /*
1022 * Macros to set and query the write permission on page descriptors.
1023 */
1024 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1025 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1026 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1027 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1028
1029 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1030 (L2_S_PROT_RO == 0 || \
1031 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1032
1033 /*
1034 * These macros return various bits based on kernel/user and protection.
1035 * Note that the compiler will usually fold these at compile time.
1036 */
1037 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
1038 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
1039
1040 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
1041 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
1042
1043 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
1044 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
1045
1046 /*
1047 * Macros to test if a mapping is mappable with an L1 SuperSection,
1048 * L1 Section, or an L2 Large Page mapping.
1049 */
1050 #define L1_SS_MAPPABLE_P(va, pa, size) \
1051 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1052
1053 #define L1_S_MAPPABLE_P(va, pa, size) \
1054 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1055
1056 #define L2_L_MAPPABLE_P(va, pa, size) \
1057 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1058
1059 #ifndef _LOCORE
1060 /*
1061 * Hooks for the pool allocator.
1062 */
1063 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1064 extern paddr_t physical_start, physical_end;
1065 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1066 struct vm_page *arm_pmap_alloc_poolpage(int);
1067 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1068 #endif
1069 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1070 vaddr_t pmap_map_poolpage(paddr_t);
1071 paddr_t pmap_unmap_poolpage(vaddr_t);
1072 #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1073 #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1074 #endif
1075
1076 #define __HAVE_PMAP_PV_TRACK 1
1077
1078 void pmap_pv_protect(paddr_t, vm_prot_t);
1079
1080 struct pmap_page {
1081 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1082 int pvh_attrs; /* page attributes */
1083 u_int uro_mappings;
1084 u_int urw_mappings;
1085 union {
1086 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1087 u_int i_mappings;
1088 } k_u;
1089 };
1090
1091 /*
1092 * pmap-specific data store in the vm_page structure.
1093 */
1094 #define __HAVE_VM_PAGE_MD
1095 struct vm_page_md {
1096 struct pmap_page pp;
1097 #define pvh_list pp.pvh_list
1098 #define pvh_attrs pp.pvh_attrs
1099 #define uro_mappings pp.uro_mappings
1100 #define urw_mappings pp.urw_mappings
1101 #define kro_mappings pp.k_u.s_mappings[0]
1102 #define krw_mappings pp.k_u.s_mappings[1]
1103 #define k_mappings pp.k_u.i_mappings
1104 };
1105
1106 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1107
1108 /*
1109 * Set the default color of each page.
1110 */
1111 #if ARM_MMU_V6 > 0
1112 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1113 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
1114 #else
1115 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1116 (pg)->mdpage.pvh_attrs = 0
1117 #endif
1118
1119 #define VM_MDPAGE_INIT(pg) \
1120 do { \
1121 SLIST_INIT(&(pg)->mdpage.pvh_list); \
1122 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1123 (pg)->mdpage.uro_mappings = 0; \
1124 (pg)->mdpage.urw_mappings = 0; \
1125 (pg)->mdpage.k_mappings = 0; \
1126 } while (/*CONSTCOND*/0)
1127
1128 #endif /* !_LOCORE */
1129
1130 #endif /* _KERNEL */
1131
1132 #endif /* _ARM32_PMAP_H_ */
1133