Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.148
      1 /*	$NetBSD: pmap.h,v 1.148 2017/07/06 06:31:24 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #if defined(_KERNEL_OPT)
     77 #include "opt_arm32_pmap.h"
     78 #include "opt_multiprocessor.h"
     79 #endif
     80 #include <arm/cpufunc.h>
     81 #include <arm/locore.h>
     82 #include <uvm/uvm_object.h>
     83 #include <uvm/pmap/pmap_pvt.h>
     84 #endif
     85 
     86 #ifdef ARM_MMU_EXTENDED
     87 #define PMAP_HWPAGEWALKER		1
     88 #define PMAP_TLB_MAX			1
     89 #if PMAP_TLB_MAX > 1
     90 #define PMAP_TLB_NEED_SHOOTDOWN		1
     91 #endif
     92 #define PMAP_TLB_FLUSH_ASID_ON_RESET	(arm_has_tlbiasid_p)
     93 #define PMAP_TLB_NUM_PIDS		256
     94 #define cpu_set_tlb_info(ci, ti)        ((void)((ci)->ci_tlb_info = (ti)))
     95 #if PMAP_TLB_MAX > 1
     96 #define cpu_tlb_info(ci)		((ci)->ci_tlb_info)
     97 #else
     98 #define cpu_tlb_info(ci)		(&pmap_tlb0_info)
     99 #endif
    100 #define pmap_md_tlb_asid_max()		(PMAP_TLB_NUM_PIDS - 1)
    101 #include <uvm/pmap/tlb.h>
    102 #include <uvm/pmap/pmap_tlb.h>
    103 
    104 /*
    105  * If we have an EXTENDED MMU and the address space is split evenly between
    106  * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
    107  * user and kernel address spaces.
    108  */
    109 #if (KERNEL_BASE & 0x80000000) == 0
    110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
    111 #endif
    112 #endif  /* ARM_MMU_EXTENDED */
    113 
    114 /*
    115  * a pmap describes a processes' 4GB virtual address space.  this
    116  * virtual address space can be broken up into 4096 1MB regions which
    117  * are described by L1 PTEs in the L1 table.
    118  *
    119  * There is a line drawn at KERNEL_BASE.  Everything below that line
    120  * changes when the VM context is switched.  Everything above that line
    121  * is the same no matter which VM context is running.  This is achieved
    122  * by making the L1 PTEs for those slots above KERNEL_BASE reference
    123  * kernel L2 tables.
    124  *
    125  * The basic layout of the virtual address space thus looks like this:
    126  *
    127  *	0xffffffff
    128  *	.
    129  *	.
    130  *	.
    131  *	KERNEL_BASE
    132  *	--------------------
    133  *	.
    134  *	.
    135  *	.
    136  *	0x00000000
    137  */
    138 
    139 /*
    140  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    141  * A bucket size of 16 provides for 16MB of contiguous virtual address
    142  * space per l2_dtable. Most processes will, therefore, require only two or
    143  * three of these to map their whole working set.
    144  */
    145 #define	L2_BUCKET_XLOG2	(L1_S_SHIFT)
    146 #define L2_BUCKET_XSIZE	(1 << L2_BUCKET_XLOG2)
    147 #define	L2_BUCKET_LOG2	4
    148 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    149 
    150 /*
    151  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    152  * of l2_dtable structures required to track all possible page descriptors
    153  * mappable by an L1 translation table is given by the following constants:
    154  */
    155 #define	L2_LOG2		(32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
    156 #define	L2_SIZE		(1 << L2_LOG2)
    157 
    158 /*
    159  * tell MI code that the cache is virtually-indexed.
    160  * ARMv6 is physically-tagged but all others are virtually-tagged.
    161  */
    162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    163 #define PMAP_CACHE_VIPT
    164 #else
    165 #define PMAP_CACHE_VIVT
    166 #endif
    167 
    168 #ifndef _LOCORE
    169 
    170 #ifndef ARM_MMU_EXTENDED
    171 struct l1_ttable;
    172 struct l2_dtable;
    173 
    174 /*
    175  * Track cache/tlb occupancy using the following structure
    176  */
    177 union pmap_cache_state {
    178 	struct {
    179 		union {
    180 			uint8_t csu_cache_b[2];
    181 			uint16_t csu_cache;
    182 		} cs_cache_u;
    183 
    184 		union {
    185 			uint8_t csu_tlb_b[2];
    186 			uint16_t csu_tlb;
    187 		} cs_tlb_u;
    188 	} cs_s;
    189 	uint32_t cs_all;
    190 };
    191 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    192 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    193 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    194 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    195 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    196 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    197 
    198 /*
    199  * Assigned to cs_all to force cacheops to work for a particular pmap
    200  */
    201 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    202 #endif /* !ARM_MMU_EXTENDED */
    203 
    204 /*
    205  * This structure is used by machine-dependent code to describe
    206  * static mappings of devices, created at bootstrap time.
    207  */
    208 struct pmap_devmap {
    209 	vaddr_t		pd_va;		/* virtual address */
    210 	paddr_t		pd_pa;		/* physical address */
    211 	psize_t		pd_size;	/* size of region */
    212 	vm_prot_t	pd_prot;	/* protection code */
    213 	int		pd_cache;	/* cache attributes */
    214 };
    215 
    216 /*
    217  * The pmap structure itself
    218  */
    219 struct pmap {
    220 	struct uvm_object	pm_obj;
    221 	kmutex_t		pm_obj_lock;
    222 #define	pm_lock pm_obj.vmobjlock
    223 #ifndef ARM_HAS_VBAR
    224 	pd_entry_t		*pm_pl1vec;
    225 	pd_entry_t		pm_l1vec;
    226 #endif
    227 	struct l2_dtable	*pm_l2[L2_SIZE];
    228 	struct pmap_statistics	pm_stats;
    229 	LIST_ENTRY(pmap)	pm_list;
    230 #ifdef ARM_MMU_EXTENDED
    231 	pd_entry_t		*pm_l1;
    232 	paddr_t			pm_l1_pa;
    233 	bool			pm_remove_all;
    234 #ifdef MULTIPROCESSOR
    235 	kcpuset_t		*pm_onproc;
    236 	kcpuset_t		*pm_active;
    237 #if PMAP_TLB_MAX > 1
    238 	u_int			pm_shootdown_pending;
    239 #endif
    240 #endif
    241 	struct pmap_asid_info	pm_pai[PMAP_TLB_MAX];
    242 #else
    243 	struct l1_ttable	*pm_l1;
    244 	union pmap_cache_state	pm_cstate;
    245 	uint8_t			pm_domain;
    246 	bool			pm_activated;
    247 	bool			pm_remove_all;
    248 #endif
    249 };
    250 
    251 struct pmap_kernel {
    252 	struct pmap		kernel_pmap;
    253 };
    254 
    255 /*
    256  * Physical / virtual address structure. In a number of places (particularly
    257  * during bootstrapping) we need to keep track of the physical and virtual
    258  * addresses of various pages
    259  */
    260 typedef struct pv_addr {
    261 	SLIST_ENTRY(pv_addr) pv_list;
    262 	paddr_t pv_pa;
    263 	vaddr_t pv_va;
    264 	vsize_t pv_size;
    265 	uint8_t pv_cache;
    266 	uint8_t pv_prot;
    267 } pv_addr_t;
    268 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
    269 
    270 extern pv_addrqh_t pmap_freeq;
    271 extern pv_addr_t kernelstack;
    272 extern pv_addr_t abtstack;
    273 extern pv_addr_t fiqstack;
    274 extern pv_addr_t irqstack;
    275 extern pv_addr_t undstack;
    276 extern pv_addr_t idlestack;
    277 extern pv_addr_t systempage;
    278 extern pv_addr_t kernel_l1pt;
    279 
    280 #ifdef ARM_MMU_EXTENDED
    281 extern bool arm_has_tlbiasid_p;	/* also in <arm/locore.h> */
    282 #endif
    283 
    284 /*
    285  * Determine various modes for PTEs (user vs. kernel, cacheable
    286  * vs. non-cacheable).
    287  */
    288 #define	PTE_KERNEL	0
    289 #define	PTE_USER	1
    290 #define	PTE_NOCACHE	0
    291 #define	PTE_CACHE	1
    292 #define	PTE_PAGETABLE	2
    293 
    294 /*
    295  * Flags that indicate attributes of pages or mappings of pages.
    296  *
    297  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    298  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    299  * pv_entry's for each page.  They live in the same "namespace" so
    300  * that we can clear multiple attributes at a time.
    301  *
    302  * Note the "non-cacheable" flag generally means the page has
    303  * multiple mappings in a given address space.
    304  */
    305 #define	PVF_MOD		0x01		/* page is modified */
    306 #define	PVF_REF		0x02		/* page is referenced */
    307 #define	PVF_WIRED	0x04		/* mapping is wired */
    308 #define	PVF_WRITE	0x08		/* mapping is writable */
    309 #define	PVF_EXEC	0x10		/* mapping is executable */
    310 #ifdef PMAP_CACHE_VIVT
    311 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    312 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    313 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    314 #endif
    315 #ifdef PMAP_CACHE_VIPT
    316 #define	PVF_NC		0x20		/* mapping is 'kernel' non-cacheable */
    317 #define	PVF_MULTCLR	0x40		/* mapping is multi-colored */
    318 #endif
    319 #define	PVF_COLORED	0x80		/* page has or had a color */
    320 #define	PVF_KENTRY	0x0100		/* page entered via pmap_kenter_pa */
    321 #define	PVF_KMPAGE	0x0200		/* page is used for kmem */
    322 #define	PVF_DIRTY	0x0400		/* page may have dirty cache lines */
    323 #define	PVF_KMOD	0x0800		/* unmanaged page is modified  */
    324 #define	PVF_KWRITE	(PVF_KENTRY|PVF_WRITE)
    325 #define	PVF_DMOD	(PVF_MOD|PVF_KMOD|PVF_KMPAGE)
    326 
    327 /*
    328  * Commonly referenced structures
    329  */
    330 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    331 extern int		arm_poolpage_vmfreelist;
    332 
    333 /*
    334  * Macros that we need to export
    335  */
    336 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    337 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    338 
    339 #define	pmap_is_modified(pg)	\
    340 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    341 #define	pmap_is_referenced(pg)	\
    342 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    343 #define	pmap_is_page_colored_p(md)	\
    344 	(((md)->pvh_attrs & PVF_COLORED) != 0)
    345 
    346 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    347 
    348 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    349 u_int arm32_mmap_flags(paddr_t);
    350 #define ARM32_MMAP_WRITECOMBINE		0x40000000
    351 #define ARM32_MMAP_CACHEABLE		0x20000000
    352 #define pmap_mmap_flags(ppn)		arm32_mmap_flags(ppn)
    353 
    354 #define	PMAP_PTE			0x10000000 /* kenter_pa */
    355 
    356 /*
    357  * Functions that we need to export
    358  */
    359 void	pmap_procwr(struct proc *, vaddr_t, int);
    360 void	pmap_remove_all(pmap_t);
    361 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
    362 
    363 #define	PMAP_NEED_PROCWR
    364 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    365 #define	PMAP_ENABLE_PMAP_KMPAGE	/* enable the PMAP_KMPAGE flag */
    366 
    367 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    368 #define	PMAP_PREFER(hint, vap, sz, td)	pmap_prefer((hint), (vap), (td))
    369 void	pmap_prefer(vaddr_t, vaddr_t *, int);
    370 #endif
    371 
    372 void	pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
    373 
    374 /* Functions we use internally. */
    375 #ifdef PMAP_STEAL_MEMORY
    376 void	pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
    377 void	pmap_boot_pageadd(pv_addr_t *);
    378 vaddr_t	pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    379 #endif
    380 void	pmap_bootstrap(vaddr_t, vaddr_t);
    381 
    382 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
    383 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    384 int	pmap_prefetchabt_fixup(void *);
    385 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    386 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    387 struct pcb;
    388 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    389 
    390 void	pmap_debug(int);
    391 void	pmap_postinit(void);
    392 
    393 void	vector_page_setprot(int);
    394 
    395 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    396 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    397 
    398 /* Bootstrapping routines. */
    399 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    400 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    401 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    402 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    403 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    404 void	pmap_devmap_register(const struct pmap_devmap *);
    405 
    406 /*
    407  * Special page zero routine for use by the idle loop (no cache cleans).
    408  */
    409 bool	pmap_pageidlezero(paddr_t);
    410 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    411 
    412 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    413 /*
    414  * For the pmap, this is a more useful way to map a direct mapped page.
    415  * It returns either the direct-mapped VA or the VA supplied if it can't
    416  * be direct mapped.
    417  */
    418 vaddr_t	pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
    419 #endif
    420 
    421 /*
    422  * used by dumpsys to record the PA of the L1 table
    423  */
    424 uint32_t pmap_kernel_L1_addr(void);
    425 /*
    426  * The current top of kernel VM
    427  */
    428 extern vaddr_t	pmap_curmaxkvaddr;
    429 
    430 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    431 /*
    432  * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
    433  */
    434 extern vaddr_t pmap_directlimit;
    435 #endif
    436 
    437 /*
    438  * Useful macros and constants
    439  */
    440 
    441 /* Virtual address to page table entry */
    442 static inline pt_entry_t *
    443 vtopte(vaddr_t va)
    444 {
    445 	pd_entry_t *pdep;
    446 	pt_entry_t *ptep;
    447 
    448 	KASSERT(trunc_page(va) == va);
    449 
    450 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
    451 		return (NULL);
    452 	return (ptep);
    453 }
    454 
    455 /*
    456  * Virtual address to physical address
    457  */
    458 static inline paddr_t
    459 vtophys(vaddr_t va)
    460 {
    461 	paddr_t pa;
    462 
    463 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
    464 		return (0);	/* XXXSCW: Panic? */
    465 
    466 	return (pa);
    467 }
    468 
    469 /*
    470  * The new pmap ensures that page-tables are always mapping Write-Thru.
    471  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    472  * on every change.
    473  *
    474  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    475  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    476  * and if there is the chance for PTE syncs to be needed, we define
    477  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    478  * the code.
    479  */
    480 extern int pmap_needs_pte_sync;
    481 #if defined(_KERNEL_OPT)
    482 /*
    483  * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
    484  * single MMU type is selected.
    485  *
    486  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    487  * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
    488  * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
    489  *
    490  * Use run time evaluation for all other cases.
    491  *
    492  */
    493 #if (ARM_NMMUS == 1)
    494 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
    495 #define	PMAP_INCLUDE_PTE_SYNC
    496 #define	PMAP_NEEDS_PTE_SYNC	1
    497 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
    498 #define	PMAP_NEEDS_PTE_SYNC	0
    499 #endif
    500 #endif
    501 #endif /* _KERNEL_OPT */
    502 
    503 /*
    504  * Provide a fallback in case we were not able to determine it at
    505  * compile-time.
    506  */
    507 #ifndef PMAP_NEEDS_PTE_SYNC
    508 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    509 #define	PMAP_INCLUDE_PTE_SYNC
    510 #endif
    511 
    512 static inline void
    513 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
    514 {
    515 	if (PMAP_NEEDS_PTE_SYNC) {
    516 		cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
    517 #ifdef SHEEVA_L2_CACHE
    518 		cpu_sdcache_wb_range((vaddr_t)ptep, -1,
    519 		    cnt * sizeof(pt_entry_t));
    520 #endif
    521 	}
    522 	arm_dsb();
    523 }
    524 
    525 #define	PDE_SYNC(pdep)			pmap_ptesync((pdep), 1)
    526 #define	PDE_SYNC_RANGE(pdep, cnt)	pmap_ptesync((pdep), (cnt))
    527 #define	PTE_SYNC(ptep)			pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
    528 #define	PTE_SYNC_RANGE(ptep, cnt)	pmap_ptesync((ptep), (cnt))
    529 
    530 #define l1pte_valid_p(pde)	((pde) != 0)
    531 #define l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    532 #define l1pte_supersection_p(pde) (l1pte_section_p(pde)	\
    533 				&& ((pde) & L1_S_V6_SUPER) != 0)
    534 #define l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    535 #define l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    536 #define l1pte_pa(pde)		((pde) & L1_C_ADDR_MASK)
    537 #define l1pte_index(v)		((vaddr_t)(v) >> L1_S_SHIFT)
    538 #define l1pte_pgindex(v)	l1pte_index((v) & L1_ADDR_BITS \
    539 		& ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
    540 
    541 static inline void
    542 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
    543 {
    544 	*pdep = pde;
    545 }
    546 
    547 static inline void
    548 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
    549 {
    550 	*pdep = pde;
    551 	if (l1pte_page_p(pde)) {
    552 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
    553 		for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
    554 			pde += L2_T_SIZE;
    555 			pdep[k] = pde;
    556 		}
    557 	} else if (l1pte_supersection_p(pde)) {
    558 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
    559 		for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
    560 			pdep[k] = pde;
    561 		}
    562 	}
    563 }
    564 
    565 #define l2pte_index(v)		((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
    566 #define l2pte_valid_p(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
    567 #define l2pte_pa(pte)		((pte) & L2_S_FRAME)
    568 #define l1pte_lpage_p(pte)	(((pte) & L2_TYPE_MASK) == L2_TYPE_L)
    569 #define l2pte_minidata_p(pte)	(((pte) & \
    570 				 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
    571 				 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
    572 
    573 static inline void
    574 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
    575 {
    576 	if (l1pte_lpage_p(pte)) {
    577 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    578 		for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
    579 			*ptep++ = pte;
    580 		}
    581 	} else {
    582 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    583 		for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
    584 			KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
    585 			*ptep++ = pte;
    586 			pte += L2_S_SIZE;
    587 			if (opte)
    588 				opte += L2_S_SIZE;
    589 		}
    590 	}
    591 }
    592 
    593 static inline void
    594 l2pte_reset(pt_entry_t *ptep)
    595 {
    596 	KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    597 	*ptep = 0;
    598 	for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
    599 		ptep[k] = 0;
    600 	}
    601 }
    602 
    603 /* L1 and L2 page table macros */
    604 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    605 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    606 #define pmap_pde_supersection(pde)	l1pte_supersection_p(*(pde))
    607 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    608 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    609 
    610 #define	pmap_pte_v(pte)		l2pte_valid_p(*(pte))
    611 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    612 
    613 /* Size of the kernel part of the L1 page table */
    614 #define KERNEL_PD_SIZE	\
    615 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    616 
    617 void	bzero_page(vaddr_t);
    618 void	bcopy_page(vaddr_t, vaddr_t);
    619 
    620 #ifdef FPU_VFP
    621 void	bzero_page_vfp(vaddr_t);
    622 void	bcopy_page_vfp(vaddr_t, vaddr_t);
    623 #endif
    624 
    625 /************************* ARM MMU configuration *****************************/
    626 
    627 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
    628 void	pmap_copy_page_generic(paddr_t, paddr_t);
    629 void	pmap_zero_page_generic(paddr_t);
    630 
    631 void	pmap_pte_init_generic(void);
    632 #if defined(CPU_ARM8)
    633 void	pmap_pte_init_arm8(void);
    634 #endif
    635 #if defined(CPU_ARM9)
    636 void	pmap_pte_init_arm9(void);
    637 #endif /* CPU_ARM9 */
    638 #if defined(CPU_ARM10)
    639 void	pmap_pte_init_arm10(void);
    640 #endif /* CPU_ARM10 */
    641 #if defined(CPU_ARM11)	/* ARM_MMU_V6 */
    642 void	pmap_pte_init_arm11(void);
    643 #endif /* CPU_ARM11 */
    644 #if defined(CPU_ARM11MPCORE)	/* ARM_MMU_V6 */
    645 void	pmap_pte_init_arm11mpcore(void);
    646 #endif
    647 #if ARM_MMU_V7 == 1
    648 void	pmap_pte_init_armv7(void);
    649 #endif /* ARM_MMU_V7 */
    650 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    651 
    652 #if ARM_MMU_SA1 == 1
    653 void	pmap_pte_init_sa1(void);
    654 #endif /* ARM_MMU_SA1 == 1 */
    655 
    656 #if ARM_MMU_XSCALE == 1
    657 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    658 void	pmap_zero_page_xscale(paddr_t);
    659 
    660 void	pmap_pte_init_xscale(void);
    661 
    662 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    663 
    664 #define	PMAP_UAREA(va)		pmap_uarea(va)
    665 void	pmap_uarea(vaddr_t);
    666 #endif /* ARM_MMU_XSCALE == 1 */
    667 
    668 extern pt_entry_t		pte_l1_s_cache_mode;
    669 extern pt_entry_t		pte_l1_s_cache_mask;
    670 
    671 extern pt_entry_t		pte_l2_l_cache_mode;
    672 extern pt_entry_t		pte_l2_l_cache_mask;
    673 
    674 extern pt_entry_t		pte_l2_s_cache_mode;
    675 extern pt_entry_t		pte_l2_s_cache_mask;
    676 
    677 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    678 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    679 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    680 
    681 extern pt_entry_t		pte_l1_s_wc_mode;
    682 extern pt_entry_t		pte_l2_l_wc_mode;
    683 extern pt_entry_t		pte_l2_s_wc_mode;
    684 
    685 extern pt_entry_t		pte_l1_s_prot_u;
    686 extern pt_entry_t		pte_l1_s_prot_w;
    687 extern pt_entry_t		pte_l1_s_prot_ro;
    688 extern pt_entry_t		pte_l1_s_prot_mask;
    689 
    690 extern pt_entry_t		pte_l2_s_prot_u;
    691 extern pt_entry_t		pte_l2_s_prot_w;
    692 extern pt_entry_t		pte_l2_s_prot_ro;
    693 extern pt_entry_t		pte_l2_s_prot_mask;
    694 
    695 extern pt_entry_t		pte_l2_l_prot_u;
    696 extern pt_entry_t		pte_l2_l_prot_w;
    697 extern pt_entry_t		pte_l2_l_prot_ro;
    698 extern pt_entry_t		pte_l2_l_prot_mask;
    699 
    700 extern pt_entry_t		pte_l1_ss_proto;
    701 extern pt_entry_t		pte_l1_s_proto;
    702 extern pt_entry_t		pte_l1_c_proto;
    703 extern pt_entry_t		pte_l2_s_proto;
    704 
    705 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    706 extern void (*pmap_zero_page_func)(paddr_t);
    707 
    708 #endif /* !_LOCORE */
    709 
    710 /*****************************************************************************/
    711 
    712 #define	KERNEL_PID		0	/* The kernel uses ASID 0 */
    713 
    714 /*
    715  * Definitions for MMU domains
    716  */
    717 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
    718 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel pmap uses domain #0 */
    719 #ifdef ARM_MMU_EXTENDED
    720 #define	PMAP_DOMAIN_USER	1	/* User pmaps use domain #1 */
    721 #endif
    722 
    723 /*
    724  * These macros define the various bit masks in the PTE.
    725  *
    726  * We use these macros since we use different bits on different processor
    727  * models.
    728  */
    729 #define	L1_S_PROT_U_generic	(L1_S_AP(AP_U))
    730 #define	L1_S_PROT_W_generic	(L1_S_AP(AP_W))
    731 #define	L1_S_PROT_RO_generic	(0)
    732 #define	L1_S_PROT_MASK_generic	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    733 
    734 #define	L1_S_PROT_U_xscale	(L1_S_AP(AP_U))
    735 #define	L1_S_PROT_W_xscale	(L1_S_AP(AP_W))
    736 #define	L1_S_PROT_RO_xscale	(0)
    737 #define	L1_S_PROT_MASK_xscale	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    738 
    739 #define	L1_S_PROT_U_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    740 #define	L1_S_PROT_W_armv6	(L1_S_AP(AP_W))
    741 #define	L1_S_PROT_RO_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    742 #define	L1_S_PROT_MASK_armv6	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    743 
    744 #define	L1_S_PROT_U_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    745 #define	L1_S_PROT_W_armv7	(L1_S_AP(AP_W))
    746 #define	L1_S_PROT_RO_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    747 #define	L1_S_PROT_MASK_armv7	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    748 
    749 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    750 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
    751 #define	L1_S_CACHE_MASK_armv6	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
    752 #define	L1_S_CACHE_MASK_armv6n	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    753 #define	L1_S_CACHE_MASK_armv7	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    754 
    755 #define	L2_L_PROT_U_generic	(L2_AP(AP_U))
    756 #define	L2_L_PROT_W_generic	(L2_AP(AP_W))
    757 #define	L2_L_PROT_RO_generic	(0)
    758 #define	L2_L_PROT_MASK_generic	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    759 
    760 #define	L2_L_PROT_U_xscale	(L2_AP(AP_U))
    761 #define	L2_L_PROT_W_xscale	(L2_AP(AP_W))
    762 #define	L2_L_PROT_RO_xscale	(0)
    763 #define	L2_L_PROT_MASK_xscale	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    764 
    765 #define	L2_L_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    766 #define	L2_L_PROT_W_armv6n	(L2_AP0(AP_W))
    767 #define	L2_L_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    768 #define	L2_L_PROT_MASK_armv6n	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    769 
    770 #define	L2_L_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    771 #define	L2_L_PROT_W_armv7	(L2_AP0(AP_W))
    772 #define	L2_L_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    773 #define	L2_L_PROT_MASK_armv7	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    774 
    775 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    776 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
    777 #define	L2_L_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
    778 #define	L2_L_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    779 #define	L2_L_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    780 
    781 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    782 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    783 #define	L2_S_PROT_RO_generic	(0)
    784 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    785 
    786 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    787 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    788 #define	L2_S_PROT_RO_xscale	(0)
    789 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    790 
    791 #define	L2_S_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    792 #define	L2_S_PROT_W_armv6n	(L2_AP0(AP_W))
    793 #define	L2_S_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    794 #define	L2_S_PROT_MASK_armv6n	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    795 
    796 #define	L2_S_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    797 #define	L2_S_PROT_W_armv7	(L2_AP0(AP_W))
    798 #define	L2_S_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    799 #define	L2_S_PROT_MASK_armv7	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    800 
    801 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    802 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
    803 #define	L2_XS_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
    804 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    805 #define	L2_S_CACHE_MASK_armv6c	L2_XS_CACHE_MASK_armv6
    806 #else
    807 #define	L2_S_CACHE_MASK_armv6c	L2_S_CACHE_MASK_generic
    808 #endif
    809 #define	L2_S_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    810 #define	L2_S_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    811 
    812 
    813 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    814 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    815 #define	L1_S_PROTO_armv6	(L1_TYPE_S)
    816 #define	L1_S_PROTO_armv7	(L1_TYPE_S)
    817 
    818 #define	L1_SS_PROTO_generic	0
    819 #define	L1_SS_PROTO_xscale	0
    820 #define	L1_SS_PROTO_armv6	(L1_TYPE_S | L1_S_V6_SS)
    821 #define	L1_SS_PROTO_armv7	(L1_TYPE_S | L1_S_V6_SS)
    822 
    823 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    824 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    825 #define	L1_C_PROTO_armv6	(L1_TYPE_C)
    826 #define	L1_C_PROTO_armv7	(L1_TYPE_C)
    827 
    828 #define	L2_L_PROTO		(L2_TYPE_L)
    829 
    830 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    831 #define	L2_S_PROTO_xscale	(L2_TYPE_XS)
    832 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    833 #define	L2_S_PROTO_armv6c	(L2_TYPE_XS)    /* XP=0, extended small page */
    834 #else
    835 #define	L2_S_PROTO_armv6c	(L2_TYPE_S)	/* XP=0, subpage APs */
    836 #endif
    837 #ifdef ARM_MMU_EXTENDED
    838 #define	L2_S_PROTO_armv6n	(L2_TYPE_S|L2_XS_XN)
    839 #else
    840 #define	L2_S_PROTO_armv6n	(L2_TYPE_S)	/* with XP=1 */
    841 #endif
    842 #ifdef ARM_MMU_EXTENDED
    843 #define	L2_S_PROTO_armv7	(L2_TYPE_S|L2_XS_XN)
    844 #else
    845 #define	L2_S_PROTO_armv7	(L2_TYPE_S)
    846 #endif
    847 
    848 /*
    849  * User-visible names for the ones that vary with MMU class.
    850  */
    851 
    852 #if ARM_NMMUS > 1
    853 /* More than one MMU class configured; use variables. */
    854 #define	L1_S_PROT_U		pte_l1_s_prot_u
    855 #define	L1_S_PROT_W		pte_l1_s_prot_w
    856 #define	L1_S_PROT_RO		pte_l1_s_prot_ro
    857 #define	L1_S_PROT_MASK		pte_l1_s_prot_mask
    858 
    859 #define	L2_S_PROT_U		pte_l2_s_prot_u
    860 #define	L2_S_PROT_W		pte_l2_s_prot_w
    861 #define	L2_S_PROT_RO		pte_l2_s_prot_ro
    862 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    863 
    864 #define	L2_L_PROT_U		pte_l2_l_prot_u
    865 #define	L2_L_PROT_W		pte_l2_l_prot_w
    866 #define	L2_L_PROT_RO		pte_l2_l_prot_ro
    867 #define	L2_L_PROT_MASK		pte_l2_l_prot_mask
    868 
    869 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    870 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    871 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    872 
    873 #define	L1_SS_PROTO		pte_l1_ss_proto
    874 #define	L1_S_PROTO		pte_l1_s_proto
    875 #define	L1_C_PROTO		pte_l1_c_proto
    876 #define	L2_S_PROTO		pte_l2_s_proto
    877 
    878 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    879 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    880 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    881 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    882 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    883 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    884 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    885 
    886 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    887 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    888 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    889 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    890 
    891 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    892 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    893 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    894 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    895 
    896 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    897 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    898 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    899 
    900 #define	L1_SS_PROTO		L1_SS_PROTO_generic
    901 #define	L1_S_PROTO		L1_S_PROTO_generic
    902 #define	L1_C_PROTO		L1_C_PROTO_generic
    903 #define	L2_S_PROTO		L2_S_PROTO_generic
    904 
    905 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    906 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    907 #elif ARM_MMU_V6N != 0
    908 #define	L1_S_PROT_U		L1_S_PROT_U_armv6
    909 #define	L1_S_PROT_W		L1_S_PROT_W_armv6
    910 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv6
    911 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv6
    912 
    913 #define	L2_S_PROT_U		L2_S_PROT_U_armv6n
    914 #define	L2_S_PROT_W		L2_S_PROT_W_armv6n
    915 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv6n
    916 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv6n
    917 
    918 #define	L2_L_PROT_U		L2_L_PROT_U_armv6n
    919 #define	L2_L_PROT_W		L2_L_PROT_W_armv6n
    920 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv6n
    921 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv6n
    922 
    923 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv6n
    924 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv6n
    925 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv6n
    926 
    927 /* These prototypes make writeable mappings, while the other MMU types
    928  * make read-only mappings. */
    929 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
    930 #define	L1_S_PROTO		L1_S_PROTO_armv6
    931 #define	L1_C_PROTO		L1_C_PROTO_armv6
    932 #define	L2_S_PROTO		L2_S_PROTO_armv6n
    933 
    934 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    935 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    936 #elif ARM_MMU_V6C != 0
    937 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    938 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    939 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    940 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    941 
    942 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    943 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    944 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    945 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    946 
    947 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    948 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    949 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    950 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    951 
    952 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    953 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    954 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    955 
    956 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
    957 #define	L1_S_PROTO		L1_S_PROTO_generic
    958 #define	L1_C_PROTO		L1_C_PROTO_generic
    959 #define	L2_S_PROTO		L2_S_PROTO_generic
    960 
    961 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    962 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    963 #elif ARM_MMU_XSCALE == 1
    964 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    965 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    966 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    967 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    968 
    969 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    970 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    971 #define	L2_S_PROT_RO		L2_S_PROT_RO_xscale
    972 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    973 
    974 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    975 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    976 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    977 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    978 
    979 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    980 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    981 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    982 
    983 #define	L1_SS_PROTO		L1_SS_PROTO_xscale
    984 #define	L1_S_PROTO		L1_S_PROTO_xscale
    985 #define	L1_C_PROTO		L1_C_PROTO_xscale
    986 #define	L2_S_PROTO		L2_S_PROTO_xscale
    987 
    988 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    989 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    990 #elif ARM_MMU_V7 == 1
    991 #define	L1_S_PROT_U		L1_S_PROT_U_armv7
    992 #define	L1_S_PROT_W		L1_S_PROT_W_armv7
    993 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv7
    994 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv7
    995 
    996 #define	L2_S_PROT_U		L2_S_PROT_U_armv7
    997 #define	L2_S_PROT_W		L2_S_PROT_W_armv7
    998 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv7
    999 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv7
   1000 
   1001 #define	L2_L_PROT_U		L2_L_PROT_U_armv7
   1002 #define	L2_L_PROT_W		L2_L_PROT_W_armv7
   1003 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv7
   1004 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv7
   1005 
   1006 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv7
   1007 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv7
   1008 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv7
   1009 
   1010 /* These prototypes make writeable mappings, while the other MMU types
   1011  * make read-only mappings. */
   1012 #define	L1_SS_PROTO		L1_SS_PROTO_armv7
   1013 #define	L1_S_PROTO		L1_S_PROTO_armv7
   1014 #define	L1_C_PROTO		L1_C_PROTO_armv7
   1015 #define	L2_S_PROTO		L2_S_PROTO_armv7
   1016 
   1017 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
   1018 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
   1019 #endif /* ARM_NMMUS > 1 */
   1020 
   1021 /*
   1022  * Macros to set and query the write permission on page descriptors.
   1023  */
   1024 #define l1pte_set_writable(pte)	(((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
   1025 #define l1pte_set_readonly(pte)	(((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
   1026 #define l2pte_set_writable(pte)	(((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
   1027 #define l2pte_set_readonly(pte)	(((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
   1028 
   1029 #define l2pte_writable_p(pte)	(((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
   1030 				 (L2_S_PROT_RO == 0 || \
   1031 				  ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
   1032 
   1033 /*
   1034  * These macros return various bits based on kernel/user and protection.
   1035  * Note that the compiler will usually fold these at compile time.
   1036  */
   1037 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
   1038 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
   1039 
   1040 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
   1041 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
   1042 
   1043 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
   1044 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
   1045 
   1046 /*
   1047  * Macros to test if a mapping is mappable with an L1 SuperSection,
   1048  * L1 Section, or an L2 Large Page mapping.
   1049  */
   1050 #define	L1_SS_MAPPABLE_P(va, pa, size)					\
   1051 	((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
   1052 
   1053 #define	L1_S_MAPPABLE_P(va, pa, size)					\
   1054 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
   1055 
   1056 #define	L2_L_MAPPABLE_P(va, pa, size)					\
   1057 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
   1058 
   1059 #ifndef _LOCORE
   1060 /*
   1061  * Hooks for the pool allocator.
   1062  */
   1063 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
   1064 extern paddr_t physical_start, physical_end;
   1065 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1066 struct vm_page *arm_pmap_alloc_poolpage(int);
   1067 #define	PMAP_ALLOC_POOLPAGE	arm_pmap_alloc_poolpage
   1068 #endif
   1069 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   1070 vaddr_t	pmap_map_poolpage(paddr_t);
   1071 paddr_t	pmap_unmap_poolpage(vaddr_t);
   1072 #define	PMAP_MAP_POOLPAGE(pa)	pmap_map_poolpage(pa)
   1073 #define PMAP_UNMAP_POOLPAGE(va)	pmap_unmap_poolpage(va)
   1074 #endif
   1075 
   1076 #define __HAVE_PMAP_PV_TRACK	1
   1077 
   1078 void pmap_pv_protect(paddr_t, vm_prot_t);
   1079 
   1080 struct pmap_page {
   1081 	SLIST_HEAD(,pv_entry) pvh_list;		/* pv_entry list */
   1082 	int pvh_attrs;				/* page attributes */
   1083 	u_int uro_mappings;
   1084 	u_int urw_mappings;
   1085 	union {
   1086 		u_short s_mappings[2];	/* Assume kernel count <= 65535 */
   1087 		u_int i_mappings;
   1088 	} k_u;
   1089 };
   1090 
   1091 /*
   1092  * pmap-specific data store in the vm_page structure.
   1093  */
   1094 #define	__HAVE_VM_PAGE_MD
   1095 struct vm_page_md {
   1096 	struct pmap_page pp;
   1097 #define	pvh_list	pp.pvh_list
   1098 #define	pvh_attrs	pp.pvh_attrs
   1099 #define	uro_mappings	pp.uro_mappings
   1100 #define	urw_mappings	pp.urw_mappings
   1101 #define	kro_mappings	pp.k_u.s_mappings[0]
   1102 #define	krw_mappings	pp.k_u.s_mappings[1]
   1103 #define	k_mappings	pp.k_u.i_mappings
   1104 };
   1105 
   1106 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
   1107 
   1108 /*
   1109  * Set the default color of each page.
   1110  */
   1111 #if ARM_MMU_V6 > 0
   1112 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
   1113 	(pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
   1114 #else
   1115 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
   1116 	(pg)->mdpage.pvh_attrs = 0
   1117 #endif
   1118 
   1119 #define	VM_MDPAGE_INIT(pg)						\
   1120 do {									\
   1121 	SLIST_INIT(&(pg)->mdpage.pvh_list);				\
   1122 	VM_MDPAGE_PVH_ATTRS_INIT(pg);					\
   1123 	(pg)->mdpage.uro_mappings = 0;					\
   1124 	(pg)->mdpage.urw_mappings = 0;					\
   1125 	(pg)->mdpage.k_mappings = 0;					\
   1126 } while (/*CONSTCOND*/0)
   1127 
   1128 #endif /* !_LOCORE */
   1129 
   1130 #endif /* _KERNEL */
   1131 
   1132 #endif	/* _ARM32_PMAP_H_ */
   1133