pmap.h revision 1.159 1 /* $NetBSD: pmap.h,v 1.159 2020/01/18 14:40:04 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #include "opt_multiprocessor.h"
79 #endif
80 #include <arm/cpufunc.h>
81 #include <arm/locore.h>
82 #include <uvm/uvm_object.h>
83 #include <uvm/pmap/pmap_pvt.h>
84 #endif
85
86 #ifdef ARM_MMU_EXTENDED
87 #define PMAP_HWPAGEWALKER 1
88 #define PMAP_TLB_MAX 1
89 #if PMAP_TLB_MAX > 1
90 #define PMAP_TLB_NEED_SHOOTDOWN 1
91 #endif
92 #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
93 #define PMAP_TLB_NUM_PIDS 256
94 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
95 #if PMAP_TLB_MAX > 1
96 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
97 #else
98 #define cpu_tlb_info(ci) (&pmap_tlb0_info)
99 #endif
100 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
101 #include <uvm/pmap/tlb.h>
102 #include <uvm/pmap/pmap_tlb.h>
103
104 /*
105 * If we have an EXTENDED MMU and the address space is split evenly between
106 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
107 * user and kernel address spaces.
108 */
109 #if (KERNEL_BASE & 0x80000000) == 0
110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
111 #endif
112 #endif /* ARM_MMU_EXTENDED */
113
114 /*
115 * a pmap describes a processes' 4GB virtual address space. this
116 * virtual address space can be broken up into 4096 1MB regions which
117 * are described by L1 PTEs in the L1 table.
118 *
119 * There is a line drawn at KERNEL_BASE. Everything below that line
120 * changes when the VM context is switched. Everything above that line
121 * is the same no matter which VM context is running. This is achieved
122 * by making the L1 PTEs for those slots above KERNEL_BASE reference
123 * kernel L2 tables.
124 *
125 * The basic layout of the virtual address space thus looks like this:
126 *
127 * 0xffffffff
128 * .
129 * .
130 * .
131 * KERNEL_BASE
132 * --------------------
133 * .
134 * .
135 * .
136 * 0x00000000
137 */
138
139 /*
140 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141 * A bucket size of 16 provides for 16MB of contiguous virtual address
142 * space per l2_dtable. Most processes will, therefore, require only two or
143 * three of these to map their whole working set.
144 */
145 #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
146 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
147 #define L2_BUCKET_LOG2 4
148 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
149
150 /*
151 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152 * of l2_dtable structures required to track all possible page descriptors
153 * mappable by an L1 translation table is given by the following constants:
154 */
155 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
156 #define L2_SIZE (1 << L2_LOG2)
157
158 /*
159 * tell MI code that the cache is virtually-indexed.
160 * ARMv6 is physically-tagged but all others are virtually-tagged.
161 */
162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
163 #define PMAP_CACHE_VIPT
164 #else
165 #define PMAP_CACHE_VIVT
166 #endif
167
168 #ifndef _LOCORE
169
170 #ifndef ARM_MMU_EXTENDED
171 struct l1_ttable;
172 struct l2_dtable;
173
174 /*
175 * Track cache/tlb occupancy using the following structure
176 */
177 union pmap_cache_state {
178 struct {
179 union {
180 uint8_t csu_cache_b[2];
181 uint16_t csu_cache;
182 } cs_cache_u;
183
184 union {
185 uint8_t csu_tlb_b[2];
186 uint16_t csu_tlb;
187 } cs_tlb_u;
188 } cs_s;
189 uint32_t cs_all;
190 };
191 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
192 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
193 #define cs_cache cs_s.cs_cache_u.csu_cache
194 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
195 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
196 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
197
198 /*
199 * Assigned to cs_all to force cacheops to work for a particular pmap
200 */
201 #define PMAP_CACHE_STATE_ALL 0xffffffffu
202 #endif /* !ARM_MMU_EXTENDED */
203
204 /*
205 * This structure is used by machine-dependent code to describe
206 * static mappings of devices, created at bootstrap time.
207 */
208 struct pmap_devmap {
209 vaddr_t pd_va; /* virtual address */
210 paddr_t pd_pa; /* physical address */
211 psize_t pd_size; /* size of region */
212 vm_prot_t pd_prot; /* protection code */
213 int pd_cache; /* cache attributes */
214 };
215
216 #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
217 #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
218 #define DEVMAP_ENTRY(va, pa, sz) \
219 { \
220 .pd_va = DEVMAP_ALIGN(va), \
221 .pd_pa = DEVMAP_ALIGN(pa), \
222 .pd_size = DEVMAP_SIZE(sz), \
223 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, \
224 .pd_cache = PTE_NOCACHE \
225 }
226 #define DEVMAP_ENTRY_END { 0 }
227
228 /*
229 * The pmap structure itself
230 */
231 struct pmap {
232 struct uvm_object pm_obj;
233 kmutex_t pm_obj_lock;
234 #define pm_lock pm_obj.vmobjlock
235 #ifndef ARM_HAS_VBAR
236 pd_entry_t *pm_pl1vec;
237 pd_entry_t pm_l1vec;
238 #endif
239 struct l2_dtable *pm_l2[L2_SIZE];
240 struct pmap_statistics pm_stats;
241 LIST_ENTRY(pmap) pm_list;
242 #ifdef ARM_MMU_EXTENDED
243 pd_entry_t *pm_l1;
244 paddr_t pm_l1_pa;
245 bool pm_remove_all;
246 #ifdef MULTIPROCESSOR
247 kcpuset_t *pm_onproc;
248 kcpuset_t *pm_active;
249 #if PMAP_TLB_MAX > 1
250 u_int pm_shootdown_pending;
251 #endif
252 #endif
253 struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
254 #else
255 struct l1_ttable *pm_l1;
256 union pmap_cache_state pm_cstate;
257 uint8_t pm_domain;
258 bool pm_activated;
259 bool pm_remove_all;
260 #endif
261 };
262
263 struct pmap_kernel {
264 struct pmap kernel_pmap;
265 };
266
267 /*
268 * Physical / virtual address structure. In a number of places (particularly
269 * during bootstrapping) we need to keep track of the physical and virtual
270 * addresses of various pages
271 */
272 typedef struct pv_addr {
273 SLIST_ENTRY(pv_addr) pv_list;
274 paddr_t pv_pa;
275 vaddr_t pv_va;
276 vsize_t pv_size;
277 uint8_t pv_cache;
278 uint8_t pv_prot;
279 } pv_addr_t;
280 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
281
282 extern pv_addrqh_t pmap_freeq;
283 extern pv_addr_t kernelstack;
284 extern pv_addr_t abtstack;
285 extern pv_addr_t fiqstack;
286 extern pv_addr_t irqstack;
287 extern pv_addr_t undstack;
288 extern pv_addr_t idlestack;
289 extern pv_addr_t systempage;
290 extern pv_addr_t kernel_l1pt;
291
292 #ifdef ARM_MMU_EXTENDED
293 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
294 #endif
295
296 /*
297 * Determine various modes for PTEs (user vs. kernel, cacheable
298 * vs. non-cacheable).
299 */
300 #define PTE_KERNEL 0
301 #define PTE_USER 1
302 #define PTE_NOCACHE 0
303 #define PTE_CACHE 1
304 #define PTE_PAGETABLE 2
305
306 /*
307 * Flags that indicate attributes of pages or mappings of pages.
308 *
309 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
310 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
311 * pv_entry's for each page. They live in the same "namespace" so
312 * that we can clear multiple attributes at a time.
313 *
314 * Note the "non-cacheable" flag generally means the page has
315 * multiple mappings in a given address space.
316 */
317 #define PVF_MOD 0x01 /* page is modified */
318 #define PVF_REF 0x02 /* page is referenced */
319 #define PVF_WIRED 0x04 /* mapping is wired */
320 #define PVF_WRITE 0x08 /* mapping is writable */
321 #define PVF_EXEC 0x10 /* mapping is executable */
322 #ifdef PMAP_CACHE_VIVT
323 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
324 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
325 #define PVF_NC (PVF_UNC|PVF_KNC)
326 #endif
327 #ifdef PMAP_CACHE_VIPT
328 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
329 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
330 #endif
331 #define PVF_COLORED 0x80 /* page has or had a color */
332 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
333 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
334 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
335 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
336 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
337 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
338
339 /*
340 * Commonly referenced structures
341 */
342 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
343 extern int arm_poolpage_vmfreelist;
344
345 /*
346 * Macros that we need to export
347 */
348 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
349 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
350
351 #define pmap_is_modified(pg) \
352 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
353 #define pmap_is_referenced(pg) \
354 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
355 #define pmap_is_page_colored_p(md) \
356 (((md)->pvh_attrs & PVF_COLORED) != 0)
357
358 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
359
360 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
361 u_int arm32_mmap_flags(paddr_t);
362 #define ARM32_MMAP_WRITECOMBINE 0x40000000
363 #define ARM32_MMAP_CACHEABLE 0x20000000
364 #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
365 #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
366 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
367
368 #define PMAP_PTE 0x10000000 /* kenter_pa */
369
370 /*
371 * Functions that we need to export
372 */
373 void pmap_procwr(struct proc *, vaddr_t, int);
374 void pmap_remove_all(pmap_t);
375 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
376
377 #define PMAP_NEED_PROCWR
378 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
379 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
380
381 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
382 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
383 void pmap_prefer(vaddr_t, vaddr_t *, int);
384 #endif
385
386 #ifdef _ARM_ARCH_6
387 int pmap_maxproc_set(int);
388 #endif
389
390 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
391
392 /* Functions we use internally. */
393 #ifdef PMAP_STEAL_MEMORY
394 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
395 void pmap_boot_pageadd(pv_addr_t *);
396 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
397 #endif
398 void pmap_bootstrap(vaddr_t, vaddr_t);
399
400 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
401 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
402 int pmap_prefetchabt_fixup(void *);
403 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
404 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
405 bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
406
407 void pmap_debug(int);
408 void pmap_postinit(void);
409
410 void vector_page_setprot(int);
411
412 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
413 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
414
415 /* Bootstrapping routines. */
416 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
417 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
418 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
419 void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
420 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
421 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
422 void pmap_devmap_register(const struct pmap_devmap *);
423
424 /*
425 * Special page zero routine for use by the idle loop (no cache cleans).
426 */
427 bool pmap_pageidlezero(paddr_t);
428 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
429
430 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
431 /*
432 * For the pmap, this is a more useful way to map a direct mapped page.
433 * It returns either the direct-mapped VA or the VA supplied if it can't
434 * be direct mapped.
435 */
436 vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
437 #endif
438
439 /*
440 * used by dumpsys to record the PA of the L1 table
441 */
442 uint32_t pmap_kernel_L1_addr(void);
443 /*
444 * The current top of kernel VM
445 */
446 extern vaddr_t pmap_curmaxkvaddr;
447
448 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
449 /*
450 * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
451 */
452 extern vaddr_t pmap_directlimit;
453 #endif
454
455 /*
456 * Useful macros and constants
457 */
458
459 /* Virtual address to page table entry */
460 static inline pt_entry_t *
461 vtopte(vaddr_t va)
462 {
463 pd_entry_t *pdep;
464 pt_entry_t *ptep;
465
466 KASSERT(trunc_page(va) == va);
467
468 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
469 return (NULL);
470 return (ptep);
471 }
472
473 /*
474 * Virtual address to physical address
475 */
476 static inline paddr_t
477 vtophys(vaddr_t va)
478 {
479 paddr_t pa;
480
481 if (pmap_extract(pmap_kernel(), va, &pa) == false)
482 return (0); /* XXXSCW: Panic? */
483
484 return (pa);
485 }
486
487 /*
488 * The new pmap ensures that page-tables are always mapping Write-Thru.
489 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
490 * on every change.
491 *
492 * Unfortunately, not all CPUs have a write-through cache mode. So we
493 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
494 * and if there is the chance for PTE syncs to be needed, we define
495 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
496 * the code.
497 */
498 extern int pmap_needs_pte_sync;
499 #if defined(_KERNEL_OPT)
500 /*
501 * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
502 * single MMU type is selected.
503 *
504 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
505 * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
506 * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
507 *
508 * Use run time evaluation for all other cases.
509 *
510 */
511 #if (ARM_NMMUS == 1)
512 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
513 #define PMAP_INCLUDE_PTE_SYNC
514 #define PMAP_NEEDS_PTE_SYNC 1
515 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
516 #define PMAP_NEEDS_PTE_SYNC 0
517 #endif
518 #endif
519 #endif /* _KERNEL_OPT */
520
521 /*
522 * Provide a fallback in case we were not able to determine it at
523 * compile-time.
524 */
525 #ifndef PMAP_NEEDS_PTE_SYNC
526 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
527 #define PMAP_INCLUDE_PTE_SYNC
528 #endif
529
530 static inline void
531 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
532 {
533 if (PMAP_NEEDS_PTE_SYNC) {
534 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
535 #ifdef SHEEVA_L2_CACHE
536 cpu_sdcache_wb_range((vaddr_t)ptep, -1,
537 cnt * sizeof(pt_entry_t));
538 #endif
539 }
540 arm_dsb();
541 }
542
543 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
544 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
545 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
546 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
547
548 #define l1pte_valid_p(pde) ((pde) != 0)
549 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
550 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
551 && ((pde) & L1_S_V6_SUPER) != 0)
552 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
553 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
554 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
555 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
556 #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \
557 & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
558
559 static inline void
560 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
561 {
562 *pdep = pde;
563 }
564
565 static inline void
566 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
567 {
568 *pdep = pde;
569 if (l1pte_page_p(pde)) {
570 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
571 for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
572 pde += L2_T_SIZE;
573 pdep[k] = pde;
574 }
575 } else if (l1pte_supersection_p(pde)) {
576 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
577 for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
578 pdep[k] = pde;
579 }
580 }
581 }
582
583 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
584 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
585 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
586 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
587 #define l2pte_minidata_p(pte) (((pte) & \
588 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
589 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
590
591 static inline void
592 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
593 {
594 if (l1pte_lpage_p(pte)) {
595 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
596 for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
597 *ptep++ = pte;
598 }
599 } else {
600 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
601 for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
602 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
603 *ptep++ = pte;
604 pte += L2_S_SIZE;
605 if (opte)
606 opte += L2_S_SIZE;
607 }
608 }
609 }
610
611 static inline void
612 l2pte_reset(pt_entry_t *ptep)
613 {
614 KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
615 *ptep = 0;
616 for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
617 ptep[k] = 0;
618 }
619 }
620
621 /* L1 and L2 page table macros */
622 #define pmap_pde_v(pde) l1pte_valid(*(pde))
623 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
624 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
625 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
626 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
627
628 #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
629 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
630
631 /* Size of the kernel part of the L1 page table */
632 #define KERNEL_PD_SIZE \
633 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
634
635 void bzero_page(vaddr_t);
636 void bcopy_page(vaddr_t, vaddr_t);
637
638 #ifdef FPU_VFP
639 void bzero_page_vfp(vaddr_t);
640 void bcopy_page_vfp(vaddr_t, vaddr_t);
641 #endif
642
643 /************************* ARM MMU configuration *****************************/
644
645 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
646 void pmap_copy_page_generic(paddr_t, paddr_t);
647 void pmap_zero_page_generic(paddr_t);
648
649 void pmap_pte_init_generic(void);
650 #if defined(CPU_ARM8)
651 void pmap_pte_init_arm8(void);
652 #endif
653 #if defined(CPU_ARM9)
654 void pmap_pte_init_arm9(void);
655 #endif /* CPU_ARM9 */
656 #if defined(CPU_ARM10)
657 void pmap_pte_init_arm10(void);
658 #endif /* CPU_ARM10 */
659 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
660 void pmap_pte_init_arm11(void);
661 #endif /* CPU_ARM11 */
662 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
663 void pmap_pte_init_arm11mpcore(void);
664 #endif
665 #if ARM_MMU_V7 == 1
666 void pmap_pte_init_armv7(void);
667 #endif /* ARM_MMU_V7 */
668 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
669
670 #if ARM_MMU_SA1 == 1
671 void pmap_pte_init_sa1(void);
672 #endif /* ARM_MMU_SA1 == 1 */
673
674 #if ARM_MMU_XSCALE == 1
675 void pmap_copy_page_xscale(paddr_t, paddr_t);
676 void pmap_zero_page_xscale(paddr_t);
677
678 void pmap_pte_init_xscale(void);
679
680 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
681
682 #define PMAP_UAREA(va) pmap_uarea(va)
683 void pmap_uarea(vaddr_t);
684 #endif /* ARM_MMU_XSCALE == 1 */
685
686 extern pt_entry_t pte_l1_s_cache_mode;
687 extern pt_entry_t pte_l1_s_cache_mask;
688
689 extern pt_entry_t pte_l2_l_cache_mode;
690 extern pt_entry_t pte_l2_l_cache_mask;
691
692 extern pt_entry_t pte_l2_s_cache_mode;
693 extern pt_entry_t pte_l2_s_cache_mask;
694
695 extern pt_entry_t pte_l1_s_cache_mode_pt;
696 extern pt_entry_t pte_l2_l_cache_mode_pt;
697 extern pt_entry_t pte_l2_s_cache_mode_pt;
698
699 extern pt_entry_t pte_l1_s_wc_mode;
700 extern pt_entry_t pte_l2_l_wc_mode;
701 extern pt_entry_t pte_l2_s_wc_mode;
702
703 extern pt_entry_t pte_l1_s_prot_u;
704 extern pt_entry_t pte_l1_s_prot_w;
705 extern pt_entry_t pte_l1_s_prot_ro;
706 extern pt_entry_t pte_l1_s_prot_mask;
707
708 extern pt_entry_t pte_l2_s_prot_u;
709 extern pt_entry_t pte_l2_s_prot_w;
710 extern pt_entry_t pte_l2_s_prot_ro;
711 extern pt_entry_t pte_l2_s_prot_mask;
712
713 extern pt_entry_t pte_l2_l_prot_u;
714 extern pt_entry_t pte_l2_l_prot_w;
715 extern pt_entry_t pte_l2_l_prot_ro;
716 extern pt_entry_t pte_l2_l_prot_mask;
717
718 extern pt_entry_t pte_l1_ss_proto;
719 extern pt_entry_t pte_l1_s_proto;
720 extern pt_entry_t pte_l1_c_proto;
721 extern pt_entry_t pte_l2_s_proto;
722
723 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
724 extern void (*pmap_zero_page_func)(paddr_t);
725
726 #endif /* !_LOCORE */
727
728 /*****************************************************************************/
729
730 #define KERNEL_PID 0 /* The kernel uses ASID 0 */
731
732 /*
733 * Definitions for MMU domains
734 */
735 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
736 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
737
738 #ifdef ARM_MMU_EXTENDED
739 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
740 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
741 #else
742 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
743 #endif
744
745 /*
746 * These macros define the various bit masks in the PTE.
747 *
748 * We use these macros since we use different bits on different processor
749 * models.
750 */
751 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
752 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
753 #define L1_S_PROT_RO_generic (0)
754 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
755
756 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
757 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
758 #define L1_S_PROT_RO_xscale (0)
759 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
760
761 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
762 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
763 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
764 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
765
766 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
767 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
768 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
769 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
770
771 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
772 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
773 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
774 #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
775 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
776
777 #define L2_L_PROT_U_generic (L2_AP(AP_U))
778 #define L2_L_PROT_W_generic (L2_AP(AP_W))
779 #define L2_L_PROT_RO_generic (0)
780 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
781
782 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
783 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
784 #define L2_L_PROT_RO_xscale (0)
785 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
786
787 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
788 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
789 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
790 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
791
792 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
793 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
794 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
795 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
796
797 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
798 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
799 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
800 #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
801 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
802
803 #define L2_S_PROT_U_generic (L2_AP(AP_U))
804 #define L2_S_PROT_W_generic (L2_AP(AP_W))
805 #define L2_S_PROT_RO_generic (0)
806 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
807
808 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
809 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
810 #define L2_S_PROT_RO_xscale (0)
811 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
812
813 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
814 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
815 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
816 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
817
818 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
819 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
820 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
821 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
822
823 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
824 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
825 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
826 #ifdef ARMV6_EXTENDED_SMALL_PAGE
827 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
828 #else
829 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
830 #endif
831 #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
832 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
833
834
835 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
836 #define L1_S_PROTO_xscale (L1_TYPE_S)
837 #define L1_S_PROTO_armv6 (L1_TYPE_S)
838 #define L1_S_PROTO_armv7 (L1_TYPE_S)
839
840 #define L1_SS_PROTO_generic 0
841 #define L1_SS_PROTO_xscale 0
842 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
843 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
844
845 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
846 #define L1_C_PROTO_xscale (L1_TYPE_C)
847 #define L1_C_PROTO_armv6 (L1_TYPE_C)
848 #define L1_C_PROTO_armv7 (L1_TYPE_C)
849
850 #define L2_L_PROTO (L2_TYPE_L)
851
852 #define L2_S_PROTO_generic (L2_TYPE_S)
853 #define L2_S_PROTO_xscale (L2_TYPE_XS)
854 #ifdef ARMV6_EXTENDED_SMALL_PAGE
855 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
856 #else
857 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
858 #endif
859 #ifdef ARM_MMU_EXTENDED
860 #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
861 #else
862 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
863 #endif
864 #ifdef ARM_MMU_EXTENDED
865 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
866 #else
867 #define L2_S_PROTO_armv7 (L2_TYPE_S)
868 #endif
869
870 /*
871 * User-visible names for the ones that vary with MMU class.
872 */
873
874 #if ARM_NMMUS > 1
875 /* More than one MMU class configured; use variables. */
876 #define L1_S_PROT_U pte_l1_s_prot_u
877 #define L1_S_PROT_W pte_l1_s_prot_w
878 #define L1_S_PROT_RO pte_l1_s_prot_ro
879 #define L1_S_PROT_MASK pte_l1_s_prot_mask
880
881 #define L2_S_PROT_U pte_l2_s_prot_u
882 #define L2_S_PROT_W pte_l2_s_prot_w
883 #define L2_S_PROT_RO pte_l2_s_prot_ro
884 #define L2_S_PROT_MASK pte_l2_s_prot_mask
885
886 #define L2_L_PROT_U pte_l2_l_prot_u
887 #define L2_L_PROT_W pte_l2_l_prot_w
888 #define L2_L_PROT_RO pte_l2_l_prot_ro
889 #define L2_L_PROT_MASK pte_l2_l_prot_mask
890
891 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
892 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
893 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
894
895 #define L1_SS_PROTO pte_l1_ss_proto
896 #define L1_S_PROTO pte_l1_s_proto
897 #define L1_C_PROTO pte_l1_c_proto
898 #define L2_S_PROTO pte_l2_s_proto
899
900 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
901 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
902 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
903 #define L1_S_PROT_U L1_S_PROT_U_generic
904 #define L1_S_PROT_W L1_S_PROT_W_generic
905 #define L1_S_PROT_RO L1_S_PROT_RO_generic
906 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
907
908 #define L2_S_PROT_U L2_S_PROT_U_generic
909 #define L2_S_PROT_W L2_S_PROT_W_generic
910 #define L2_S_PROT_RO L2_S_PROT_RO_generic
911 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
912
913 #define L2_L_PROT_U L2_L_PROT_U_generic
914 #define L2_L_PROT_W L2_L_PROT_W_generic
915 #define L2_L_PROT_RO L2_L_PROT_RO_generic
916 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
917
918 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
919 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
920 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
921
922 #define L1_SS_PROTO L1_SS_PROTO_generic
923 #define L1_S_PROTO L1_S_PROTO_generic
924 #define L1_C_PROTO L1_C_PROTO_generic
925 #define L2_S_PROTO L2_S_PROTO_generic
926
927 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
928 #define pmap_zero_page(d) pmap_zero_page_generic((d))
929 #elif ARM_MMU_V6N != 0
930 #define L1_S_PROT_U L1_S_PROT_U_armv6
931 #define L1_S_PROT_W L1_S_PROT_W_armv6
932 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
933 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
934
935 #define L2_S_PROT_U L2_S_PROT_U_armv6n
936 #define L2_S_PROT_W L2_S_PROT_W_armv6n
937 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
938 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
939
940 #define L2_L_PROT_U L2_L_PROT_U_armv6n
941 #define L2_L_PROT_W L2_L_PROT_W_armv6n
942 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
943 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
944
945 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
946 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
947 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
948
949 /*
950 * These prototypes make writeable mappings, while the other MMU types
951 * make read-only mappings.
952 */
953 #define L1_SS_PROTO L1_SS_PROTO_armv6
954 #define L1_S_PROTO L1_S_PROTO_armv6
955 #define L1_C_PROTO L1_C_PROTO_armv6
956 #define L2_S_PROTO L2_S_PROTO_armv6n
957
958 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
959 #define pmap_zero_page(d) pmap_zero_page_generic((d))
960 #elif ARM_MMU_V6C != 0
961 #define L1_S_PROT_U L1_S_PROT_U_generic
962 #define L1_S_PROT_W L1_S_PROT_W_generic
963 #define L1_S_PROT_RO L1_S_PROT_RO_generic
964 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
965
966 #define L2_S_PROT_U L2_S_PROT_U_generic
967 #define L2_S_PROT_W L2_S_PROT_W_generic
968 #define L2_S_PROT_RO L2_S_PROT_RO_generic
969 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
970
971 #define L2_L_PROT_U L2_L_PROT_U_generic
972 #define L2_L_PROT_W L2_L_PROT_W_generic
973 #define L2_L_PROT_RO L2_L_PROT_RO_generic
974 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
975
976 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
977 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
978 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
979
980 #define L1_SS_PROTO L1_SS_PROTO_armv6
981 #define L1_S_PROTO L1_S_PROTO_generic
982 #define L1_C_PROTO L1_C_PROTO_generic
983 #define L2_S_PROTO L2_S_PROTO_generic
984
985 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
986 #define pmap_zero_page(d) pmap_zero_page_generic((d))
987 #elif ARM_MMU_XSCALE == 1
988 #define L1_S_PROT_U L1_S_PROT_U_generic
989 #define L1_S_PROT_W L1_S_PROT_W_generic
990 #define L1_S_PROT_RO L1_S_PROT_RO_generic
991 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
992
993 #define L2_S_PROT_U L2_S_PROT_U_xscale
994 #define L2_S_PROT_W L2_S_PROT_W_xscale
995 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
996 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
997
998 #define L2_L_PROT_U L2_L_PROT_U_generic
999 #define L2_L_PROT_W L2_L_PROT_W_generic
1000 #define L2_L_PROT_RO L2_L_PROT_RO_generic
1001 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
1002
1003 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
1004 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
1005 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
1006
1007 #define L1_SS_PROTO L1_SS_PROTO_xscale
1008 #define L1_S_PROTO L1_S_PROTO_xscale
1009 #define L1_C_PROTO L1_C_PROTO_xscale
1010 #define L2_S_PROTO L2_S_PROTO_xscale
1011
1012 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
1013 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
1014 #elif ARM_MMU_V7 == 1
1015 #define L1_S_PROT_U L1_S_PROT_U_armv7
1016 #define L1_S_PROT_W L1_S_PROT_W_armv7
1017 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
1018 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
1019
1020 #define L2_S_PROT_U L2_S_PROT_U_armv7
1021 #define L2_S_PROT_W L2_S_PROT_W_armv7
1022 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
1023 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1024
1025 #define L2_L_PROT_U L2_L_PROT_U_armv7
1026 #define L2_L_PROT_W L2_L_PROT_W_armv7
1027 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1028 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1029
1030 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1031 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1032 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1033
1034 /*
1035 * These prototypes make writeable mappings, while the other MMU types
1036 * make read-only mappings.
1037 */
1038 #define L1_SS_PROTO L1_SS_PROTO_armv7
1039 #define L1_S_PROTO L1_S_PROTO_armv7
1040 #define L1_C_PROTO L1_C_PROTO_armv7
1041 #define L2_S_PROTO L2_S_PROTO_armv7
1042
1043 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1044 #define pmap_zero_page(d) pmap_zero_page_generic((d))
1045 #endif /* ARM_NMMUS > 1 */
1046
1047 /*
1048 * Macros to set and query the write permission on page descriptors.
1049 */
1050 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1051 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1052
1053 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1054 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1055
1056 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1057 (L2_S_PROT_RO == 0 || \
1058 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1059
1060 /*
1061 * These macros return various bits based on kernel/user and protection.
1062 * Note that the compiler will usually fold these at compile time.
1063 */
1064
1065 #define L1_S_PROT(ku, pr) ( \
1066 (((ku) == PTE_USER) ? \
1067 L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
1068 : \
1069 (((L1_S_PROT_RO && \
1070 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1071 L1_S_PROT_RO : L1_S_PROT_W))) \
1072 )
1073
1074 #define L2_L_PROT(ku, pr) ( \
1075 (((ku) == PTE_USER) ? \
1076 L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
1077 : \
1078 (((L2_L_PROT_RO && \
1079 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1080 L2_L_PROT_RO : L2_L_PROT_W))) \
1081 )
1082
1083 #define L2_S_PROT(ku, pr) ( \
1084 (((ku) == PTE_USER) ? \
1085 L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
1086 : \
1087 (((L2_S_PROT_RO && \
1088 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1089 L2_S_PROT_RO : L2_S_PROT_W))) \
1090 )
1091
1092 /*
1093 * Macros to test if a mapping is mappable with an L1 SuperSection,
1094 * L1 Section, or an L2 Large Page mapping.
1095 */
1096 #define L1_SS_MAPPABLE_P(va, pa, size) \
1097 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1098
1099 #define L1_S_MAPPABLE_P(va, pa, size) \
1100 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1101
1102 #define L2_L_MAPPABLE_P(va, pa, size) \
1103 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1104
1105 #define PMAP_MAPSIZE1 L2_L_SIZE
1106 #define PMAP_MAPSIZE2 L1_S_SIZE
1107 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1108 #define PMAP_MAPSIZE3 L1_SS_SIZE
1109 #endif
1110
1111 #ifndef _LOCORE
1112 /*
1113 * Hooks for the pool allocator.
1114 */
1115 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1116 extern paddr_t physical_start, physical_end;
1117 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1118 struct vm_page *arm_pmap_alloc_poolpage(int);
1119 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1120 #endif
1121 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1122 vaddr_t pmap_map_poolpage(paddr_t);
1123 paddr_t pmap_unmap_poolpage(vaddr_t);
1124 #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1125 #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1126 #endif
1127
1128 #define __HAVE_PMAP_PV_TRACK 1
1129
1130 void pmap_pv_protect(paddr_t, vm_prot_t);
1131
1132 struct pmap_page {
1133 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1134 int pvh_attrs; /* page attributes */
1135 u_int uro_mappings;
1136 u_int urw_mappings;
1137 union {
1138 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1139 u_int i_mappings;
1140 } k_u;
1141 };
1142
1143 /*
1144 * pmap-specific data store in the vm_page structure.
1145 */
1146 #define __HAVE_VM_PAGE_MD
1147 struct vm_page_md {
1148 struct pmap_page pp;
1149 #define pvh_list pp.pvh_list
1150 #define pvh_attrs pp.pvh_attrs
1151 #define uro_mappings pp.uro_mappings
1152 #define urw_mappings pp.urw_mappings
1153 #define kro_mappings pp.k_u.s_mappings[0]
1154 #define krw_mappings pp.k_u.s_mappings[1]
1155 #define k_mappings pp.k_u.i_mappings
1156 };
1157
1158 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1159
1160 /*
1161 * Set the default color of each page.
1162 */
1163 #if ARM_MMU_V6 > 0
1164 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1165 (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
1166 #else
1167 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1168 (pg)->mdpage.pvh_attrs = 0
1169 #endif
1170
1171 #define VM_MDPAGE_INIT(pg) \
1172 do { \
1173 SLIST_INIT(&(pg)->mdpage.pvh_list); \
1174 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1175 (pg)->mdpage.uro_mappings = 0; \
1176 (pg)->mdpage.urw_mappings = 0; \
1177 (pg)->mdpage.k_mappings = 0; \
1178 } while (/*CONSTCOND*/0)
1179
1180 #endif /* !_LOCORE */
1181
1182 #endif /* _KERNEL */
1183
1184 #endif /* _ARM32_PMAP_H_ */
1185