pmap.h revision 1.165 1 /* $NetBSD: pmap.h,v 1.165 2020/03/29 09:01:32 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #include "opt_multiprocessor.h"
79 #endif
80 #include <arm/cpufunc.h>
81 #include <arm/locore.h>
82 #include <uvm/uvm_object.h>
83 #include <uvm/pmap/pmap_pvt.h>
84 #endif
85
86 #ifdef ARM_MMU_EXTENDED
87 #define PMAP_HWPAGEWALKER 1
88 #define PMAP_TLB_MAX 1
89 #if PMAP_TLB_MAX > 1
90 #define PMAP_TLB_NEED_SHOOTDOWN 1
91 #endif
92 #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
93 #define PMAP_TLB_NUM_PIDS 256
94 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
95 #if PMAP_TLB_MAX > 1
96 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
97 #else
98 #define cpu_tlb_info(ci) (&pmap_tlb0_info)
99 #endif
100 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
101 #include <uvm/pmap/tlb.h>
102 #include <uvm/pmap/pmap_tlb.h>
103
104 /*
105 * If we have an EXTENDED MMU and the address space is split evenly between
106 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
107 * user and kernel address spaces.
108 */
109 #if (KERNEL_BASE & 0x80000000) == 0
110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
111 #endif
112 #endif /* ARM_MMU_EXTENDED */
113
114 /*
115 * a pmap describes a processes' 4GB virtual address space. this
116 * virtual address space can be broken up into 4096 1MB regions which
117 * are described by L1 PTEs in the L1 table.
118 *
119 * There is a line drawn at KERNEL_BASE. Everything below that line
120 * changes when the VM context is switched. Everything above that line
121 * is the same no matter which VM context is running. This is achieved
122 * by making the L1 PTEs for those slots above KERNEL_BASE reference
123 * kernel L2 tables.
124 *
125 * The basic layout of the virtual address space thus looks like this:
126 *
127 * 0xffffffff
128 * .
129 * .
130 * .
131 * KERNEL_BASE
132 * --------------------
133 * .
134 * .
135 * .
136 * 0x00000000
137 */
138
139 /*
140 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141 * A bucket size of 16 provides for 16MB of contiguous virtual address
142 * space per l2_dtable. Most processes will, therefore, require only two or
143 * three of these to map their whole working set.
144 */
145 #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
146 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
147 #define L2_BUCKET_LOG2 4
148 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
149
150 /*
151 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152 * of l2_dtable structures required to track all possible page descriptors
153 * mappable by an L1 translation table is given by the following constants:
154 */
155 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
156 #define L2_SIZE (1 << L2_LOG2)
157
158 /*
159 * tell MI code that the cache is virtually-indexed.
160 * ARMv6 is physically-tagged but all others are virtually-tagged.
161 */
162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
163 #define PMAP_CACHE_VIPT
164 #else
165 #define PMAP_CACHE_VIVT
166 #endif
167
168 #ifndef _LOCORE
169
170 #ifndef ARM_MMU_EXTENDED
171 struct l1_ttable;
172 struct l2_dtable;
173
174 /*
175 * Track cache/tlb occupancy using the following structure
176 */
177 union pmap_cache_state {
178 struct {
179 union {
180 uint8_t csu_cache_b[2];
181 uint16_t csu_cache;
182 } cs_cache_u;
183
184 union {
185 uint8_t csu_tlb_b[2];
186 uint16_t csu_tlb;
187 } cs_tlb_u;
188 } cs_s;
189 uint32_t cs_all;
190 };
191 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
192 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
193 #define cs_cache cs_s.cs_cache_u.csu_cache
194 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
195 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
196 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
197
198 /*
199 * Assigned to cs_all to force cacheops to work for a particular pmap
200 */
201 #define PMAP_CACHE_STATE_ALL 0xffffffffu
202 #endif /* !ARM_MMU_EXTENDED */
203
204 /*
205 * This structure is used by machine-dependent code to describe
206 * static mappings of devices, created at bootstrap time.
207 */
208 struct pmap_devmap {
209 vaddr_t pd_va; /* virtual address */
210 paddr_t pd_pa; /* physical address */
211 psize_t pd_size; /* size of region */
212 vm_prot_t pd_prot; /* protection code */
213 int pd_cache; /* cache attributes */
214 };
215
216 #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
217 #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
218 #define DEVMAP_ENTRY(va, pa, sz) \
219 { \
220 .pd_va = DEVMAP_ALIGN(va), \
221 .pd_pa = DEVMAP_ALIGN(pa), \
222 .pd_size = DEVMAP_SIZE(sz), \
223 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, \
224 .pd_cache = PTE_DEV \
225 }
226 #define DEVMAP_ENTRY_END { 0 }
227
228 /*
229 * The pmap structure itself
230 */
231 struct pmap {
232 kmutex_t pm_lock;
233 u_int pm_refs;
234 #ifndef ARM_HAS_VBAR
235 pd_entry_t *pm_pl1vec;
236 pd_entry_t pm_l1vec;
237 #endif
238 struct l2_dtable *pm_l2[L2_SIZE];
239 struct pmap_statistics pm_stats;
240 LIST_ENTRY(pmap) pm_list;
241 #ifdef ARM_MMU_EXTENDED
242 pd_entry_t *pm_l1;
243 paddr_t pm_l1_pa;
244 bool pm_remove_all;
245 #ifdef MULTIPROCESSOR
246 kcpuset_t *pm_onproc;
247 kcpuset_t *pm_active;
248 #if PMAP_TLB_MAX > 1
249 u_int pm_shootdown_pending;
250 #endif
251 #endif
252 struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
253 #else
254 struct l1_ttable *pm_l1;
255 union pmap_cache_state pm_cstate;
256 uint8_t pm_domain;
257 bool pm_activated;
258 bool pm_remove_all;
259 #endif
260 };
261
262 struct pmap_kernel {
263 struct pmap kernel_pmap;
264 };
265
266 /*
267 * Physical / virtual address structure. In a number of places (particularly
268 * during bootstrapping) we need to keep track of the physical and virtual
269 * addresses of various pages
270 */
271 typedef struct pv_addr {
272 SLIST_ENTRY(pv_addr) pv_list;
273 paddr_t pv_pa;
274 vaddr_t pv_va;
275 vsize_t pv_size;
276 uint8_t pv_cache;
277 uint8_t pv_prot;
278 } pv_addr_t;
279 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
280
281 extern pv_addrqh_t pmap_freeq;
282 extern pv_addr_t kernelstack;
283 extern pv_addr_t abtstack;
284 extern pv_addr_t fiqstack;
285 extern pv_addr_t irqstack;
286 extern pv_addr_t undstack;
287 extern pv_addr_t idlestack;
288 extern pv_addr_t systempage;
289 extern pv_addr_t kernel_l1pt;
290
291 #ifdef ARM_MMU_EXTENDED
292 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
293 #endif
294
295 /*
296 * Determine various modes for PTEs (user vs. kernel, cacheable
297 * vs. non-cacheable).
298 */
299 #define PTE_KERNEL 0
300 #define PTE_USER 1
301 #define PTE_NOCACHE 0
302 #define PTE_CACHE 1
303 #define PTE_PAGETABLE 2
304 #define PTE_DEV 3
305
306 /*
307 * Flags that indicate attributes of pages or mappings of pages.
308 *
309 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
310 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
311 * pv_entry's for each page. They live in the same "namespace" so
312 * that we can clear multiple attributes at a time.
313 *
314 * Note the "non-cacheable" flag generally means the page has
315 * multiple mappings in a given address space.
316 */
317 #define PVF_MOD 0x01 /* page is modified */
318 #define PVF_REF 0x02 /* page is referenced */
319 #define PVF_WIRED 0x04 /* mapping is wired */
320 #define PVF_WRITE 0x08 /* mapping is writable */
321 #define PVF_EXEC 0x10 /* mapping is executable */
322 #ifdef PMAP_CACHE_VIVT
323 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
324 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
325 #define PVF_NC (PVF_UNC|PVF_KNC)
326 #endif
327 #ifdef PMAP_CACHE_VIPT
328 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
329 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
330 #endif
331 #define PVF_COLORED 0x80 /* page has or had a color */
332 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
333 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
334 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
335 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
336 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
337 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
338
339 /*
340 * Commonly referenced structures
341 */
342 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
343 extern int arm_poolpage_vmfreelist;
344
345 /*
346 * Macros that we need to export
347 */
348 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
349 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
350
351 #define pmap_is_modified(pg) \
352 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
353 #define pmap_is_referenced(pg) \
354 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
355 #define pmap_is_page_colored_p(md) \
356 (((md)->pvh_attrs & PVF_COLORED) != 0)
357
358 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
359
360 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
361 u_int arm32_mmap_flags(paddr_t);
362 #define ARM32_MMAP_WRITECOMBINE 0x40000000
363 #define ARM32_MMAP_CACHEABLE 0x20000000
364 #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
365 #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
366 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
367
368 #define PMAP_PTE 0x10000000 /* kenter_pa */
369 #define PMAP_DEV 0x20000000 /* kenter_pa */
370 #define PMAP_DEV_SO 0x40000000 /* kenter_pa */
371 #define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO)
372
373 /*
374 * Functions that we need to export
375 */
376 void pmap_procwr(struct proc *, vaddr_t, int);
377 bool pmap_remove_all(pmap_t);
378 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
379
380 #define PMAP_NEED_PROCWR
381 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
382 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
383
384 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
385 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
386 void pmap_prefer(vaddr_t, vaddr_t *, int);
387 #endif
388
389 #ifdef ARM_MMU_EXTENDED
390 int pmap_maxproc_set(int);
391 #endif
392
393 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
394
395 /* Functions we use internally. */
396 #ifdef PMAP_STEAL_MEMORY
397 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
398 void pmap_boot_pageadd(pv_addr_t *);
399 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
400 #endif
401 void pmap_bootstrap(vaddr_t, vaddr_t);
402
403 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
404 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
405 int pmap_prefetchabt_fixup(void *);
406 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
407 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
408 bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
409
410 void pmap_debug(int);
411 void pmap_postinit(void);
412
413 void vector_page_setprot(int);
414
415 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
416 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
417
418 /* Bootstrapping routines. */
419 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
420 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
421 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
422 void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
423 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
424 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
425 void pmap_devmap_register(const struct pmap_devmap *);
426
427 /*
428 * Special page zero routine for use by the idle loop (no cache cleans).
429 */
430 bool pmap_pageidlezero(paddr_t);
431 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
432
433 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
434 /*
435 * For the pmap, this is a more useful way to map a direct mapped page.
436 * It returns either the direct-mapped VA or the VA supplied if it can't
437 * be direct mapped.
438 */
439 vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
440 #endif
441
442 /*
443 * used by dumpsys to record the PA of the L1 table
444 */
445 uint32_t pmap_kernel_L1_addr(void);
446 /*
447 * The current top of kernel VM
448 */
449 extern vaddr_t pmap_curmaxkvaddr;
450
451 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
452 /*
453 * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
454 */
455 extern vaddr_t pmap_directlimit;
456 #endif
457
458 /*
459 * Useful macros and constants
460 */
461
462 /* Virtual address to page table entry */
463 static inline pt_entry_t *
464 vtopte(vaddr_t va)
465 {
466 pd_entry_t *pdep;
467 pt_entry_t *ptep;
468
469 KASSERT(trunc_page(va) == va);
470
471 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
472 return (NULL);
473 return (ptep);
474 }
475
476 /*
477 * Virtual address to physical address
478 */
479 static inline paddr_t
480 vtophys(vaddr_t va)
481 {
482 paddr_t pa;
483
484 if (pmap_extract(pmap_kernel(), va, &pa) == false)
485 return (0); /* XXXSCW: Panic? */
486
487 return (pa);
488 }
489
490 /*
491 * The new pmap ensures that page-tables are always mapping Write-Thru.
492 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
493 * on every change.
494 *
495 * Unfortunately, not all CPUs have a write-through cache mode. So we
496 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
497 * and if there is the chance for PTE syncs to be needed, we define
498 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
499 * the code.
500 */
501 extern int pmap_needs_pte_sync;
502 #if defined(_KERNEL_OPT)
503 /*
504 * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
505 * single MMU type is selected.
506 *
507 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
508 * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
509 * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
510 *
511 * Use run time evaluation for all other cases.
512 *
513 */
514 #if (ARM_NMMUS == 1)
515 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
516 #define PMAP_INCLUDE_PTE_SYNC
517 #define PMAP_NEEDS_PTE_SYNC 1
518 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
519 #define PMAP_NEEDS_PTE_SYNC 0
520 #endif
521 #endif
522 #endif /* _KERNEL_OPT */
523
524 /*
525 * Provide a fallback in case we were not able to determine it at
526 * compile-time.
527 */
528 #ifndef PMAP_NEEDS_PTE_SYNC
529 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
530 #define PMAP_INCLUDE_PTE_SYNC
531 #endif
532
533 static inline void
534 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
535 {
536 if (PMAP_NEEDS_PTE_SYNC) {
537 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
538 #ifdef SHEEVA_L2_CACHE
539 cpu_sdcache_wb_range((vaddr_t)ptep, -1,
540 cnt * sizeof(pt_entry_t));
541 #endif
542 }
543 arm_dsb();
544 }
545
546 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
547 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
548 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
549 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
550
551 #define l1pte_valid_p(pde) ((pde) != 0)
552 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
553 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
554 && ((pde) & L1_S_V6_SUPER) != 0)
555 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
556 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
557 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
558 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
559
560 static inline void
561 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
562 {
563 *pdep = pde;
564 }
565
566 static inline void
567 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
568 {
569 *pdep = pde;
570 if (l1pte_page_p(pde)) {
571 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
572 for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
573 pde += L2_T_SIZE;
574 pdep[k] = pde;
575 }
576 } else if (l1pte_supersection_p(pde)) {
577 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
578 for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
579 pdep[k] = pde;
580 }
581 }
582 }
583
584 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
585 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
586 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
587 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
588 #define l2pte_minidata_p(pte) (((pte) & \
589 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
590 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
591
592 static inline void
593 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
594 {
595 if (l1pte_lpage_p(pte)) {
596 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
597 for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
598 *ptep++ = pte;
599 }
600 } else {
601 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
602 for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
603 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
604 *ptep++ = pte;
605 pte += L2_S_SIZE;
606 if (opte)
607 opte += L2_S_SIZE;
608 }
609 }
610 }
611
612 static inline void
613 l2pte_reset(pt_entry_t *ptep)
614 {
615 KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
616 *ptep = 0;
617 for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
618 ptep[k] = 0;
619 }
620 }
621
622 /* L1 and L2 page table macros */
623 #define pmap_pde_v(pde) l1pte_valid(*(pde))
624 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
625 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
626 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
627 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
628
629 #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
630 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
631
632 /* Size of the kernel part of the L1 page table */
633 #define KERNEL_PD_SIZE \
634 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
635
636 void bzero_page(vaddr_t);
637 void bcopy_page(vaddr_t, vaddr_t);
638
639 #ifdef FPU_VFP
640 void bzero_page_vfp(vaddr_t);
641 void bcopy_page_vfp(vaddr_t, vaddr_t);
642 #endif
643
644 /************************* ARM MMU configuration *****************************/
645
646 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
647 void pmap_copy_page_generic(paddr_t, paddr_t);
648 void pmap_zero_page_generic(paddr_t);
649
650 void pmap_pte_init_generic(void);
651 #if defined(CPU_ARM8)
652 void pmap_pte_init_arm8(void);
653 #endif
654 #if defined(CPU_ARM9)
655 void pmap_pte_init_arm9(void);
656 #endif /* CPU_ARM9 */
657 #if defined(CPU_ARM10)
658 void pmap_pte_init_arm10(void);
659 #endif /* CPU_ARM10 */
660 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
661 void pmap_pte_init_arm11(void);
662 #endif /* CPU_ARM11 */
663 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
664 void pmap_pte_init_arm11mpcore(void);
665 #endif
666 #if ARM_MMU_V6 == 1
667 void pmap_pte_init_armv6(void);
668 #endif /* ARM_MMU_V6 */
669 #if ARM_MMU_V7 == 1
670 void pmap_pte_init_armv7(void);
671 #endif /* ARM_MMU_V7 */
672 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
673
674 #if ARM_MMU_SA1 == 1
675 void pmap_pte_init_sa1(void);
676 #endif /* ARM_MMU_SA1 == 1 */
677
678 #if ARM_MMU_XSCALE == 1
679 void pmap_copy_page_xscale(paddr_t, paddr_t);
680 void pmap_zero_page_xscale(paddr_t);
681
682 void pmap_pte_init_xscale(void);
683
684 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
685
686 #define PMAP_UAREA(va) pmap_uarea(va)
687 void pmap_uarea(vaddr_t);
688 #endif /* ARM_MMU_XSCALE == 1 */
689
690 extern pt_entry_t pte_l1_s_nocache_mode;
691 extern pt_entry_t pte_l2_l_nocache_mode;
692 extern pt_entry_t pte_l2_s_nocache_mode;
693
694 extern pt_entry_t pte_l1_s_cache_mode;
695 extern pt_entry_t pte_l2_l_cache_mode;
696 extern pt_entry_t pte_l2_s_cache_mode;
697
698 extern pt_entry_t pte_l1_s_cache_mode_pt;
699 extern pt_entry_t pte_l2_l_cache_mode_pt;
700 extern pt_entry_t pte_l2_s_cache_mode_pt;
701
702 extern pt_entry_t pte_l1_s_wc_mode;
703 extern pt_entry_t pte_l2_l_wc_mode;
704 extern pt_entry_t pte_l2_s_wc_mode;
705
706 extern pt_entry_t pte_l1_s_cache_mask;
707 extern pt_entry_t pte_l2_l_cache_mask;
708 extern pt_entry_t pte_l2_s_cache_mask;
709
710 extern pt_entry_t pte_l1_s_prot_u;
711 extern pt_entry_t pte_l1_s_prot_w;
712 extern pt_entry_t pte_l1_s_prot_ro;
713 extern pt_entry_t pte_l1_s_prot_mask;
714
715 extern pt_entry_t pte_l2_s_prot_u;
716 extern pt_entry_t pte_l2_s_prot_w;
717 extern pt_entry_t pte_l2_s_prot_ro;
718 extern pt_entry_t pte_l2_s_prot_mask;
719
720 extern pt_entry_t pte_l2_l_prot_u;
721 extern pt_entry_t pte_l2_l_prot_w;
722 extern pt_entry_t pte_l2_l_prot_ro;
723 extern pt_entry_t pte_l2_l_prot_mask;
724
725 extern pt_entry_t pte_l1_ss_proto;
726 extern pt_entry_t pte_l1_s_proto;
727 extern pt_entry_t pte_l1_c_proto;
728 extern pt_entry_t pte_l2_s_proto;
729
730 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
731 extern void (*pmap_zero_page_func)(paddr_t);
732
733 #endif /* !_LOCORE */
734
735 /*****************************************************************************/
736
737 #define KERNEL_PID 0 /* The kernel uses ASID 0 */
738
739 /*
740 * Definitions for MMU domains
741 */
742 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
743 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
744
745 #ifdef ARM_MMU_EXTENDED
746 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
747 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
748 #else
749 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
750 #endif
751
752 /*
753 * These macros define the various bit masks in the PTE.
754 *
755 * We use these macros since we use different bits on different processor
756 * models.
757 */
758 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
759 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
760 #define L1_S_PROT_RO_generic (0)
761 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
762
763 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
764 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
765 #define L1_S_PROT_RO_xscale (0)
766 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
767
768 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
769 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
770 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
771 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
772
773 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
774 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
775 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
776 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
777
778 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
779 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
780 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
781 #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
782 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
783
784 #define L2_L_PROT_U_generic (L2_AP(AP_U))
785 #define L2_L_PROT_W_generic (L2_AP(AP_W))
786 #define L2_L_PROT_RO_generic (0)
787 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
788
789 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
790 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
791 #define L2_L_PROT_RO_xscale (0)
792 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
793
794 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
795 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
796 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
797 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
798
799 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
800 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
801 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
802 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
803
804 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
805 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
806 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
807 #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
808 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
809
810 #define L2_S_PROT_U_generic (L2_AP(AP_U))
811 #define L2_S_PROT_W_generic (L2_AP(AP_W))
812 #define L2_S_PROT_RO_generic (0)
813 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
814
815 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
816 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
817 #define L2_S_PROT_RO_xscale (0)
818 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
819
820 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
821 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
822 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
823 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
824
825 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
826 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
827 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
828 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
829
830 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
831 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
832 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
833 #ifdef ARMV6_EXTENDED_SMALL_PAGE
834 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
835 #else
836 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
837 #endif
838 #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
839 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
840
841
842 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
843 #define L1_S_PROTO_xscale (L1_TYPE_S)
844 #define L1_S_PROTO_armv6 (L1_TYPE_S)
845 #define L1_S_PROTO_armv7 (L1_TYPE_S)
846
847 #define L1_SS_PROTO_generic 0
848 #define L1_SS_PROTO_xscale 0
849 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
850 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
851
852 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
853 #define L1_C_PROTO_xscale (L1_TYPE_C)
854 #define L1_C_PROTO_armv6 (L1_TYPE_C)
855 #define L1_C_PROTO_armv7 (L1_TYPE_C)
856
857 #define L2_L_PROTO (L2_TYPE_L)
858
859 #define L2_S_PROTO_generic (L2_TYPE_S)
860 #define L2_S_PROTO_xscale (L2_TYPE_XS)
861 #ifdef ARMV6_EXTENDED_SMALL_PAGE
862 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
863 #else
864 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
865 #endif
866 #ifdef ARM_MMU_EXTENDED
867 #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
868 #else
869 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
870 #endif
871 #ifdef ARM_MMU_EXTENDED
872 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
873 #else
874 #define L2_S_PROTO_armv7 (L2_TYPE_S)
875 #endif
876
877 /*
878 * User-visible names for the ones that vary with MMU class.
879 */
880
881 #if ARM_NMMUS > 1
882 /* More than one MMU class configured; use variables. */
883 #define L1_S_PROT_U pte_l1_s_prot_u
884 #define L1_S_PROT_W pte_l1_s_prot_w
885 #define L1_S_PROT_RO pte_l1_s_prot_ro
886 #define L1_S_PROT_MASK pte_l1_s_prot_mask
887
888 #define L2_S_PROT_U pte_l2_s_prot_u
889 #define L2_S_PROT_W pte_l2_s_prot_w
890 #define L2_S_PROT_RO pte_l2_s_prot_ro
891 #define L2_S_PROT_MASK pte_l2_s_prot_mask
892
893 #define L2_L_PROT_U pte_l2_l_prot_u
894 #define L2_L_PROT_W pte_l2_l_prot_w
895 #define L2_L_PROT_RO pte_l2_l_prot_ro
896 #define L2_L_PROT_MASK pte_l2_l_prot_mask
897
898 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
899 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
900 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
901
902 #define L1_SS_PROTO pte_l1_ss_proto
903 #define L1_S_PROTO pte_l1_s_proto
904 #define L1_C_PROTO pte_l1_c_proto
905 #define L2_S_PROTO pte_l2_s_proto
906
907 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
908 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
909 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
910 #define L1_S_PROT_U L1_S_PROT_U_generic
911 #define L1_S_PROT_W L1_S_PROT_W_generic
912 #define L1_S_PROT_RO L1_S_PROT_RO_generic
913 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
914
915 #define L2_S_PROT_U L2_S_PROT_U_generic
916 #define L2_S_PROT_W L2_S_PROT_W_generic
917 #define L2_S_PROT_RO L2_S_PROT_RO_generic
918 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
919
920 #define L2_L_PROT_U L2_L_PROT_U_generic
921 #define L2_L_PROT_W L2_L_PROT_W_generic
922 #define L2_L_PROT_RO L2_L_PROT_RO_generic
923 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
924
925 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
926 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
927 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
928
929 #define L1_SS_PROTO L1_SS_PROTO_generic
930 #define L1_S_PROTO L1_S_PROTO_generic
931 #define L1_C_PROTO L1_C_PROTO_generic
932 #define L2_S_PROTO L2_S_PROTO_generic
933
934 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
935 #define pmap_zero_page(d) pmap_zero_page_generic((d))
936 #elif ARM_MMU_V6N != 0
937 #define L1_S_PROT_U L1_S_PROT_U_armv6
938 #define L1_S_PROT_W L1_S_PROT_W_armv6
939 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
940 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
941
942 #define L2_S_PROT_U L2_S_PROT_U_armv6n
943 #define L2_S_PROT_W L2_S_PROT_W_armv6n
944 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
945 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
946
947 #define L2_L_PROT_U L2_L_PROT_U_armv6n
948 #define L2_L_PROT_W L2_L_PROT_W_armv6n
949 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
950 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
951
952 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
953 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
954 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
955
956 /*
957 * These prototypes make writeable mappings, while the other MMU types
958 * make read-only mappings.
959 */
960 #define L1_SS_PROTO L1_SS_PROTO_armv6
961 #define L1_S_PROTO L1_S_PROTO_armv6
962 #define L1_C_PROTO L1_C_PROTO_armv6
963 #define L2_S_PROTO L2_S_PROTO_armv6n
964
965 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
966 #define pmap_zero_page(d) pmap_zero_page_generic((d))
967 #elif ARM_MMU_V6C != 0
968 #define L1_S_PROT_U L1_S_PROT_U_generic
969 #define L1_S_PROT_W L1_S_PROT_W_generic
970 #define L1_S_PROT_RO L1_S_PROT_RO_generic
971 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
972
973 #define L2_S_PROT_U L2_S_PROT_U_generic
974 #define L2_S_PROT_W L2_S_PROT_W_generic
975 #define L2_S_PROT_RO L2_S_PROT_RO_generic
976 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
977
978 #define L2_L_PROT_U L2_L_PROT_U_generic
979 #define L2_L_PROT_W L2_L_PROT_W_generic
980 #define L2_L_PROT_RO L2_L_PROT_RO_generic
981 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
982
983 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
984 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
985 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
986
987 #define L1_SS_PROTO L1_SS_PROTO_armv6
988 #define L1_S_PROTO L1_S_PROTO_generic
989 #define L1_C_PROTO L1_C_PROTO_generic
990 #define L2_S_PROTO L2_S_PROTO_generic
991
992 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
993 #define pmap_zero_page(d) pmap_zero_page_generic((d))
994 #elif ARM_MMU_XSCALE == 1
995 #define L1_S_PROT_U L1_S_PROT_U_generic
996 #define L1_S_PROT_W L1_S_PROT_W_generic
997 #define L1_S_PROT_RO L1_S_PROT_RO_generic
998 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
999
1000 #define L2_S_PROT_U L2_S_PROT_U_xscale
1001 #define L2_S_PROT_W L2_S_PROT_W_xscale
1002 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
1003 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
1004
1005 #define L2_L_PROT_U L2_L_PROT_U_generic
1006 #define L2_L_PROT_W L2_L_PROT_W_generic
1007 #define L2_L_PROT_RO L2_L_PROT_RO_generic
1008 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
1009
1010 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
1011 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
1012 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
1013
1014 #define L1_SS_PROTO L1_SS_PROTO_xscale
1015 #define L1_S_PROTO L1_S_PROTO_xscale
1016 #define L1_C_PROTO L1_C_PROTO_xscale
1017 #define L2_S_PROTO L2_S_PROTO_xscale
1018
1019 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
1020 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
1021 #elif ARM_MMU_V7 == 1
1022 #define L1_S_PROT_U L1_S_PROT_U_armv7
1023 #define L1_S_PROT_W L1_S_PROT_W_armv7
1024 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
1025 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
1026
1027 #define L2_S_PROT_U L2_S_PROT_U_armv7
1028 #define L2_S_PROT_W L2_S_PROT_W_armv7
1029 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
1030 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1031
1032 #define L2_L_PROT_U L2_L_PROT_U_armv7
1033 #define L2_L_PROT_W L2_L_PROT_W_armv7
1034 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1035 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1036
1037 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1038 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1039 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1040
1041 /*
1042 * These prototypes make writeable mappings, while the other MMU types
1043 * make read-only mappings.
1044 */
1045 #define L1_SS_PROTO L1_SS_PROTO_armv7
1046 #define L1_S_PROTO L1_S_PROTO_armv7
1047 #define L1_C_PROTO L1_C_PROTO_armv7
1048 #define L2_S_PROTO L2_S_PROTO_armv7
1049
1050 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1051 #define pmap_zero_page(d) pmap_zero_page_generic((d))
1052 #endif /* ARM_NMMUS > 1 */
1053
1054 /*
1055 * Macros to set and query the write permission on page descriptors.
1056 */
1057 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1058 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1059
1060 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1061 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1062
1063 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1064 (L2_S_PROT_RO == 0 || \
1065 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1066
1067 /*
1068 * These macros return various bits based on kernel/user and protection.
1069 * Note that the compiler will usually fold these at compile time.
1070 */
1071
1072 #define L1_S_PROT(ku, pr) ( \
1073 (((ku) == PTE_USER) ? \
1074 L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
1075 : \
1076 (((L1_S_PROT_RO && \
1077 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1078 L1_S_PROT_RO : L1_S_PROT_W))) \
1079 )
1080
1081 #define L2_L_PROT(ku, pr) ( \
1082 (((ku) == PTE_USER) ? \
1083 L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
1084 : \
1085 (((L2_L_PROT_RO && \
1086 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1087 L2_L_PROT_RO : L2_L_PROT_W))) \
1088 )
1089
1090 #define L2_S_PROT(ku, pr) ( \
1091 (((ku) == PTE_USER) ? \
1092 L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
1093 : \
1094 (((L2_S_PROT_RO && \
1095 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1096 L2_S_PROT_RO : L2_S_PROT_W))) \
1097 )
1098
1099 /*
1100 * Macros to test if a mapping is mappable with an L1 SuperSection,
1101 * L1 Section, or an L2 Large Page mapping.
1102 */
1103 #define L1_SS_MAPPABLE_P(va, pa, size) \
1104 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1105
1106 #define L1_S_MAPPABLE_P(va, pa, size) \
1107 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1108
1109 #define L2_L_MAPPABLE_P(va, pa, size) \
1110 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1111
1112 #define PMAP_MAPSIZE1 L2_L_SIZE
1113 #define PMAP_MAPSIZE2 L1_S_SIZE
1114 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1115 #define PMAP_MAPSIZE3 L1_SS_SIZE
1116 #endif
1117
1118 #ifndef _LOCORE
1119 /*
1120 * Hooks for the pool allocator.
1121 */
1122 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1123 extern paddr_t physical_start, physical_end;
1124 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1125 struct vm_page *arm_pmap_alloc_poolpage(int);
1126 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1127 #endif
1128 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1129 vaddr_t pmap_map_poolpage(paddr_t);
1130 paddr_t pmap_unmap_poolpage(vaddr_t);
1131 #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1132 #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1133 #endif
1134
1135 #define __HAVE_PMAP_PV_TRACK 1
1136
1137 void pmap_pv_protect(paddr_t, vm_prot_t);
1138
1139 struct pmap_page {
1140 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1141 int pvh_attrs; /* page attributes */
1142 u_int uro_mappings;
1143 u_int urw_mappings;
1144 union {
1145 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1146 u_int i_mappings;
1147 } k_u;
1148 };
1149
1150 /*
1151 * pmap-specific data store in the vm_page structure.
1152 */
1153 #define __HAVE_VM_PAGE_MD
1154 struct vm_page_md {
1155 struct pmap_page pp;
1156 #define pvh_list pp.pvh_list
1157 #define pvh_attrs pp.pvh_attrs
1158 #define uro_mappings pp.uro_mappings
1159 #define urw_mappings pp.urw_mappings
1160 #define kro_mappings pp.k_u.s_mappings[0]
1161 #define krw_mappings pp.k_u.s_mappings[1]
1162 #define k_mappings pp.k_u.i_mappings
1163 };
1164
1165 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1166
1167 /*
1168 * Set the default color of each page.
1169 */
1170 #if ARM_MMU_V6 > 0
1171 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1172 (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
1173 #else
1174 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1175 (pg)->mdpage.pvh_attrs = 0
1176 #endif
1177
1178 #define VM_MDPAGE_INIT(pg) \
1179 do { \
1180 SLIST_INIT(&(pg)->mdpage.pvh_list); \
1181 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1182 (pg)->mdpage.uro_mappings = 0; \
1183 (pg)->mdpage.urw_mappings = 0; \
1184 (pg)->mdpage.k_mappings = 0; \
1185 } while (/*CONSTCOND*/0)
1186
1187 #endif /* !_LOCORE */
1188
1189 #ifndef __BSD_PTENTRY_T__
1190 #define __BSD_PTENTRY_T__
1191 typedef uint32_t pt_entry_t;
1192 #define PRIxPTE PRIx32
1193 #endif
1194
1195 #endif /* _KERNEL */
1196
1197 #endif /* _ARM32_PMAP_H_ */
1198