Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.173.4.1
      1 /*	$NetBSD: pmap.h,v 1.173.4.1 2023/10/14 06:52:17 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #if defined(_KERNEL_OPT)
     77 #include "opt_arm32_pmap.h"
     78 #include "opt_multiprocessor.h"
     79 #endif
     80 #include <arm/cpufunc.h>
     81 #include <arm/locore.h>
     82 #include <uvm/uvm_object.h>
     83 #include <uvm/pmap/pmap_pvt.h>
     84 #endif
     85 
     86 #ifdef ARM_MMU_EXTENDED
     87 #define	PMAP_HWPAGEWALKER		1
     88 #define	PMAP_TLB_MAX			1
     89 #if PMAP_TLB_MAX > 1
     90 #define	PMAP_TLB_NEED_SHOOTDOWN		1
     91 #endif
     92 #define	PMAP_TLB_FLUSH_ASID_ON_RESET	arm_has_tlbiasid_p
     93 #define	PMAP_TLB_NUM_PIDS		256
     94 #define	cpu_set_tlb_info(ci, ti)        ((void)((ci)->ci_tlb_info = (ti)))
     95 #if PMAP_TLB_MAX > 1
     96 #define	cpu_tlb_info(ci)		((ci)->ci_tlb_info)
     97 #else
     98 #define	cpu_tlb_info(ci)		(&pmap_tlb0_info)
     99 #endif
    100 #define	pmap_md_tlb_asid_max()		(PMAP_TLB_NUM_PIDS - 1)
    101 #include <uvm/pmap/tlb.h>
    102 #include <uvm/pmap/pmap_tlb.h>
    103 
    104 /*
    105  * If we have an EXTENDED MMU and the address space is split evenly between
    106  * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
    107  * user and kernel address spaces.
    108  */
    109 #if (KERNEL_BASE & 0x80000000) == 0
    110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
    111 #endif
    112 #endif  /* ARM_MMU_EXTENDED */
    113 
    114 /*
    115  * a pmap describes a processes' 4GB virtual address space.  this
    116  * virtual address space can be broken up into 4096 1MB regions which
    117  * are described by L1 PTEs in the L1 table.
    118  *
    119  * There is a line drawn at KERNEL_BASE.  Everything below that line
    120  * changes when the VM context is switched.  Everything above that line
    121  * is the same no matter which VM context is running.  This is achieved
    122  * by making the L1 PTEs for those slots above KERNEL_BASE reference
    123  * kernel L2 tables.
    124  *
    125  * The basic layout of the virtual address space thus looks like this:
    126  *
    127  *	0xffffffff
    128  *	.
    129  *	.
    130  *	.
    131  *	KERNEL_BASE
    132  *	--------------------
    133  *	.
    134  *	.
    135  *	.
    136  *	0x00000000
    137  */
    138 
    139 /*
    140  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    141  * A bucket size of 16 provides for 16MB of contiguous virtual address
    142  * space per l2_dtable. Most processes will, therefore, require only two or
    143  * three of these to map their whole working set.
    144  */
    145 #define	L2_BUCKET_XLOG2	(L1_S_SHIFT)
    146 #define	L2_BUCKET_XSIZE	(1 << L2_BUCKET_XLOG2)
    147 #define	L2_BUCKET_LOG2	4
    148 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    149 
    150 /*
    151  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    152  * of l2_dtable structures required to track all possible page descriptors
    153  * mappable by an L1 translation table is given by the following constants:
    154  */
    155 #define	L2_LOG2		(32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
    156 #define	L2_SIZE		(1 << L2_LOG2)
    157 
    158 /*
    159  * tell MI code that the cache is virtually-indexed.
    160  * ARMv6 is physically-tagged but all others are virtually-tagged.
    161  */
    162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    163 #define	PMAP_CACHE_VIPT
    164 #else
    165 #define	PMAP_CACHE_VIVT
    166 #endif
    167 
    168 #ifndef _LOCORE
    169 
    170 #ifndef ARM_MMU_EXTENDED
    171 struct l1_ttable;
    172 struct l2_dtable;
    173 
    174 /*
    175  * Track cache/tlb occupancy using the following structure
    176  */
    177 union pmap_cache_state {
    178 	struct {
    179 		union {
    180 			uint8_t csu_cache_b[2];
    181 			uint16_t csu_cache;
    182 		} cs_cache_u;
    183 
    184 		union {
    185 			uint8_t csu_tlb_b[2];
    186 			uint16_t csu_tlb;
    187 		} cs_tlb_u;
    188 	} cs_s;
    189 	uint32_t cs_all;
    190 };
    191 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    192 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    193 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    194 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    195 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    196 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    197 
    198 /*
    199  * Assigned to cs_all to force cacheops to work for a particular pmap
    200  */
    201 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    202 #endif /* !ARM_MMU_EXTENDED */
    203 
    204 /*
    205  * This structure is used by machine-dependent code to describe
    206  * static mappings of devices, created at bootstrap time.
    207  */
    208 struct pmap_devmap {
    209 	vaddr_t		pd_va;		/* virtual address */
    210 	paddr_t		pd_pa;		/* physical address */
    211 	psize_t		pd_size;	/* size of region */
    212 	vm_prot_t	pd_prot;	/* protection code */
    213 	int		pd_cache;	/* cache attributes */
    214 };
    215 
    216 #define	DEVMAP_ALIGN(a)	((a) & ~L1_S_OFFSET)
    217 #define	DEVMAP_SIZE(s)	roundup2((s), L1_S_SIZE)
    218 #define	DEVMAP_ENTRY(va, pa, sz)			\
    219 	{						\
    220 		.pd_va = DEVMAP_ALIGN(va),		\
    221 		.pd_pa = DEVMAP_ALIGN(pa),		\
    222 		.pd_size = DEVMAP_SIZE(sz),		\
    223 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,	\
    224 		.pd_cache = PTE_DEV			\
    225 	}
    226 #define	DEVMAP_ENTRY_END	{ 0 }
    227 
    228 /*
    229  * The pmap structure itself
    230  */
    231 struct pmap {
    232 	kmutex_t		pm_lock;
    233 	u_int			pm_refs;
    234 #ifndef ARM_HAS_VBAR
    235 	pd_entry_t		*pm_pl1vec;
    236 	pd_entry_t		pm_l1vec;
    237 #endif
    238 	struct l2_dtable	*pm_l2[L2_SIZE];
    239 	struct pmap_statistics	pm_stats;
    240 	LIST_ENTRY(pmap)	pm_list;
    241 	bool			pm_remove_all;
    242 #ifdef ARM_MMU_EXTENDED
    243 	pd_entry_t		*pm_l1;
    244 	paddr_t			pm_l1_pa;
    245 #ifdef MULTIPROCESSOR
    246 	kcpuset_t		*pm_onproc;
    247 	kcpuset_t		*pm_active;
    248 #if PMAP_TLB_MAX > 1
    249 	u_int			pm_shootdown_pending;
    250 #endif
    251 #endif
    252 	struct pmap_asid_info	pm_pai[PMAP_TLB_MAX];
    253 #else
    254 	struct l1_ttable	*pm_l1;
    255 	union pmap_cache_state	pm_cstate;
    256 	uint8_t			pm_domain;
    257 	bool			pm_activated;
    258 #endif
    259 };
    260 
    261 struct pmap_kernel {
    262 	struct pmap		kernel_pmap;
    263 };
    264 
    265 /*
    266  * Physical / virtual address structure. In a number of places (particularly
    267  * during bootstrapping) we need to keep track of the physical and virtual
    268  * addresses of various pages
    269  */
    270 typedef struct pv_addr {
    271 	SLIST_ENTRY(pv_addr) pv_list;
    272 	paddr_t pv_pa;
    273 	vaddr_t pv_va;
    274 	vsize_t pv_size;
    275 	uint8_t pv_cache;
    276 	uint8_t pv_prot;
    277 } pv_addr_t;
    278 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
    279 
    280 extern pv_addrqh_t pmap_freeq;
    281 extern pv_addr_t kernelstack;
    282 extern pv_addr_t abtstack;
    283 extern pv_addr_t fiqstack;
    284 extern pv_addr_t irqstack;
    285 extern pv_addr_t undstack;
    286 extern pv_addr_t idlestack;
    287 extern pv_addr_t systempage;
    288 extern pv_addr_t kernel_l1pt;
    289 #if defined(EFI_RUNTIME)
    290 extern pv_addr_t efirt_l1pt;
    291 #endif
    292 
    293 #ifdef ARM_MMU_EXTENDED
    294 extern bool arm_has_tlbiasid_p;	/* also in <arm/locore.h> */
    295 #endif
    296 
    297 /*
    298  * Determine various modes for PTEs (user vs. kernel, cacheable
    299  * vs. non-cacheable).
    300  */
    301 #define	PTE_KERNEL	0
    302 #define	PTE_USER	1
    303 #define	PTE_NOCACHE	0
    304 #define	PTE_CACHE	1
    305 #define	PTE_PAGETABLE	2
    306 #define	PTE_DEV		3
    307 
    308 /*
    309  * Flags that indicate attributes of pages or mappings of pages.
    310  *
    311  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    312  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    313  * pv_entry's for each page.  They live in the same "namespace" so
    314  * that we can clear multiple attributes at a time.
    315  *
    316  * Note the "non-cacheable" flag generally means the page has
    317  * multiple mappings in a given address space.
    318  */
    319 #define	PVF_MOD		0x01		/* page is modified */
    320 #define	PVF_REF		0x02		/* page is referenced */
    321 #define	PVF_WIRED	0x04		/* mapping is wired */
    322 #define	PVF_WRITE	0x08		/* mapping is writable */
    323 #define	PVF_EXEC	0x10		/* mapping is executable */
    324 #ifdef PMAP_CACHE_VIVT
    325 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    326 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    327 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    328 #endif
    329 #ifdef PMAP_CACHE_VIPT
    330 #define	PVF_NC		0x20		/* mapping is 'kernel' non-cacheable */
    331 #define	PVF_MULTCLR	0x40		/* mapping is multi-colored */
    332 #endif
    333 #define	PVF_COLORED	0x80		/* page has or had a color */
    334 #define	PVF_KENTRY	0x0100		/* page entered via pmap_kenter_pa */
    335 #define	PVF_KMPAGE	0x0200		/* page is used for kmem */
    336 #define	PVF_DIRTY	0x0400		/* page may have dirty cache lines */
    337 #define	PVF_KMOD	0x0800		/* unmanaged page is modified  */
    338 #define	PVF_KWRITE	(PVF_KENTRY|PVF_WRITE)
    339 #define	PVF_DMOD	(PVF_MOD|PVF_KMOD|PVF_KMPAGE)
    340 
    341 /*
    342  * Commonly referenced structures
    343  */
    344 extern int		arm_poolpage_vmfreelist;
    345 
    346 /*
    347  * Macros that we need to export
    348  */
    349 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    350 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    351 
    352 #define	pmap_is_modified(pg)	\
    353 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    354 #define	pmap_is_referenced(pg)	\
    355 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    356 #define	pmap_is_page_colored_p(md)	\
    357 	(((md)->pvh_attrs & PVF_COLORED) != 0)
    358 
    359 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    360 
    361 #define	pmap_phys_address(ppn)		(arm_ptob((ppn)))
    362 u_int arm32_mmap_flags(paddr_t);
    363 #define	ARM32_MMAP_WRITECOMBINE		0x40000000
    364 #define	ARM32_MMAP_CACHEABLE		0x20000000
    365 #define	ARM_MMAP_WRITECOMBINE		ARM32_MMAP_WRITECOMBINE
    366 #define	ARM_MMAP_CACHEABLE		ARM32_MMAP_CACHEABLE
    367 #define	pmap_mmap_flags(ppn)		arm32_mmap_flags(ppn)
    368 
    369 #define	PMAP_PTE			0x10000000 /* kenter_pa */
    370 #define	PMAP_DEV			0x20000000 /* kenter_pa */
    371 #define	PMAP_DEV_SO			0x40000000 /* kenter_pa */
    372 #define	PMAP_DEV_MASK			(PMAP_DEV | PMAP_DEV_SO)
    373 
    374 /*
    375  * Functions that we need to export
    376  */
    377 void	pmap_procwr(struct proc *, vaddr_t, int);
    378 bool	pmap_remove_all(pmap_t);
    379 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
    380 
    381 #define	PMAP_NEED_PROCWR
    382 #define	PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    383 #define	PMAP_ENABLE_PMAP_KMPAGE	/* enable the PMAP_KMPAGE flag */
    384 
    385 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    386 #define	PMAP_PREFER(hint, vap, sz, td)	pmap_prefer((hint), (vap), (td))
    387 void	pmap_prefer(vaddr_t, vaddr_t *, int);
    388 #endif
    389 
    390 #ifdef ARM_MMU_EXTENDED
    391 int	pmap_maxproc_set(int);
    392 struct pmap *
    393 	pmap_efirt(void);
    394 #endif
    395 
    396 void	pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
    397 
    398 /* Functions we use internally. */
    399 #ifdef PMAP_STEAL_MEMORY
    400 void	pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
    401 void	pmap_boot_pageadd(pv_addr_t *);
    402 vaddr_t	pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    403 #endif
    404 void	pmap_bootstrap(vaddr_t, vaddr_t);
    405 
    406 struct pmap *
    407 	pmap_efirt(void);
    408 void	pmap_activate_efirt(void);
    409 void	pmap_deactivate_efirt(void);
    410 
    411 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
    412 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    413 int	pmap_prefetchabt_fixup(void *);
    414 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    415 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    416 bool	pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
    417 
    418 void	pmap_postinit(void);
    419 
    420 void	vector_page_setprot(int);
    421 
    422 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    423 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    424 
    425 /* Bootstrapping routines. */
    426 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    427 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    428 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    429 void	pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
    430 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    431 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    432 void	pmap_devmap_register(const struct pmap_devmap *);
    433 
    434 /*
    435  * Special page zero routine for use by the idle loop (no cache cleans).
    436  */
    437 bool	pmap_pageidlezero(paddr_t);
    438 #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    439 
    440 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    441 /*
    442  * For the pmap, this is a more useful way to map a direct mapped page.
    443  * It returns either the direct-mapped VA or the VA supplied if it can't
    444  * be direct mapped.
    445  */
    446 vaddr_t	pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
    447 #endif
    448 
    449 /*
    450  * used by dumpsys to record the PA of the L1 table
    451  */
    452 uint32_t pmap_kernel_L1_addr(void);
    453 /*
    454  * The current top of kernel VM
    455  */
    456 extern vaddr_t	pmap_curmaxkvaddr;
    457 
    458 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    459 /*
    460  * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
    461  */
    462 extern vaddr_t pmap_directlimit;
    463 #endif
    464 
    465 /*
    466  * Useful macros and constants
    467  */
    468 
    469 /* Virtual address to page table entry */
    470 static inline pt_entry_t *
    471 vtopte(vaddr_t va)
    472 {
    473 	pd_entry_t *pdep;
    474 	pt_entry_t *ptep;
    475 
    476 	KASSERT(trunc_page(va) == va);
    477 
    478 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
    479 		return (NULL);
    480 	return (ptep);
    481 }
    482 
    483 /*
    484  * Virtual address to physical address
    485  */
    486 static inline paddr_t
    487 vtophys(vaddr_t va)
    488 {
    489 	paddr_t pa;
    490 
    491 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
    492 		return (0);	/* XXXSCW: Panic? */
    493 
    494 	return (pa);
    495 }
    496 
    497 /*
    498  * The new pmap ensures that page-tables are always mapping Write-Thru.
    499  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    500  * on every change.
    501  *
    502  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    503  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    504  * and if there is the chance for PTE syncs to be needed, we define
    505  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    506  * the code.
    507  */
    508 extern int pmap_needs_pte_sync;
    509 #if defined(_KERNEL_OPT)
    510 /*
    511  * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
    512  * single MMU type is selected.
    513  *
    514  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    515  * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
    516  * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
    517  *
    518  * Use run time evaluation for all other cases.
    519  *
    520  */
    521 #if (ARM_NMMUS == 1)
    522 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
    523 #define	PMAP_INCLUDE_PTE_SYNC
    524 #define	PMAP_NEEDS_PTE_SYNC	1
    525 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
    526 #define	PMAP_NEEDS_PTE_SYNC	0
    527 #endif
    528 #endif
    529 #endif /* _KERNEL_OPT */
    530 
    531 /*
    532  * Provide a fallback in case we were not able to determine it at
    533  * compile-time.
    534  */
    535 #ifndef PMAP_NEEDS_PTE_SYNC
    536 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    537 #define	PMAP_INCLUDE_PTE_SYNC
    538 #endif
    539 
    540 static inline void
    541 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
    542 {
    543 	if (PMAP_NEEDS_PTE_SYNC) {
    544 		cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
    545 #ifdef SHEEVA_L2_CACHE
    546 		cpu_sdcache_wb_range((vaddr_t)ptep, -1,
    547 		    cnt * sizeof(pt_entry_t));
    548 #endif
    549 	}
    550 	dsb(sy);
    551 }
    552 
    553 #define	PDE_SYNC(pdep)			pmap_ptesync((pdep), 1)
    554 #define	PDE_SYNC_RANGE(pdep, cnt)	pmap_ptesync((pdep), (cnt))
    555 #define	PTE_SYNC(ptep)			pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
    556 #define	PTE_SYNC_RANGE(ptep, cnt)	pmap_ptesync((ptep), (cnt))
    557 
    558 #define	l1pte_valid_p(pde)	((pde) != 0)
    559 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    560 #define	l1pte_supersection_p(pde) (l1pte_section_p(pde)	\
    561 				&& ((pde) & L1_S_V6_SUPER) != 0)
    562 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    563 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    564 #define	l1pte_pa(pde)		((pde) & L1_C_ADDR_MASK)
    565 #define	l1pte_index(v)		((vaddr_t)(v) >> L1_S_SHIFT)
    566 
    567 static inline void
    568 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
    569 {
    570 	*pdep = pde;
    571 }
    572 
    573 static inline void
    574 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
    575 {
    576 	*pdep = pde;
    577 	if (l1pte_page_p(pde)) {
    578 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
    579 		for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
    580 			pde += L2_T_SIZE;
    581 			pdep[k] = pde;
    582 		}
    583 	} else if (l1pte_supersection_p(pde)) {
    584 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
    585 		for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
    586 			pdep[k] = pde;
    587 		}
    588 	}
    589 }
    590 
    591 #define	l2pte_index(v)		((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
    592 #define	l2pte_valid_p(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
    593 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    594 #define	l1pte_lpage_p(pte)	(((pte) & L2_TYPE_MASK) == L2_TYPE_L)
    595 #define	l2pte_minidata_p(pte)	(((pte) & \
    596 				 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
    597 				 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
    598 
    599 static inline void
    600 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
    601 {
    602 	if (l1pte_lpage_p(pte)) {
    603 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    604 		for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
    605 			*ptep++ = pte;
    606 		}
    607 	} else {
    608 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    609 		for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
    610 			KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
    611 			*ptep++ = pte;
    612 			pte += L2_S_SIZE;
    613 			if (opte)
    614 				opte += L2_S_SIZE;
    615 		}
    616 	}
    617 }
    618 
    619 static inline void
    620 l2pte_reset(pt_entry_t *ptep)
    621 {
    622 	KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    623 	*ptep = 0;
    624 	for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
    625 		ptep[k] = 0;
    626 	}
    627 }
    628 
    629 /* L1 and L2 page table macros */
    630 #define	pmap_pde_v(pde)		l1pte_valid(*(pde))
    631 #define	pmap_pde_section(pde)	l1pte_section_p(*(pde))
    632 #define	pmap_pde_supersection(pde)	l1pte_supersection_p(*(pde))
    633 #define	pmap_pde_page(pde)	l1pte_page_p(*(pde))
    634 #define	pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    635 
    636 #define	pmap_pte_v(pte)		l2pte_valid_p(*(pte))
    637 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    638 
    639 static inline uint32_t
    640 pte_value(pt_entry_t pte)
    641 {
    642 	return pte;
    643 }
    644 
    645 static inline bool
    646 pte_valid_p(pt_entry_t pte)
    647 {
    648 
    649 	return l2pte_valid_p(pte);
    650 }
    651 
    652 
    653 /* Size of the kernel part of the L1 page table */
    654 #define	KERNEL_PD_SIZE	\
    655 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    656 
    657 void	bzero_page(vaddr_t);
    658 void	bcopy_page(vaddr_t, vaddr_t);
    659 
    660 #ifdef FPU_VFP
    661 void	bzero_page_vfp(vaddr_t);
    662 void	bcopy_page_vfp(vaddr_t, vaddr_t);
    663 #endif
    664 
    665 /************************* ARM MMU configuration *****************************/
    666 
    667 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
    668 void	pmap_copy_page_generic(paddr_t, paddr_t);
    669 void	pmap_zero_page_generic(paddr_t);
    670 
    671 void	pmap_pte_init_generic(void);
    672 #if defined(CPU_ARM8)
    673 void	pmap_pte_init_arm8(void);
    674 #endif
    675 #if defined(CPU_ARM9)
    676 void	pmap_pte_init_arm9(void);
    677 #endif /* CPU_ARM9 */
    678 #if defined(CPU_ARM10)
    679 void	pmap_pte_init_arm10(void);
    680 #endif /* CPU_ARM10 */
    681 #if defined(CPU_ARM11)	/* ARM_MMU_V6 */
    682 void	pmap_pte_init_arm11(void);
    683 #endif /* CPU_ARM11 */
    684 #if defined(CPU_ARM11MPCORE)	/* ARM_MMU_V6 */
    685 void	pmap_pte_init_arm11mpcore(void);
    686 #endif
    687 #if ARM_MMU_V6 == 1
    688 void	pmap_pte_init_armv6(void);
    689 #endif /* ARM_MMU_V6 */
    690 #if ARM_MMU_V7 == 1
    691 void	pmap_pte_init_armv7(void);
    692 #endif /* ARM_MMU_V7 */
    693 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    694 
    695 #if ARM_MMU_SA1 == 1
    696 void	pmap_pte_init_sa1(void);
    697 #endif /* ARM_MMU_SA1 == 1 */
    698 
    699 #if ARM_MMU_XSCALE == 1
    700 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    701 void	pmap_zero_page_xscale(paddr_t);
    702 
    703 void	pmap_pte_init_xscale(void);
    704 
    705 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    706 
    707 #define	PMAP_UAREA(va)		pmap_uarea(va)
    708 void	pmap_uarea(vaddr_t);
    709 #endif /* ARM_MMU_XSCALE == 1 */
    710 
    711 extern pt_entry_t		pte_l1_s_nocache_mode;
    712 extern pt_entry_t		pte_l2_l_nocache_mode;
    713 extern pt_entry_t		pte_l2_s_nocache_mode;
    714 
    715 extern pt_entry_t		pte_l1_s_cache_mode;
    716 extern pt_entry_t		pte_l2_l_cache_mode;
    717 extern pt_entry_t		pte_l2_s_cache_mode;
    718 
    719 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    720 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    721 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    722 
    723 extern pt_entry_t		pte_l1_s_wc_mode;
    724 extern pt_entry_t		pte_l2_l_wc_mode;
    725 extern pt_entry_t		pte_l2_s_wc_mode;
    726 
    727 extern pt_entry_t		pte_l1_s_cache_mask;
    728 extern pt_entry_t		pte_l2_l_cache_mask;
    729 extern pt_entry_t		pte_l2_s_cache_mask;
    730 
    731 extern pt_entry_t		pte_l1_s_prot_u;
    732 extern pt_entry_t		pte_l1_s_prot_w;
    733 extern pt_entry_t		pte_l1_s_prot_ro;
    734 extern pt_entry_t		pte_l1_s_prot_mask;
    735 
    736 extern pt_entry_t		pte_l2_s_prot_u;
    737 extern pt_entry_t		pte_l2_s_prot_w;
    738 extern pt_entry_t		pte_l2_s_prot_ro;
    739 extern pt_entry_t		pte_l2_s_prot_mask;
    740 
    741 extern pt_entry_t		pte_l2_l_prot_u;
    742 extern pt_entry_t		pte_l2_l_prot_w;
    743 extern pt_entry_t		pte_l2_l_prot_ro;
    744 extern pt_entry_t		pte_l2_l_prot_mask;
    745 
    746 extern pt_entry_t		pte_l1_ss_proto;
    747 extern pt_entry_t		pte_l1_s_proto;
    748 extern pt_entry_t		pte_l1_c_proto;
    749 extern pt_entry_t		pte_l2_s_proto;
    750 
    751 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    752 extern void (*pmap_zero_page_func)(paddr_t);
    753 
    754 /*
    755  * Global varaiables in cpufunc_asm_xscale.S supporting the Xscale
    756  * cache clean/purge functions.
    757  */
    758 extern vaddr_t xscale_minidata_clean_addr;
    759 extern vsize_t xscale_minidata_clean_size;
    760 extern vaddr_t xscale_cache_clean_addr;
    761 extern vsize_t xscale_cache_clean_size;
    762 
    763 #endif /* !_LOCORE */
    764 
    765 /*****************************************************************************/
    766 
    767 #define	KERNEL_PID		0	/* The kernel uses ASID 0 */
    768 
    769 /*
    770  * Definitions for MMU domains
    771  */
    772 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
    773 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel pmap uses domain #0 */
    774 
    775 #ifdef ARM_MMU_EXTENDED
    776 #define	PMAP_DOMAIN_USER	1	/* User pmaps use domain #1 */
    777 #define	DOMAIN_DEFAULT		((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
    778 #else
    779 #define	DOMAIN_DEFAULT		((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
    780 #endif
    781 
    782 /*
    783  * These macros define the various bit masks in the PTE.
    784  *
    785  * We use these macros since we use different bits on different processor
    786  * models.
    787  */
    788 #define	L1_S_PROT_U_generic	(L1_S_AP(AP_U))
    789 #define	L1_S_PROT_W_generic	(L1_S_AP(AP_W))
    790 #define	L1_S_PROT_RO_generic	(0)
    791 #define	L1_S_PROT_MASK_generic	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    792 
    793 #define	L1_S_PROT_U_xscale	(L1_S_AP(AP_U))
    794 #define	L1_S_PROT_W_xscale	(L1_S_AP(AP_W))
    795 #define	L1_S_PROT_RO_xscale	(0)
    796 #define	L1_S_PROT_MASK_xscale	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    797 
    798 #define	L1_S_PROT_U_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    799 #define	L1_S_PROT_W_armv6	(L1_S_AP(AP_W))
    800 #define	L1_S_PROT_RO_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    801 #define	L1_S_PROT_MASK_armv6	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    802 
    803 #define	L1_S_PROT_U_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    804 #define	L1_S_PROT_W_armv7	(L1_S_AP(AP_W))
    805 #define	L1_S_PROT_RO_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    806 #define	L1_S_PROT_MASK_armv7	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    807 
    808 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    809 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
    810 #define	L1_S_CACHE_MASK_armv6	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
    811 #define	L1_S_CACHE_MASK_armv6n	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    812 #define	L1_S_CACHE_MASK_armv7	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    813 
    814 #define	L2_L_PROT_U_generic	(L2_AP(AP_U))
    815 #define	L2_L_PROT_W_generic	(L2_AP(AP_W))
    816 #define	L2_L_PROT_RO_generic	(0)
    817 #define	L2_L_PROT_MASK_generic	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    818 
    819 #define	L2_L_PROT_U_xscale	(L2_AP(AP_U))
    820 #define	L2_L_PROT_W_xscale	(L2_AP(AP_W))
    821 #define	L2_L_PROT_RO_xscale	(0)
    822 #define	L2_L_PROT_MASK_xscale	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    823 
    824 #define	L2_L_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    825 #define	L2_L_PROT_W_armv6n	(L2_AP0(AP_W))
    826 #define	L2_L_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    827 #define	L2_L_PROT_MASK_armv6n	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    828 
    829 #define	L2_L_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    830 #define	L2_L_PROT_W_armv7	(L2_AP0(AP_W))
    831 #define	L2_L_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    832 #define	L2_L_PROT_MASK_armv7	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    833 
    834 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    835 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
    836 #define	L2_L_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
    837 #define	L2_L_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    838 #define	L2_L_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    839 
    840 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    841 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    842 #define	L2_S_PROT_RO_generic	(0)
    843 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    844 
    845 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    846 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    847 #define	L2_S_PROT_RO_xscale	(0)
    848 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    849 
    850 #define	L2_S_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    851 #define	L2_S_PROT_W_armv6n	(L2_AP0(AP_W))
    852 #define	L2_S_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    853 #define	L2_S_PROT_MASK_armv6n	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    854 
    855 #define	L2_S_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    856 #define	L2_S_PROT_W_armv7	(L2_AP0(AP_W))
    857 #define	L2_S_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    858 #define	L2_S_PROT_MASK_armv7	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    859 
    860 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    861 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
    862 #define	L2_XS_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
    863 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    864 #define	L2_S_CACHE_MASK_armv6c	L2_XS_CACHE_MASK_armv6
    865 #else
    866 #define	L2_S_CACHE_MASK_armv6c	L2_S_CACHE_MASK_generic
    867 #endif
    868 #define	L2_S_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    869 #define	L2_S_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    870 
    871 
    872 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    873 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    874 #define	L1_S_PROTO_armv6	(L1_TYPE_S)
    875 #define	L1_S_PROTO_armv7	(L1_TYPE_S)
    876 
    877 #define	L1_SS_PROTO_generic	0
    878 #define	L1_SS_PROTO_xscale	0
    879 #define	L1_SS_PROTO_armv6	(L1_TYPE_S | L1_S_V6_SS)
    880 #define	L1_SS_PROTO_armv7	(L1_TYPE_S | L1_S_V6_SS)
    881 
    882 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    883 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    884 #define	L1_C_PROTO_armv6	(L1_TYPE_C)
    885 #define	L1_C_PROTO_armv7	(L1_TYPE_C)
    886 
    887 #define	L2_L_PROTO		(L2_TYPE_L)
    888 
    889 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    890 #define	L2_S_PROTO_xscale	(L2_TYPE_XS)
    891 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    892 #define	L2_S_PROTO_armv6c	(L2_TYPE_XS)    /* XP=0, extended small page */
    893 #else
    894 #define	L2_S_PROTO_armv6c	(L2_TYPE_S)	/* XP=0, subpage APs */
    895 #endif
    896 #ifdef ARM_MMU_EXTENDED
    897 #define	L2_S_PROTO_armv6n	(L2_TYPE_S|L2_XS_XN)
    898 #else
    899 #define	L2_S_PROTO_armv6n	(L2_TYPE_S)	/* with XP=1 */
    900 #endif
    901 #ifdef ARM_MMU_EXTENDED
    902 #define	L2_S_PROTO_armv7	(L2_TYPE_S|L2_XS_XN)
    903 #else
    904 #define	L2_S_PROTO_armv7	(L2_TYPE_S)
    905 #endif
    906 
    907 /*
    908  * User-visible names for the ones that vary with MMU class.
    909  */
    910 
    911 #if ARM_NMMUS > 1
    912 /* More than one MMU class configured; use variables. */
    913 #define	L1_S_PROT_U		pte_l1_s_prot_u
    914 #define	L1_S_PROT_W		pte_l1_s_prot_w
    915 #define	L1_S_PROT_RO		pte_l1_s_prot_ro
    916 #define	L1_S_PROT_MASK		pte_l1_s_prot_mask
    917 
    918 #define	L2_S_PROT_U		pte_l2_s_prot_u
    919 #define	L2_S_PROT_W		pte_l2_s_prot_w
    920 #define	L2_S_PROT_RO		pte_l2_s_prot_ro
    921 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    922 
    923 #define	L2_L_PROT_U		pte_l2_l_prot_u
    924 #define	L2_L_PROT_W		pte_l2_l_prot_w
    925 #define	L2_L_PROT_RO		pte_l2_l_prot_ro
    926 #define	L2_L_PROT_MASK		pte_l2_l_prot_mask
    927 
    928 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    929 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    930 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    931 
    932 #define	L1_SS_PROTO		pte_l1_ss_proto
    933 #define	L1_S_PROTO		pte_l1_s_proto
    934 #define	L1_C_PROTO		pte_l1_c_proto
    935 #define	L2_S_PROTO		pte_l2_s_proto
    936 
    937 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    938 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    939 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    940 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    941 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    942 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    943 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    944 
    945 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    946 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    947 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    948 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    949 
    950 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    951 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    952 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    953 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    954 
    955 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    956 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    957 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    958 
    959 #define	L1_SS_PROTO		L1_SS_PROTO_generic
    960 #define	L1_S_PROTO		L1_S_PROTO_generic
    961 #define	L1_C_PROTO		L1_C_PROTO_generic
    962 #define	L2_S_PROTO		L2_S_PROTO_generic
    963 
    964 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    965 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    966 #elif ARM_MMU_V6N != 0
    967 #define	L1_S_PROT_U		L1_S_PROT_U_armv6
    968 #define	L1_S_PROT_W		L1_S_PROT_W_armv6
    969 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv6
    970 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv6
    971 
    972 #define	L2_S_PROT_U		L2_S_PROT_U_armv6n
    973 #define	L2_S_PROT_W		L2_S_PROT_W_armv6n
    974 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv6n
    975 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv6n
    976 
    977 #define	L2_L_PROT_U		L2_L_PROT_U_armv6n
    978 #define	L2_L_PROT_W		L2_L_PROT_W_armv6n
    979 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv6n
    980 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv6n
    981 
    982 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv6n
    983 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv6n
    984 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv6n
    985 
    986 /*
    987  * These prototypes make writeable mappings, while the other MMU types
    988  * make read-only mappings.
    989  */
    990 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
    991 #define	L1_S_PROTO		L1_S_PROTO_armv6
    992 #define	L1_C_PROTO		L1_C_PROTO_armv6
    993 #define	L2_S_PROTO		L2_S_PROTO_armv6n
    994 
    995 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    996 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    997 #elif ARM_MMU_V6C != 0
    998 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    999 #define	L1_S_PROT_W		L1_S_PROT_W_generic
   1000 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
   1001 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
   1002 
   1003 #define	L2_S_PROT_U		L2_S_PROT_U_generic
   1004 #define	L2_S_PROT_W		L2_S_PROT_W_generic
   1005 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
   1006 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
   1007 
   1008 #define	L2_L_PROT_U		L2_L_PROT_U_generic
   1009 #define	L2_L_PROT_W		L2_L_PROT_W_generic
   1010 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
   1011 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
   1012 
   1013 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
   1014 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
   1015 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
   1016 
   1017 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
   1018 #define	L1_S_PROTO		L1_S_PROTO_generic
   1019 #define	L1_C_PROTO		L1_C_PROTO_generic
   1020 #define	L2_S_PROTO		L2_S_PROTO_generic
   1021 
   1022 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
   1023 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
   1024 #elif ARM_MMU_XSCALE == 1
   1025 #define	L1_S_PROT_U		L1_S_PROT_U_generic
   1026 #define	L1_S_PROT_W		L1_S_PROT_W_generic
   1027 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
   1028 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
   1029 
   1030 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
   1031 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
   1032 #define	L2_S_PROT_RO		L2_S_PROT_RO_xscale
   1033 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
   1034 
   1035 #define	L2_L_PROT_U		L2_L_PROT_U_generic
   1036 #define	L2_L_PROT_W		L2_L_PROT_W_generic
   1037 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
   1038 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
   1039 
   1040 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
   1041 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
   1042 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
   1043 
   1044 #define	L1_SS_PROTO		L1_SS_PROTO_xscale
   1045 #define	L1_S_PROTO		L1_S_PROTO_xscale
   1046 #define	L1_C_PROTO		L1_C_PROTO_xscale
   1047 #define	L2_S_PROTO		L2_S_PROTO_xscale
   1048 
   1049 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
   1050 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
   1051 #elif ARM_MMU_V7 == 1
   1052 #define	L1_S_PROT_U		L1_S_PROT_U_armv7
   1053 #define	L1_S_PROT_W		L1_S_PROT_W_armv7
   1054 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv7
   1055 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv7
   1056 
   1057 #define	L2_S_PROT_U		L2_S_PROT_U_armv7
   1058 #define	L2_S_PROT_W		L2_S_PROT_W_armv7
   1059 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv7
   1060 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv7
   1061 
   1062 #define	L2_L_PROT_U		L2_L_PROT_U_armv7
   1063 #define	L2_L_PROT_W		L2_L_PROT_W_armv7
   1064 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv7
   1065 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv7
   1066 
   1067 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv7
   1068 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv7
   1069 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv7
   1070 
   1071 /*
   1072  * These prototypes make writeable mappings, while the other MMU types
   1073  * make read-only mappings.
   1074  */
   1075 #define	L1_SS_PROTO		L1_SS_PROTO_armv7
   1076 #define	L1_S_PROTO		L1_S_PROTO_armv7
   1077 #define	L1_C_PROTO		L1_C_PROTO_armv7
   1078 #define	L2_S_PROTO		L2_S_PROTO_armv7
   1079 
   1080 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
   1081 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
   1082 #endif /* ARM_NMMUS > 1 */
   1083 
   1084 /*
   1085  * Macros to set and query the write permission on page descriptors.
   1086  */
   1087 #define	l1pte_set_writable(pte)	(((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
   1088 #define	l1pte_set_readonly(pte)	(((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
   1089 
   1090 #define	l2pte_set_writable(pte)	(((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
   1091 #define	l2pte_set_readonly(pte)	(((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
   1092 
   1093 #define	l2pte_writable_p(pte)	(((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
   1094 				 (L2_S_PROT_RO == 0 || \
   1095 				  ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
   1096 
   1097 /*
   1098  * These macros return various bits based on kernel/user and protection.
   1099  * Note that the compiler will usually fold these at compile time.
   1100  */
   1101 
   1102 #define	L1_S_PROT(ku, pr)	(					   \
   1103 	(((ku) == PTE_USER) ? 						   \
   1104 	    L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)	   \
   1105 	: 								   \
   1106 	    (((L1_S_PROT_RO && 						   \
   1107 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
   1108 		    L1_S_PROT_RO : L1_S_PROT_W)))			   \
   1109     )
   1110 
   1111 #define	L2_L_PROT(ku, pr)	(					   \
   1112 	(((ku) == PTE_USER) ?						   \
   1113 	    L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)	   \
   1114 	:								   \
   1115 	    (((L2_L_PROT_RO && 						   \
   1116 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
   1117 		    L2_L_PROT_RO : L2_L_PROT_W)))			   \
   1118     )
   1119 
   1120 #define	L2_S_PROT(ku, pr)	(					   \
   1121 	(((ku) == PTE_USER) ?						   \
   1122 	    L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)	   \
   1123 	:								   \
   1124 	    (((L2_S_PROT_RO &&						   \
   1125 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
   1126 		    L2_S_PROT_RO : L2_S_PROT_W)))			   \
   1127     )
   1128 
   1129 /*
   1130  * Macros to test if a mapping is mappable with an L1 SuperSection,
   1131  * L1 Section, or an L2 Large Page mapping.
   1132  */
   1133 #define	L1_SS_MAPPABLE_P(va, pa, size)					\
   1134 	((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
   1135 
   1136 #define	L1_S_MAPPABLE_P(va, pa, size)					\
   1137 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
   1138 
   1139 #define	L2_L_MAPPABLE_P(va, pa, size)					\
   1140 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
   1141 
   1142 #define	PMAP_MAPSIZE1	L2_L_SIZE
   1143 #define	PMAP_MAPSIZE2	L1_S_SIZE
   1144 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   1145 #define	PMAP_MAPSIZE3	L1_SS_SIZE
   1146 #endif
   1147 
   1148 #ifndef _LOCORE
   1149 /*
   1150  * Hooks for the pool allocator.
   1151  */
   1152 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
   1153 extern paddr_t physical_start, physical_end;
   1154 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1155 struct vm_page *arm_pmap_alloc_poolpage(int);
   1156 #define	PMAP_ALLOC_POOLPAGE	arm_pmap_alloc_poolpage
   1157 #endif
   1158 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   1159 vaddr_t	pmap_map_poolpage(paddr_t);
   1160 paddr_t	pmap_unmap_poolpage(vaddr_t);
   1161 #define	PMAP_MAP_POOLPAGE(pa)	pmap_map_poolpage(pa)
   1162 #define	PMAP_UNMAP_POOLPAGE(va)	pmap_unmap_poolpage(va)
   1163 #endif
   1164 
   1165 #define	__HAVE_PMAP_PV_TRACK	1
   1166 
   1167 void pmap_pv_protect(paddr_t, vm_prot_t);
   1168 
   1169 struct pmap_page {
   1170 	SLIST_HEAD(,pv_entry) pvh_list;		/* pv_entry list */
   1171 	int pvh_attrs;				/* page attributes */
   1172 	u_int uro_mappings;
   1173 	u_int urw_mappings;
   1174 	union {
   1175 		u_short s_mappings[2];	/* Assume kernel count <= 65535 */
   1176 		u_int i_mappings;
   1177 	} k_u;
   1178 };
   1179 
   1180 /*
   1181  * pmap-specific data store in the vm_page structure.
   1182  */
   1183 #define	__HAVE_VM_PAGE_MD
   1184 struct vm_page_md {
   1185 	struct pmap_page pp;
   1186 #define	pvh_list	pp.pvh_list
   1187 #define	pvh_attrs	pp.pvh_attrs
   1188 #define	uro_mappings	pp.uro_mappings
   1189 #define	urw_mappings	pp.urw_mappings
   1190 #define	kro_mappings	pp.k_u.s_mappings[0]
   1191 #define	krw_mappings	pp.k_u.s_mappings[1]
   1192 #define	k_mappings	pp.k_u.i_mappings
   1193 };
   1194 
   1195 #define	PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
   1196 
   1197 /*
   1198  * Set the default color of each page.
   1199  */
   1200 #if ARM_MMU_V6 > 0
   1201 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
   1202 	(pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
   1203 #else
   1204 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
   1205 	(pg)->mdpage.pvh_attrs = 0
   1206 #endif
   1207 
   1208 #define	VM_MDPAGE_INIT(pg)						\
   1209 do {									\
   1210 	SLIST_INIT(&(pg)->mdpage.pvh_list);				\
   1211 	VM_MDPAGE_PVH_ATTRS_INIT(pg);					\
   1212 	(pg)->mdpage.uro_mappings = 0;					\
   1213 	(pg)->mdpage.urw_mappings = 0;					\
   1214 	(pg)->mdpage.k_mappings = 0;					\
   1215 } while (/*CONSTCOND*/0)
   1216 
   1217 #ifndef	__BSD_PTENTRY_T__
   1218 #define	__BSD_PTENTRY_T__
   1219 typedef uint32_t pt_entry_t;
   1220 #define	PRIxPTE		PRIx32
   1221 #endif
   1222 
   1223 #endif /* !_LOCORE */
   1224 
   1225 #endif /* _KERNEL */
   1226 
   1227 #endif	/* _ARM32_PMAP_H_ */
   1228