pmap.h revision 1.173.4.1 1 /* $NetBSD: pmap.h,v 1.173.4.1 2023/10/14 06:52:17 martin Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #include "opt_multiprocessor.h"
79 #endif
80 #include <arm/cpufunc.h>
81 #include <arm/locore.h>
82 #include <uvm/uvm_object.h>
83 #include <uvm/pmap/pmap_pvt.h>
84 #endif
85
86 #ifdef ARM_MMU_EXTENDED
87 #define PMAP_HWPAGEWALKER 1
88 #define PMAP_TLB_MAX 1
89 #if PMAP_TLB_MAX > 1
90 #define PMAP_TLB_NEED_SHOOTDOWN 1
91 #endif
92 #define PMAP_TLB_FLUSH_ASID_ON_RESET arm_has_tlbiasid_p
93 #define PMAP_TLB_NUM_PIDS 256
94 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
95 #if PMAP_TLB_MAX > 1
96 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
97 #else
98 #define cpu_tlb_info(ci) (&pmap_tlb0_info)
99 #endif
100 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
101 #include <uvm/pmap/tlb.h>
102 #include <uvm/pmap/pmap_tlb.h>
103
104 /*
105 * If we have an EXTENDED MMU and the address space is split evenly between
106 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
107 * user and kernel address spaces.
108 */
109 #if (KERNEL_BASE & 0x80000000) == 0
110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
111 #endif
112 #endif /* ARM_MMU_EXTENDED */
113
114 /*
115 * a pmap describes a processes' 4GB virtual address space. this
116 * virtual address space can be broken up into 4096 1MB regions which
117 * are described by L1 PTEs in the L1 table.
118 *
119 * There is a line drawn at KERNEL_BASE. Everything below that line
120 * changes when the VM context is switched. Everything above that line
121 * is the same no matter which VM context is running. This is achieved
122 * by making the L1 PTEs for those slots above KERNEL_BASE reference
123 * kernel L2 tables.
124 *
125 * The basic layout of the virtual address space thus looks like this:
126 *
127 * 0xffffffff
128 * .
129 * .
130 * .
131 * KERNEL_BASE
132 * --------------------
133 * .
134 * .
135 * .
136 * 0x00000000
137 */
138
139 /*
140 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141 * A bucket size of 16 provides for 16MB of contiguous virtual address
142 * space per l2_dtable. Most processes will, therefore, require only two or
143 * three of these to map their whole working set.
144 */
145 #define L2_BUCKET_XLOG2 (L1_S_SHIFT)
146 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
147 #define L2_BUCKET_LOG2 4
148 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
149
150 /*
151 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152 * of l2_dtable structures required to track all possible page descriptors
153 * mappable by an L1 translation table is given by the following constants:
154 */
155 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
156 #define L2_SIZE (1 << L2_LOG2)
157
158 /*
159 * tell MI code that the cache is virtually-indexed.
160 * ARMv6 is physically-tagged but all others are virtually-tagged.
161 */
162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
163 #define PMAP_CACHE_VIPT
164 #else
165 #define PMAP_CACHE_VIVT
166 #endif
167
168 #ifndef _LOCORE
169
170 #ifndef ARM_MMU_EXTENDED
171 struct l1_ttable;
172 struct l2_dtable;
173
174 /*
175 * Track cache/tlb occupancy using the following structure
176 */
177 union pmap_cache_state {
178 struct {
179 union {
180 uint8_t csu_cache_b[2];
181 uint16_t csu_cache;
182 } cs_cache_u;
183
184 union {
185 uint8_t csu_tlb_b[2];
186 uint16_t csu_tlb;
187 } cs_tlb_u;
188 } cs_s;
189 uint32_t cs_all;
190 };
191 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
192 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
193 #define cs_cache cs_s.cs_cache_u.csu_cache
194 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
195 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
196 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
197
198 /*
199 * Assigned to cs_all to force cacheops to work for a particular pmap
200 */
201 #define PMAP_CACHE_STATE_ALL 0xffffffffu
202 #endif /* !ARM_MMU_EXTENDED */
203
204 /*
205 * This structure is used by machine-dependent code to describe
206 * static mappings of devices, created at bootstrap time.
207 */
208 struct pmap_devmap {
209 vaddr_t pd_va; /* virtual address */
210 paddr_t pd_pa; /* physical address */
211 psize_t pd_size; /* size of region */
212 vm_prot_t pd_prot; /* protection code */
213 int pd_cache; /* cache attributes */
214 };
215
216 #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
217 #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
218 #define DEVMAP_ENTRY(va, pa, sz) \
219 { \
220 .pd_va = DEVMAP_ALIGN(va), \
221 .pd_pa = DEVMAP_ALIGN(pa), \
222 .pd_size = DEVMAP_SIZE(sz), \
223 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, \
224 .pd_cache = PTE_DEV \
225 }
226 #define DEVMAP_ENTRY_END { 0 }
227
228 /*
229 * The pmap structure itself
230 */
231 struct pmap {
232 kmutex_t pm_lock;
233 u_int pm_refs;
234 #ifndef ARM_HAS_VBAR
235 pd_entry_t *pm_pl1vec;
236 pd_entry_t pm_l1vec;
237 #endif
238 struct l2_dtable *pm_l2[L2_SIZE];
239 struct pmap_statistics pm_stats;
240 LIST_ENTRY(pmap) pm_list;
241 bool pm_remove_all;
242 #ifdef ARM_MMU_EXTENDED
243 pd_entry_t *pm_l1;
244 paddr_t pm_l1_pa;
245 #ifdef MULTIPROCESSOR
246 kcpuset_t *pm_onproc;
247 kcpuset_t *pm_active;
248 #if PMAP_TLB_MAX > 1
249 u_int pm_shootdown_pending;
250 #endif
251 #endif
252 struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
253 #else
254 struct l1_ttable *pm_l1;
255 union pmap_cache_state pm_cstate;
256 uint8_t pm_domain;
257 bool pm_activated;
258 #endif
259 };
260
261 struct pmap_kernel {
262 struct pmap kernel_pmap;
263 };
264
265 /*
266 * Physical / virtual address structure. In a number of places (particularly
267 * during bootstrapping) we need to keep track of the physical and virtual
268 * addresses of various pages
269 */
270 typedef struct pv_addr {
271 SLIST_ENTRY(pv_addr) pv_list;
272 paddr_t pv_pa;
273 vaddr_t pv_va;
274 vsize_t pv_size;
275 uint8_t pv_cache;
276 uint8_t pv_prot;
277 } pv_addr_t;
278 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
279
280 extern pv_addrqh_t pmap_freeq;
281 extern pv_addr_t kernelstack;
282 extern pv_addr_t abtstack;
283 extern pv_addr_t fiqstack;
284 extern pv_addr_t irqstack;
285 extern pv_addr_t undstack;
286 extern pv_addr_t idlestack;
287 extern pv_addr_t systempage;
288 extern pv_addr_t kernel_l1pt;
289 #if defined(EFI_RUNTIME)
290 extern pv_addr_t efirt_l1pt;
291 #endif
292
293 #ifdef ARM_MMU_EXTENDED
294 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
295 #endif
296
297 /*
298 * Determine various modes for PTEs (user vs. kernel, cacheable
299 * vs. non-cacheable).
300 */
301 #define PTE_KERNEL 0
302 #define PTE_USER 1
303 #define PTE_NOCACHE 0
304 #define PTE_CACHE 1
305 #define PTE_PAGETABLE 2
306 #define PTE_DEV 3
307
308 /*
309 * Flags that indicate attributes of pages or mappings of pages.
310 *
311 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
312 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
313 * pv_entry's for each page. They live in the same "namespace" so
314 * that we can clear multiple attributes at a time.
315 *
316 * Note the "non-cacheable" flag generally means the page has
317 * multiple mappings in a given address space.
318 */
319 #define PVF_MOD 0x01 /* page is modified */
320 #define PVF_REF 0x02 /* page is referenced */
321 #define PVF_WIRED 0x04 /* mapping is wired */
322 #define PVF_WRITE 0x08 /* mapping is writable */
323 #define PVF_EXEC 0x10 /* mapping is executable */
324 #ifdef PMAP_CACHE_VIVT
325 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
326 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
327 #define PVF_NC (PVF_UNC|PVF_KNC)
328 #endif
329 #ifdef PMAP_CACHE_VIPT
330 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
331 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
332 #endif
333 #define PVF_COLORED 0x80 /* page has or had a color */
334 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
335 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
336 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
337 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
338 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
339 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
340
341 /*
342 * Commonly referenced structures
343 */
344 extern int arm_poolpage_vmfreelist;
345
346 /*
347 * Macros that we need to export
348 */
349 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
350 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
351
352 #define pmap_is_modified(pg) \
353 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
354 #define pmap_is_referenced(pg) \
355 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
356 #define pmap_is_page_colored_p(md) \
357 (((md)->pvh_attrs & PVF_COLORED) != 0)
358
359 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
360
361 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
362 u_int arm32_mmap_flags(paddr_t);
363 #define ARM32_MMAP_WRITECOMBINE 0x40000000
364 #define ARM32_MMAP_CACHEABLE 0x20000000
365 #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
366 #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
367 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
368
369 #define PMAP_PTE 0x10000000 /* kenter_pa */
370 #define PMAP_DEV 0x20000000 /* kenter_pa */
371 #define PMAP_DEV_SO 0x40000000 /* kenter_pa */
372 #define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO)
373
374 /*
375 * Functions that we need to export
376 */
377 void pmap_procwr(struct proc *, vaddr_t, int);
378 bool pmap_remove_all(pmap_t);
379 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
380
381 #define PMAP_NEED_PROCWR
382 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
383 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
384
385 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
386 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
387 void pmap_prefer(vaddr_t, vaddr_t *, int);
388 #endif
389
390 #ifdef ARM_MMU_EXTENDED
391 int pmap_maxproc_set(int);
392 struct pmap *
393 pmap_efirt(void);
394 #endif
395
396 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
397
398 /* Functions we use internally. */
399 #ifdef PMAP_STEAL_MEMORY
400 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
401 void pmap_boot_pageadd(pv_addr_t *);
402 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
403 #endif
404 void pmap_bootstrap(vaddr_t, vaddr_t);
405
406 struct pmap *
407 pmap_efirt(void);
408 void pmap_activate_efirt(void);
409 void pmap_deactivate_efirt(void);
410
411 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
412 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
413 int pmap_prefetchabt_fixup(void *);
414 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
415 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
416 bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
417
418 void pmap_postinit(void);
419
420 void vector_page_setprot(int);
421
422 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
423 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
424
425 /* Bootstrapping routines. */
426 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
427 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
428 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
429 void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
430 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
431 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
432 void pmap_devmap_register(const struct pmap_devmap *);
433
434 /*
435 * Special page zero routine for use by the idle loop (no cache cleans).
436 */
437 bool pmap_pageidlezero(paddr_t);
438 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
439
440 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
441 /*
442 * For the pmap, this is a more useful way to map a direct mapped page.
443 * It returns either the direct-mapped VA or the VA supplied if it can't
444 * be direct mapped.
445 */
446 vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
447 #endif
448
449 /*
450 * used by dumpsys to record the PA of the L1 table
451 */
452 uint32_t pmap_kernel_L1_addr(void);
453 /*
454 * The current top of kernel VM
455 */
456 extern vaddr_t pmap_curmaxkvaddr;
457
458 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
459 /*
460 * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
461 */
462 extern vaddr_t pmap_directlimit;
463 #endif
464
465 /*
466 * Useful macros and constants
467 */
468
469 /* Virtual address to page table entry */
470 static inline pt_entry_t *
471 vtopte(vaddr_t va)
472 {
473 pd_entry_t *pdep;
474 pt_entry_t *ptep;
475
476 KASSERT(trunc_page(va) == va);
477
478 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
479 return (NULL);
480 return (ptep);
481 }
482
483 /*
484 * Virtual address to physical address
485 */
486 static inline paddr_t
487 vtophys(vaddr_t va)
488 {
489 paddr_t pa;
490
491 if (pmap_extract(pmap_kernel(), va, &pa) == false)
492 return (0); /* XXXSCW: Panic? */
493
494 return (pa);
495 }
496
497 /*
498 * The new pmap ensures that page-tables are always mapping Write-Thru.
499 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
500 * on every change.
501 *
502 * Unfortunately, not all CPUs have a write-through cache mode. So we
503 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
504 * and if there is the chance for PTE syncs to be needed, we define
505 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
506 * the code.
507 */
508 extern int pmap_needs_pte_sync;
509 #if defined(_KERNEL_OPT)
510 /*
511 * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
512 * single MMU type is selected.
513 *
514 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
515 * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
516 * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
517 *
518 * Use run time evaluation for all other cases.
519 *
520 */
521 #if (ARM_NMMUS == 1)
522 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
523 #define PMAP_INCLUDE_PTE_SYNC
524 #define PMAP_NEEDS_PTE_SYNC 1
525 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
526 #define PMAP_NEEDS_PTE_SYNC 0
527 #endif
528 #endif
529 #endif /* _KERNEL_OPT */
530
531 /*
532 * Provide a fallback in case we were not able to determine it at
533 * compile-time.
534 */
535 #ifndef PMAP_NEEDS_PTE_SYNC
536 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
537 #define PMAP_INCLUDE_PTE_SYNC
538 #endif
539
540 static inline void
541 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
542 {
543 if (PMAP_NEEDS_PTE_SYNC) {
544 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
545 #ifdef SHEEVA_L2_CACHE
546 cpu_sdcache_wb_range((vaddr_t)ptep, -1,
547 cnt * sizeof(pt_entry_t));
548 #endif
549 }
550 dsb(sy);
551 }
552
553 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
554 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
555 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
556 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
557
558 #define l1pte_valid_p(pde) ((pde) != 0)
559 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
560 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
561 && ((pde) & L1_S_V6_SUPER) != 0)
562 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
563 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
564 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
565 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
566
567 static inline void
568 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
569 {
570 *pdep = pde;
571 }
572
573 static inline void
574 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
575 {
576 *pdep = pde;
577 if (l1pte_page_p(pde)) {
578 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
579 for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
580 pde += L2_T_SIZE;
581 pdep[k] = pde;
582 }
583 } else if (l1pte_supersection_p(pde)) {
584 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
585 for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
586 pdep[k] = pde;
587 }
588 }
589 }
590
591 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
592 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
593 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
594 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
595 #define l2pte_minidata_p(pte) (((pte) & \
596 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
597 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
598
599 static inline void
600 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
601 {
602 if (l1pte_lpage_p(pte)) {
603 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
604 for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
605 *ptep++ = pte;
606 }
607 } else {
608 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
609 for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
610 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
611 *ptep++ = pte;
612 pte += L2_S_SIZE;
613 if (opte)
614 opte += L2_S_SIZE;
615 }
616 }
617 }
618
619 static inline void
620 l2pte_reset(pt_entry_t *ptep)
621 {
622 KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
623 *ptep = 0;
624 for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
625 ptep[k] = 0;
626 }
627 }
628
629 /* L1 and L2 page table macros */
630 #define pmap_pde_v(pde) l1pte_valid(*(pde))
631 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
632 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
633 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
634 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
635
636 #define pmap_pte_v(pte) l2pte_valid_p(*(pte))
637 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
638
639 static inline uint32_t
640 pte_value(pt_entry_t pte)
641 {
642 return pte;
643 }
644
645 static inline bool
646 pte_valid_p(pt_entry_t pte)
647 {
648
649 return l2pte_valid_p(pte);
650 }
651
652
653 /* Size of the kernel part of the L1 page table */
654 #define KERNEL_PD_SIZE \
655 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
656
657 void bzero_page(vaddr_t);
658 void bcopy_page(vaddr_t, vaddr_t);
659
660 #ifdef FPU_VFP
661 void bzero_page_vfp(vaddr_t);
662 void bcopy_page_vfp(vaddr_t, vaddr_t);
663 #endif
664
665 /************************* ARM MMU configuration *****************************/
666
667 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
668 void pmap_copy_page_generic(paddr_t, paddr_t);
669 void pmap_zero_page_generic(paddr_t);
670
671 void pmap_pte_init_generic(void);
672 #if defined(CPU_ARM8)
673 void pmap_pte_init_arm8(void);
674 #endif
675 #if defined(CPU_ARM9)
676 void pmap_pte_init_arm9(void);
677 #endif /* CPU_ARM9 */
678 #if defined(CPU_ARM10)
679 void pmap_pte_init_arm10(void);
680 #endif /* CPU_ARM10 */
681 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
682 void pmap_pte_init_arm11(void);
683 #endif /* CPU_ARM11 */
684 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
685 void pmap_pte_init_arm11mpcore(void);
686 #endif
687 #if ARM_MMU_V6 == 1
688 void pmap_pte_init_armv6(void);
689 #endif /* ARM_MMU_V6 */
690 #if ARM_MMU_V7 == 1
691 void pmap_pte_init_armv7(void);
692 #endif /* ARM_MMU_V7 */
693 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
694
695 #if ARM_MMU_SA1 == 1
696 void pmap_pte_init_sa1(void);
697 #endif /* ARM_MMU_SA1 == 1 */
698
699 #if ARM_MMU_XSCALE == 1
700 void pmap_copy_page_xscale(paddr_t, paddr_t);
701 void pmap_zero_page_xscale(paddr_t);
702
703 void pmap_pte_init_xscale(void);
704
705 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
706
707 #define PMAP_UAREA(va) pmap_uarea(va)
708 void pmap_uarea(vaddr_t);
709 #endif /* ARM_MMU_XSCALE == 1 */
710
711 extern pt_entry_t pte_l1_s_nocache_mode;
712 extern pt_entry_t pte_l2_l_nocache_mode;
713 extern pt_entry_t pte_l2_s_nocache_mode;
714
715 extern pt_entry_t pte_l1_s_cache_mode;
716 extern pt_entry_t pte_l2_l_cache_mode;
717 extern pt_entry_t pte_l2_s_cache_mode;
718
719 extern pt_entry_t pte_l1_s_cache_mode_pt;
720 extern pt_entry_t pte_l2_l_cache_mode_pt;
721 extern pt_entry_t pte_l2_s_cache_mode_pt;
722
723 extern pt_entry_t pte_l1_s_wc_mode;
724 extern pt_entry_t pte_l2_l_wc_mode;
725 extern pt_entry_t pte_l2_s_wc_mode;
726
727 extern pt_entry_t pte_l1_s_cache_mask;
728 extern pt_entry_t pte_l2_l_cache_mask;
729 extern pt_entry_t pte_l2_s_cache_mask;
730
731 extern pt_entry_t pte_l1_s_prot_u;
732 extern pt_entry_t pte_l1_s_prot_w;
733 extern pt_entry_t pte_l1_s_prot_ro;
734 extern pt_entry_t pte_l1_s_prot_mask;
735
736 extern pt_entry_t pte_l2_s_prot_u;
737 extern pt_entry_t pte_l2_s_prot_w;
738 extern pt_entry_t pte_l2_s_prot_ro;
739 extern pt_entry_t pte_l2_s_prot_mask;
740
741 extern pt_entry_t pte_l2_l_prot_u;
742 extern pt_entry_t pte_l2_l_prot_w;
743 extern pt_entry_t pte_l2_l_prot_ro;
744 extern pt_entry_t pte_l2_l_prot_mask;
745
746 extern pt_entry_t pte_l1_ss_proto;
747 extern pt_entry_t pte_l1_s_proto;
748 extern pt_entry_t pte_l1_c_proto;
749 extern pt_entry_t pte_l2_s_proto;
750
751 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
752 extern void (*pmap_zero_page_func)(paddr_t);
753
754 /*
755 * Global varaiables in cpufunc_asm_xscale.S supporting the Xscale
756 * cache clean/purge functions.
757 */
758 extern vaddr_t xscale_minidata_clean_addr;
759 extern vsize_t xscale_minidata_clean_size;
760 extern vaddr_t xscale_cache_clean_addr;
761 extern vsize_t xscale_cache_clean_size;
762
763 #endif /* !_LOCORE */
764
765 /*****************************************************************************/
766
767 #define KERNEL_PID 0 /* The kernel uses ASID 0 */
768
769 /*
770 * Definitions for MMU domains
771 */
772 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
773 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
774
775 #ifdef ARM_MMU_EXTENDED
776 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
777 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
778 #else
779 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
780 #endif
781
782 /*
783 * These macros define the various bit masks in the PTE.
784 *
785 * We use these macros since we use different bits on different processor
786 * models.
787 */
788 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
789 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
790 #define L1_S_PROT_RO_generic (0)
791 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
792
793 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
794 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
795 #define L1_S_PROT_RO_xscale (0)
796 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
797
798 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
799 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
800 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
801 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
802
803 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
804 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
805 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
806 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
807
808 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
809 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
810 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
811 #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
812 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
813
814 #define L2_L_PROT_U_generic (L2_AP(AP_U))
815 #define L2_L_PROT_W_generic (L2_AP(AP_W))
816 #define L2_L_PROT_RO_generic (0)
817 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
818
819 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
820 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
821 #define L2_L_PROT_RO_xscale (0)
822 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
823
824 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
825 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
826 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
827 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
828
829 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
830 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
831 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
832 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
833
834 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
835 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
836 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
837 #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
838 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
839
840 #define L2_S_PROT_U_generic (L2_AP(AP_U))
841 #define L2_S_PROT_W_generic (L2_AP(AP_W))
842 #define L2_S_PROT_RO_generic (0)
843 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
844
845 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
846 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
847 #define L2_S_PROT_RO_xscale (0)
848 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
849
850 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
851 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
852 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
853 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
854
855 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
856 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
857 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
858 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
859
860 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
861 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
862 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
863 #ifdef ARMV6_EXTENDED_SMALL_PAGE
864 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
865 #else
866 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
867 #endif
868 #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
869 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
870
871
872 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
873 #define L1_S_PROTO_xscale (L1_TYPE_S)
874 #define L1_S_PROTO_armv6 (L1_TYPE_S)
875 #define L1_S_PROTO_armv7 (L1_TYPE_S)
876
877 #define L1_SS_PROTO_generic 0
878 #define L1_SS_PROTO_xscale 0
879 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
880 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
881
882 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
883 #define L1_C_PROTO_xscale (L1_TYPE_C)
884 #define L1_C_PROTO_armv6 (L1_TYPE_C)
885 #define L1_C_PROTO_armv7 (L1_TYPE_C)
886
887 #define L2_L_PROTO (L2_TYPE_L)
888
889 #define L2_S_PROTO_generic (L2_TYPE_S)
890 #define L2_S_PROTO_xscale (L2_TYPE_XS)
891 #ifdef ARMV6_EXTENDED_SMALL_PAGE
892 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
893 #else
894 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
895 #endif
896 #ifdef ARM_MMU_EXTENDED
897 #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
898 #else
899 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
900 #endif
901 #ifdef ARM_MMU_EXTENDED
902 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
903 #else
904 #define L2_S_PROTO_armv7 (L2_TYPE_S)
905 #endif
906
907 /*
908 * User-visible names for the ones that vary with MMU class.
909 */
910
911 #if ARM_NMMUS > 1
912 /* More than one MMU class configured; use variables. */
913 #define L1_S_PROT_U pte_l1_s_prot_u
914 #define L1_S_PROT_W pte_l1_s_prot_w
915 #define L1_S_PROT_RO pte_l1_s_prot_ro
916 #define L1_S_PROT_MASK pte_l1_s_prot_mask
917
918 #define L2_S_PROT_U pte_l2_s_prot_u
919 #define L2_S_PROT_W pte_l2_s_prot_w
920 #define L2_S_PROT_RO pte_l2_s_prot_ro
921 #define L2_S_PROT_MASK pte_l2_s_prot_mask
922
923 #define L2_L_PROT_U pte_l2_l_prot_u
924 #define L2_L_PROT_W pte_l2_l_prot_w
925 #define L2_L_PROT_RO pte_l2_l_prot_ro
926 #define L2_L_PROT_MASK pte_l2_l_prot_mask
927
928 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
929 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
930 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
931
932 #define L1_SS_PROTO pte_l1_ss_proto
933 #define L1_S_PROTO pte_l1_s_proto
934 #define L1_C_PROTO pte_l1_c_proto
935 #define L2_S_PROTO pte_l2_s_proto
936
937 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
938 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
939 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
940 #define L1_S_PROT_U L1_S_PROT_U_generic
941 #define L1_S_PROT_W L1_S_PROT_W_generic
942 #define L1_S_PROT_RO L1_S_PROT_RO_generic
943 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
944
945 #define L2_S_PROT_U L2_S_PROT_U_generic
946 #define L2_S_PROT_W L2_S_PROT_W_generic
947 #define L2_S_PROT_RO L2_S_PROT_RO_generic
948 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
949
950 #define L2_L_PROT_U L2_L_PROT_U_generic
951 #define L2_L_PROT_W L2_L_PROT_W_generic
952 #define L2_L_PROT_RO L2_L_PROT_RO_generic
953 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
954
955 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
956 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
957 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
958
959 #define L1_SS_PROTO L1_SS_PROTO_generic
960 #define L1_S_PROTO L1_S_PROTO_generic
961 #define L1_C_PROTO L1_C_PROTO_generic
962 #define L2_S_PROTO L2_S_PROTO_generic
963
964 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
965 #define pmap_zero_page(d) pmap_zero_page_generic((d))
966 #elif ARM_MMU_V6N != 0
967 #define L1_S_PROT_U L1_S_PROT_U_armv6
968 #define L1_S_PROT_W L1_S_PROT_W_armv6
969 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
970 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
971
972 #define L2_S_PROT_U L2_S_PROT_U_armv6n
973 #define L2_S_PROT_W L2_S_PROT_W_armv6n
974 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
975 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
976
977 #define L2_L_PROT_U L2_L_PROT_U_armv6n
978 #define L2_L_PROT_W L2_L_PROT_W_armv6n
979 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
980 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
981
982 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
983 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
984 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
985
986 /*
987 * These prototypes make writeable mappings, while the other MMU types
988 * make read-only mappings.
989 */
990 #define L1_SS_PROTO L1_SS_PROTO_armv6
991 #define L1_S_PROTO L1_S_PROTO_armv6
992 #define L1_C_PROTO L1_C_PROTO_armv6
993 #define L2_S_PROTO L2_S_PROTO_armv6n
994
995 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
996 #define pmap_zero_page(d) pmap_zero_page_generic((d))
997 #elif ARM_MMU_V6C != 0
998 #define L1_S_PROT_U L1_S_PROT_U_generic
999 #define L1_S_PROT_W L1_S_PROT_W_generic
1000 #define L1_S_PROT_RO L1_S_PROT_RO_generic
1001 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
1002
1003 #define L2_S_PROT_U L2_S_PROT_U_generic
1004 #define L2_S_PROT_W L2_S_PROT_W_generic
1005 #define L2_S_PROT_RO L2_S_PROT_RO_generic
1006 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
1007
1008 #define L2_L_PROT_U L2_L_PROT_U_generic
1009 #define L2_L_PROT_W L2_L_PROT_W_generic
1010 #define L2_L_PROT_RO L2_L_PROT_RO_generic
1011 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
1012
1013 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
1014 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
1015 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
1016
1017 #define L1_SS_PROTO L1_SS_PROTO_armv6
1018 #define L1_S_PROTO L1_S_PROTO_generic
1019 #define L1_C_PROTO L1_C_PROTO_generic
1020 #define L2_S_PROTO L2_S_PROTO_generic
1021
1022 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1023 #define pmap_zero_page(d) pmap_zero_page_generic((d))
1024 #elif ARM_MMU_XSCALE == 1
1025 #define L1_S_PROT_U L1_S_PROT_U_generic
1026 #define L1_S_PROT_W L1_S_PROT_W_generic
1027 #define L1_S_PROT_RO L1_S_PROT_RO_generic
1028 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
1029
1030 #define L2_S_PROT_U L2_S_PROT_U_xscale
1031 #define L2_S_PROT_W L2_S_PROT_W_xscale
1032 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
1033 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
1034
1035 #define L2_L_PROT_U L2_L_PROT_U_generic
1036 #define L2_L_PROT_W L2_L_PROT_W_generic
1037 #define L2_L_PROT_RO L2_L_PROT_RO_generic
1038 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
1039
1040 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
1041 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
1042 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
1043
1044 #define L1_SS_PROTO L1_SS_PROTO_xscale
1045 #define L1_S_PROTO L1_S_PROTO_xscale
1046 #define L1_C_PROTO L1_C_PROTO_xscale
1047 #define L2_S_PROTO L2_S_PROTO_xscale
1048
1049 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
1050 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
1051 #elif ARM_MMU_V7 == 1
1052 #define L1_S_PROT_U L1_S_PROT_U_armv7
1053 #define L1_S_PROT_W L1_S_PROT_W_armv7
1054 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
1055 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
1056
1057 #define L2_S_PROT_U L2_S_PROT_U_armv7
1058 #define L2_S_PROT_W L2_S_PROT_W_armv7
1059 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
1060 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
1061
1062 #define L2_L_PROT_U L2_L_PROT_U_armv7
1063 #define L2_L_PROT_W L2_L_PROT_W_armv7
1064 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
1065 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
1066
1067 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
1068 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
1069 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
1070
1071 /*
1072 * These prototypes make writeable mappings, while the other MMU types
1073 * make read-only mappings.
1074 */
1075 #define L1_SS_PROTO L1_SS_PROTO_armv7
1076 #define L1_S_PROTO L1_S_PROTO_armv7
1077 #define L1_C_PROTO L1_C_PROTO_armv7
1078 #define L2_S_PROTO L2_S_PROTO_armv7
1079
1080 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
1081 #define pmap_zero_page(d) pmap_zero_page_generic((d))
1082 #endif /* ARM_NMMUS > 1 */
1083
1084 /*
1085 * Macros to set and query the write permission on page descriptors.
1086 */
1087 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1088 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1089
1090 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1091 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1092
1093 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1094 (L2_S_PROT_RO == 0 || \
1095 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1096
1097 /*
1098 * These macros return various bits based on kernel/user and protection.
1099 * Note that the compiler will usually fold these at compile time.
1100 */
1101
1102 #define L1_S_PROT(ku, pr) ( \
1103 (((ku) == PTE_USER) ? \
1104 L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
1105 : \
1106 (((L1_S_PROT_RO && \
1107 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1108 L1_S_PROT_RO : L1_S_PROT_W))) \
1109 )
1110
1111 #define L2_L_PROT(ku, pr) ( \
1112 (((ku) == PTE_USER) ? \
1113 L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
1114 : \
1115 (((L2_L_PROT_RO && \
1116 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1117 L2_L_PROT_RO : L2_L_PROT_W))) \
1118 )
1119
1120 #define L2_S_PROT(ku, pr) ( \
1121 (((ku) == PTE_USER) ? \
1122 L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
1123 : \
1124 (((L2_S_PROT_RO && \
1125 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1126 L2_S_PROT_RO : L2_S_PROT_W))) \
1127 )
1128
1129 /*
1130 * Macros to test if a mapping is mappable with an L1 SuperSection,
1131 * L1 Section, or an L2 Large Page mapping.
1132 */
1133 #define L1_SS_MAPPABLE_P(va, pa, size) \
1134 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1135
1136 #define L1_S_MAPPABLE_P(va, pa, size) \
1137 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1138
1139 #define L2_L_MAPPABLE_P(va, pa, size) \
1140 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1141
1142 #define PMAP_MAPSIZE1 L2_L_SIZE
1143 #define PMAP_MAPSIZE2 L1_S_SIZE
1144 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1145 #define PMAP_MAPSIZE3 L1_SS_SIZE
1146 #endif
1147
1148 #ifndef _LOCORE
1149 /*
1150 * Hooks for the pool allocator.
1151 */
1152 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
1153 extern paddr_t physical_start, physical_end;
1154 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1155 struct vm_page *arm_pmap_alloc_poolpage(int);
1156 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
1157 #endif
1158 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1159 vaddr_t pmap_map_poolpage(paddr_t);
1160 paddr_t pmap_unmap_poolpage(vaddr_t);
1161 #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
1162 #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
1163 #endif
1164
1165 #define __HAVE_PMAP_PV_TRACK 1
1166
1167 void pmap_pv_protect(paddr_t, vm_prot_t);
1168
1169 struct pmap_page {
1170 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
1171 int pvh_attrs; /* page attributes */
1172 u_int uro_mappings;
1173 u_int urw_mappings;
1174 union {
1175 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
1176 u_int i_mappings;
1177 } k_u;
1178 };
1179
1180 /*
1181 * pmap-specific data store in the vm_page structure.
1182 */
1183 #define __HAVE_VM_PAGE_MD
1184 struct vm_page_md {
1185 struct pmap_page pp;
1186 #define pvh_list pp.pvh_list
1187 #define pvh_attrs pp.pvh_attrs
1188 #define uro_mappings pp.uro_mappings
1189 #define urw_mappings pp.urw_mappings
1190 #define kro_mappings pp.k_u.s_mappings[0]
1191 #define krw_mappings pp.k_u.s_mappings[1]
1192 #define k_mappings pp.k_u.i_mappings
1193 };
1194
1195 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1196
1197 /*
1198 * Set the default color of each page.
1199 */
1200 #if ARM_MMU_V6 > 0
1201 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1202 (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
1203 #else
1204 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1205 (pg)->mdpage.pvh_attrs = 0
1206 #endif
1207
1208 #define VM_MDPAGE_INIT(pg) \
1209 do { \
1210 SLIST_INIT(&(pg)->mdpage.pvh_list); \
1211 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
1212 (pg)->mdpage.uro_mappings = 0; \
1213 (pg)->mdpage.urw_mappings = 0; \
1214 (pg)->mdpage.k_mappings = 0; \
1215 } while (/*CONSTCOND*/0)
1216
1217 #ifndef __BSD_PTENTRY_T__
1218 #define __BSD_PTENTRY_T__
1219 typedef uint32_t pt_entry_t;
1220 #define PRIxPTE PRIx32
1221 #endif
1222
1223 #endif /* !_LOCORE */
1224
1225 #endif /* _KERNEL */
1226
1227 #endif /* _ARM32_PMAP_H_ */
1228