pmap.h revision 1.49 1 /* $NetBSD: pmap.h,v 1.49 2002/04/09 22:37:01 thorpej Exp $ */
2
3 /*
4 * Copyright (c 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpufunc.h>
74 #include <arm/arm32/pte.h>
75 #include <uvm/uvm_object.h>
76
77 /*
78 * a pmap describes a processes' 4GB virtual address space. this
79 * virtual address space can be broken up into 4096 1MB regions which
80 * are described by L1 PTEs in the L1 table.
81 *
82 * There is a line drawn at KERNEL_BASE. Everything below that line
83 * changes when the VM context is switched. Everything above that line
84 * is the same no matter which VM context is running. This is achieved
85 * by making the L1 PTEs for those slots above KERNEL_BASE reference
86 * kernel L2 tables.
87 *
88 * The L2 tables are mapped linearly starting at PTE_BASE. PTE_BASE
89 * is below KERNEL_BASE, which means that the current process's PTEs
90 * are always available starting at PTE_BASE. Another region of KVA
91 * above KERNEL_BASE, APTE_BASE, is reserved for mapping in the PTEs
92 * of another process, should we need to manipulate them.
93 *
94 * The basic layout of the virtual address space thus looks like this:
95 *
96 * 0xffffffff
97 * .
98 * .
99 * .
100 * KERNEL_BASE
101 * --------------------
102 * PTE_BASE
103 * .
104 * .
105 * .
106 * 0x00000000
107 */
108
109 /*
110 * The pmap structure itself.
111 */
112 struct pmap {
113 struct uvm_object pm_obj; /* uvm_object */
114 #define pm_lock pm_obj.vmobjlock
115 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
116 pd_entry_t *pm_pdir; /* KVA of page directory */
117 struct l1pt *pm_l1pt; /* L1 table metadata */
118 paddr_t pm_pptpt; /* PA of pt's page table */
119 vaddr_t pm_vptpt; /* VA of pt's page table */
120 struct pmap_statistics pm_stats; /* pmap statistics */
121 struct vm_page *pm_ptphint; /* recently used PT */
122 };
123
124 typedef struct pmap *pmap_t;
125
126 /*
127 * Physical / virtual address structure. In a number of places (particularly
128 * during bootstrapping) we need to keep track of the physical and virtual
129 * addresses of various pages
130 */
131 typedef struct pv_addr {
132 SLIST_ENTRY(pv_addr) pv_list;
133 paddr_t pv_pa;
134 vaddr_t pv_va;
135 } pv_addr_t;
136
137 /*
138 * Determine various modes for PTEs (user vs. kernel, cacheable
139 * vs. non-cacheable).
140 */
141 #define PTE_KERNEL 0
142 #define PTE_USER 1
143 #define PTE_NOCACHE 0
144 #define PTE_CACHE 1
145
146 /*
147 * Flags that indicate attributes of pages or mappings of pages.
148 *
149 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
150 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
151 * pv_entry's for each page. They live in the same "namespace" so
152 * that we can clear multiple attributes at a time.
153 *
154 * Note the "non-cacheable" flag generally means the page has
155 * multiple mappings in a given address space.
156 */
157 #define PVF_MOD 0x01 /* page is modified */
158 #define PVF_REF 0x02 /* page is referenced */
159 #define PVF_WIRED 0x04 /* mapping is wired */
160 #define PVF_WRITE 0x08 /* mapping is writable */
161 #define PVF_NC 0x10 /* mapping is non-cacheable */
162
163 /*
164 * Commonly referenced structures
165 */
166 extern struct pmap kernel_pmap_store;
167 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
168
169 /*
170 * Macros that we need to export
171 */
172 #define pmap_kernel() (&kernel_pmap_store)
173 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
174 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
175
176 #define pmap_is_modified(pg) \
177 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
178 #define pmap_is_referenced(pg) \
179 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
180
181 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
182
183 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
184
185 /*
186 * Functions that we need to export
187 */
188 vaddr_t pmap_map(vaddr_t, vaddr_t, vaddr_t, int);
189 void pmap_procwr(struct proc *, vaddr_t, int);
190
191 #define PMAP_NEED_PROCWR
192 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
193
194 /* Functions we use internally. */
195 void pmap_bootstrap(pd_entry_t *, pv_addr_t);
196 void pmap_debug(int);
197 int pmap_handled_emulation(struct pmap *, vaddr_t);
198 int pmap_modified_emulation(struct pmap *, vaddr_t);
199 void pmap_postinit(void);
200
201 void vector_page_setprot(int);
202
203 /* Bootstrapping routines. */
204 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
205 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
206 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
207 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
208
209 /*
210 * Special page zero routine for use by the idle loop (no cache cleans).
211 */
212 boolean_t pmap_pageidlezero __P((paddr_t));
213 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
214
215 /*
216 * The current top of kernel VM
217 */
218 extern vaddr_t pmap_curmaxkvaddr;
219
220 /*
221 * Useful macros and constants
222 */
223
224 /* Virtual address to page table entry */
225 #define vtopte(va) \
226 (((pt_entry_t *)PTE_BASE) + arm_btop((vaddr_t) (va)))
227
228 /* Virtual address to physical address */
229 #define vtophys(va) \
230 ((*vtopte(va) & L2_S_FRAME) | ((vaddr_t) (va) & L2_S_OFFSET))
231
232 #define l1pte_valid(pde) ((pde) != 0)
233 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
234 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
235 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
236
237 #define l2pte_valid(pte) ((pte) != 0)
238 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
239
240 /* L1 and L2 page table macros */
241 #define pmap_pdei(v) ((v & L1_S_FRAME) >> L1_S_SHIFT)
242 #define pmap_pde(m, v) (&((m)->pm_pdir[pmap_pdei(v)]))
243
244 #define pmap_pde_v(pde) l1pte_valid(*(pde))
245 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
246 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
247 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
248
249 #define pmap_pte_v(pte) l2pte_valid(*(pte))
250 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
251
252
253 /* Size of the kernel part of the L1 page table */
254 #define KERNEL_PD_SIZE \
255 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
256
257 /************************* ARM MMU configuration *****************************/
258
259 /*
260 * We define several classes of ARM MMU, here:
261 *
262 * ARM_MMU_GENERIC Generic ARM MMU, compatible with ARM6.
263 *
264 * ARM_MMU_XSCALE XScale MMU. Compatible with generic ARM
265 * MMU, but also has several extensions which
266 * require different PTE layout to use.
267 */
268
269 #if defined(_LKM) || defined(CPU_ARM6) || defined(CPU_ARM7) || \
270 defined(CPU_ARM7TDMI) || defined(CPU_ARM8) || defined(CPU_ARM9) || \
271 defined(CPU_SA110) || defined(CPU_SA1100) || defined(CPU_SA1110)
272 #define ARM_MMU_GENERIC 1
273
274 void pmap_pte_init_generic(void);
275 #if defined(CPU_ARM9)
276 void pmap_pte_init_arm9(void);
277 #endif /* CPU_ARM9 */
278 #else
279 #define ARM_MMU_GENERIC 0
280 #endif
281
282 #if defined(_LKM) || defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321)
283 #define ARM_MMU_XSCALE 1
284
285 void pmap_pte_init_xscale(void);
286 #if defined(CPU_XSCALE_80200)
287 void pmap_pte_init_i80200(void);
288 #endif /* CPU_XSCALE_80200 */
289 #else
290 #define ARM_MMU_XSCALE 0
291 #endif
292
293 #define ARM_NMMUS (ARM_MMU_GENERIC + ARM_MMU_XSCALE)
294 #if ARM_NMMUS == 0
295 #error ARM_NMMUS is 0
296 #endif
297
298 extern pt_entry_t pte_l1_s_cache_mode;
299 extern pt_entry_t pte_l1_s_cache_mask;
300
301 extern pt_entry_t pte_l2_l_cache_mode;
302 extern pt_entry_t pte_l2_l_cache_mask;
303
304 extern pt_entry_t pte_l2_s_cache_mode;
305 extern pt_entry_t pte_l2_s_cache_mask;
306
307 extern pt_entry_t pte_l2_s_prot_u;
308 extern pt_entry_t pte_l2_s_prot_w;
309 extern pt_entry_t pte_l2_s_prot_mask;
310
311 extern pt_entry_t pte_l1_s_proto;
312 extern pt_entry_t pte_l1_c_proto;
313 extern pt_entry_t pte_l2_s_proto;
314
315 /*****************************************************************************/
316
317 /*
318 * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
319 */
320 #define PMAP_CACHE_VIVT
321
322 /*
323 * These macros define the various bit masks in the PTE.
324 *
325 * We use these macros since we use different bits on different processor
326 * models.
327 */
328 #define L1_S_PROT_U (L1_S_AP(AP_U))
329 #define L1_S_PROT_W (L1_S_AP(AP_W))
330 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
331
332 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
333 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
334
335 #define L2_L_PROT_U (L2_AP(AP_U))
336 #define L2_L_PROT_W (L2_AP(AP_W))
337 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
338
339 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
340 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
341
342 #define L2_S_PROT_U_generic (L2_AP(AP_U))
343 #define L2_S_PROT_W_generic (L2_AP(AP_W))
344 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
345
346 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
347 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
348 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
349
350 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
351 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
352
353 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
354 #define L1_S_PROTO_xscale (L1_TYPE_S)
355
356 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
357 #define L1_C_PROTO_xscale (L1_TYPE_C)
358
359 #define L2_L_PROTO (L2_TYPE_L)
360
361 #define L2_S_PROTO_generic (L2_TYPE_S)
362 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
363
364 /*
365 * User-visible names for the ones that vary with MMU class.
366 */
367
368 #if ARM_NMMUS > 1
369 /* More than one MMU class configured; use variables. */
370 #define L2_S_PROT_U pte_l2_s_prot_u
371 #define L2_S_PROT_W pte_l2_s_prot_w
372 #define L2_S_PROT_MASK pte_l2_s_prot_mask
373
374 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
375 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
376 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
377
378 #define L1_S_PROTO pte_l1_s_proto
379 #define L1_C_PROTO pte_l1_c_proto
380 #define L2_S_PROTO pte_l2_s_proto
381 #elif ARM_MMU_GENERIC == 1
382 #define L2_S_PROT_U L2_S_PROT_U_generic
383 #define L2_S_PROT_W L2_S_PROT_W_generic
384 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
385
386 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
387 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
388 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
389
390 #define L1_S_PROTO L1_S_PROTO_generic
391 #define L1_C_PROTO L1_C_PROTO_generic
392 #define L2_S_PROTO L2_S_PROTO_generic
393 #elif ARM_MMU_XSCALE == 1
394 #define L2_S_PROT_U L2_S_PROT_U_xscale
395 #define L2_S_PROT_W L2_S_PROT_W_xscale
396 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
397
398 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
399 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
400 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
401
402 #define L1_S_PROTO L1_S_PROTO_xscale
403 #define L1_C_PROTO L1_C_PROTO_xscale
404 #define L2_S_PROTO L2_S_PROTO_xscale
405 #endif /* ARM_NMMUS > 1 */
406
407 /*
408 * These macros return various bits based on kernel/user and protection.
409 * Note that the compiler will usually fold these at compile time.
410 */
411 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
412 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
413
414 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
415 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
416
417 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
418 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
419
420 #endif /* _KERNEL */
421
422 #endif /* _ARM32_PMAP_H_ */
423