Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.49
      1 /*	$NetBSD: pmap.h,v 1.49 2002/04/09 22:37:01 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpufunc.h>
     74 #include <arm/arm32/pte.h>
     75 #include <uvm/uvm_object.h>
     76 
     77 /*
     78  * a pmap describes a processes' 4GB virtual address space.  this
     79  * virtual address space can be broken up into 4096 1MB regions which
     80  * are described by L1 PTEs in the L1 table.
     81  *
     82  * There is a line drawn at KERNEL_BASE.  Everything below that line
     83  * changes when the VM context is switched.  Everything above that line
     84  * is the same no matter which VM context is running.  This is achieved
     85  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     86  * kernel L2 tables.
     87  *
     88  * The L2 tables are mapped linearly starting at PTE_BASE.  PTE_BASE
     89  * is below KERNEL_BASE, which means that the current process's PTEs
     90  * are always available starting at PTE_BASE.  Another region of KVA
     91  * above KERNEL_BASE, APTE_BASE, is reserved for mapping in the PTEs
     92  * of another process, should we need to manipulate them.
     93  *
     94  * The basic layout of the virtual address space thus looks like this:
     95  *
     96  *	0xffffffff
     97  *	.
     98  *	.
     99  *	.
    100  *	KERNEL_BASE
    101  *	--------------------
    102  *	PTE_BASE
    103  *	.
    104  *	.
    105  *	.
    106  *	0x00000000
    107  */
    108 
    109 /*
    110  * The pmap structure itself.
    111  */
    112 struct pmap {
    113 	struct uvm_object	pm_obj;		/* uvm_object */
    114 #define	pm_lock	pm_obj.vmobjlock
    115 	LIST_ENTRY(pmap)	pm_list;	/* list (lck by pm_list lock) */
    116 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
    117 	struct l1pt		*pm_l1pt;	/* L1 table metadata */
    118 	paddr_t                 pm_pptpt;	/* PA of pt's page table */
    119 	vaddr_t                 pm_vptpt;	/* VA of pt's page table */
    120 	struct pmap_statistics	pm_stats;	/* pmap statistics */
    121 	struct vm_page		*pm_ptphint;	/* recently used PT */
    122 };
    123 
    124 typedef struct pmap *pmap_t;
    125 
    126 /*
    127  * Physical / virtual address structure. In a number of places (particularly
    128  * during bootstrapping) we need to keep track of the physical and virtual
    129  * addresses of various pages
    130  */
    131 typedef struct pv_addr {
    132 	SLIST_ENTRY(pv_addr) pv_list;
    133 	paddr_t pv_pa;
    134 	vaddr_t pv_va;
    135 } pv_addr_t;
    136 
    137 /*
    138  * Determine various modes for PTEs (user vs. kernel, cacheable
    139  * vs. non-cacheable).
    140  */
    141 #define	PTE_KERNEL	0
    142 #define	PTE_USER	1
    143 #define	PTE_NOCACHE	0
    144 #define	PTE_CACHE	1
    145 
    146 /*
    147  * Flags that indicate attributes of pages or mappings of pages.
    148  *
    149  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    150  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    151  * pv_entry's for each page.  They live in the same "namespace" so
    152  * that we can clear multiple attributes at a time.
    153  *
    154  * Note the "non-cacheable" flag generally means the page has
    155  * multiple mappings in a given address space.
    156  */
    157 #define	PVF_MOD		0x01		/* page is modified */
    158 #define	PVF_REF		0x02		/* page is referenced */
    159 #define	PVF_WIRED	0x04		/* mapping is wired */
    160 #define	PVF_WRITE	0x08		/* mapping is writable */
    161 #define	PVF_NC		0x10		/* mapping is non-cacheable */
    162 
    163 /*
    164  * Commonly referenced structures
    165  */
    166 extern struct pmap	kernel_pmap_store;
    167 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    168 
    169 /*
    170  * Macros that we need to export
    171  */
    172 #define pmap_kernel()			(&kernel_pmap_store)
    173 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    174 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    175 
    176 #define	pmap_is_modified(pg)	\
    177 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    178 #define	pmap_is_referenced(pg)	\
    179 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    180 
    181 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    182 
    183 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    184 
    185 /*
    186  * Functions that we need to export
    187  */
    188 vaddr_t	pmap_map(vaddr_t, vaddr_t, vaddr_t, int);
    189 void	pmap_procwr(struct proc *, vaddr_t, int);
    190 
    191 #define	PMAP_NEED_PROCWR
    192 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    193 
    194 /* Functions we use internally. */
    195 void	pmap_bootstrap(pd_entry_t *, pv_addr_t);
    196 void	pmap_debug(int);
    197 int	pmap_handled_emulation(struct pmap *, vaddr_t);
    198 int	pmap_modified_emulation(struct pmap *, vaddr_t);
    199 void	pmap_postinit(void);
    200 
    201 void	vector_page_setprot(int);
    202 
    203 /* Bootstrapping routines. */
    204 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    205 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    206 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    207 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    208 
    209 /*
    210  * Special page zero routine for use by the idle loop (no cache cleans).
    211  */
    212 boolean_t	pmap_pageidlezero __P((paddr_t));
    213 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    214 
    215 /*
    216  * The current top of kernel VM
    217  */
    218 extern vaddr_t	pmap_curmaxkvaddr;
    219 
    220 /*
    221  * Useful macros and constants
    222  */
    223 
    224 /* Virtual address to page table entry */
    225 #define vtopte(va) \
    226 	(((pt_entry_t *)PTE_BASE) + arm_btop((vaddr_t) (va)))
    227 
    228 /* Virtual address to physical address */
    229 #define vtophys(va) \
    230 	((*vtopte(va) & L2_S_FRAME) | ((vaddr_t) (va) & L2_S_OFFSET))
    231 
    232 #define	l1pte_valid(pde)	((pde) != 0)
    233 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    234 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    235 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    236 
    237 #define	l2pte_valid(pte)	((pte) != 0)
    238 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    239 
    240 /* L1 and L2 page table macros */
    241 #define pmap_pdei(v)		((v & L1_S_FRAME) >> L1_S_SHIFT)
    242 #define pmap_pde(m, v)		(&((m)->pm_pdir[pmap_pdei(v)]))
    243 
    244 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    245 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    246 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    247 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    248 
    249 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    250 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    251 
    252 
    253 /* Size of the kernel part of the L1 page table */
    254 #define KERNEL_PD_SIZE	\
    255 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    256 
    257 /************************* ARM MMU configuration *****************************/
    258 
    259 /*
    260  * We define several classes of ARM MMU, here:
    261  *
    262  *	ARM_MMU_GENERIC		Generic ARM MMU, compatible with ARM6.
    263  *
    264  *	ARM_MMU_XSCALE		XScale MMU.  Compatible with generic ARM
    265  *				MMU, but also has several extensions which
    266  *				require different PTE layout to use.
    267  */
    268 
    269 #if defined(_LKM) || defined(CPU_ARM6) || defined(CPU_ARM7) || \
    270     defined(CPU_ARM7TDMI) || defined(CPU_ARM8) || defined(CPU_ARM9) || \
    271     defined(CPU_SA110) || defined(CPU_SA1100) || defined(CPU_SA1110)
    272 #define	ARM_MMU_GENERIC		1
    273 
    274 void	pmap_pte_init_generic(void);
    275 #if defined(CPU_ARM9)
    276 void	pmap_pte_init_arm9(void);
    277 #endif /* CPU_ARM9 */
    278 #else
    279 #define	ARM_MMU_GENERIC		0
    280 #endif
    281 
    282 #if defined(_LKM) || defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321)
    283 #define	ARM_MMU_XSCALE		1
    284 
    285 void	pmap_pte_init_xscale(void);
    286 #if defined(CPU_XSCALE_80200)
    287 void	pmap_pte_init_i80200(void);
    288 #endif /* CPU_XSCALE_80200 */
    289 #else
    290 #define	ARM_MMU_XSCALE		0
    291 #endif
    292 
    293 #define	ARM_NMMUS		(ARM_MMU_GENERIC + ARM_MMU_XSCALE)
    294 #if ARM_NMMUS == 0
    295 #error ARM_NMMUS is 0
    296 #endif
    297 
    298 extern pt_entry_t		pte_l1_s_cache_mode;
    299 extern pt_entry_t		pte_l1_s_cache_mask;
    300 
    301 extern pt_entry_t		pte_l2_l_cache_mode;
    302 extern pt_entry_t		pte_l2_l_cache_mask;
    303 
    304 extern pt_entry_t		pte_l2_s_cache_mode;
    305 extern pt_entry_t		pte_l2_s_cache_mask;
    306 
    307 extern pt_entry_t		pte_l2_s_prot_u;
    308 extern pt_entry_t		pte_l2_s_prot_w;
    309 extern pt_entry_t		pte_l2_s_prot_mask;
    310 
    311 extern pt_entry_t		pte_l1_s_proto;
    312 extern pt_entry_t		pte_l1_c_proto;
    313 extern pt_entry_t		pte_l2_s_proto;
    314 
    315 /*****************************************************************************/
    316 
    317 /*
    318  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    319  */
    320 #define PMAP_CACHE_VIVT
    321 
    322 /*
    323  * These macros define the various bit masks in the PTE.
    324  *
    325  * We use these macros since we use different bits on different processor
    326  * models.
    327  */
    328 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    329 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    330 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    331 
    332 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    333 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    334 
    335 #define	L2_L_PROT_U		(L2_AP(AP_U))
    336 #define	L2_L_PROT_W		(L2_AP(AP_W))
    337 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    338 
    339 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    340 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    341 
    342 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    343 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    344 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    345 
    346 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    347 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    348 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    349 
    350 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    351 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    352 
    353 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    354 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    355 
    356 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    357 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    358 
    359 #define	L2_L_PROTO		(L2_TYPE_L)
    360 
    361 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    362 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    363 
    364 /*
    365  * User-visible names for the ones that vary with MMU class.
    366  */
    367 
    368 #if ARM_NMMUS > 1
    369 /* More than one MMU class configured; use variables. */
    370 #define	L2_S_PROT_U		pte_l2_s_prot_u
    371 #define	L2_S_PROT_W		pte_l2_s_prot_w
    372 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    373 
    374 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    375 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    376 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    377 
    378 #define	L1_S_PROTO		pte_l1_s_proto
    379 #define	L1_C_PROTO		pte_l1_c_proto
    380 #define	L2_S_PROTO		pte_l2_s_proto
    381 #elif ARM_MMU_GENERIC == 1
    382 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    383 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    384 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    385 
    386 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    387 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    388 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    389 
    390 #define	L1_S_PROTO		L1_S_PROTO_generic
    391 #define	L1_C_PROTO		L1_C_PROTO_generic
    392 #define	L2_S_PROTO		L2_S_PROTO_generic
    393 #elif ARM_MMU_XSCALE == 1
    394 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    395 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    396 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    397 
    398 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    399 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    400 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    401 
    402 #define	L1_S_PROTO		L1_S_PROTO_xscale
    403 #define	L1_C_PROTO		L1_C_PROTO_xscale
    404 #define	L2_S_PROTO		L2_S_PROTO_xscale
    405 #endif /* ARM_NMMUS > 1 */
    406 
    407 /*
    408  * These macros return various bits based on kernel/user and protection.
    409  * Note that the compiler will usually fold these at compile time.
    410  */
    411 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    412 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    413 
    414 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    415 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    416 
    417 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    418 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    419 
    420 #endif /* _KERNEL */
    421 
    422 #endif	/* _ARM32_PMAP_H_ */
    423