Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.64
      1 /*	$NetBSD: pmap.h,v 1.64 2003/04/09 18:22:14 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/cpufunc.h>
     75 #include <arm/arm32/pte.h>
     76 #include <uvm/uvm_object.h>
     77 
     78 /*
     79  * a pmap describes a processes' 4GB virtual address space.  this
     80  * virtual address space can be broken up into 4096 1MB regions which
     81  * are described by L1 PTEs in the L1 table.
     82  *
     83  * There is a line drawn at KERNEL_BASE.  Everything below that line
     84  * changes when the VM context is switched.  Everything above that line
     85  * is the same no matter which VM context is running.  This is achieved
     86  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     87  * kernel L2 tables.
     88  *
     89  * The L2 tables are mapped linearly starting at PTE_BASE.  PTE_BASE
     90  * is below KERNEL_BASE, which means that the current process's PTEs
     91  * are always available starting at PTE_BASE.  Another region of KVA
     92  * above KERNEL_BASE, APTE_BASE, is reserved for mapping in the PTEs
     93  * of another process, should we need to manipulate them.
     94  *
     95  * The basic layout of the virtual address space thus looks like this:
     96  *
     97  *	0xffffffff
     98  *	.
     99  *	.
    100  *	.
    101  *	KERNEL_BASE
    102  *	--------------------
    103  *	PTE_BASE
    104  *	.
    105  *	.
    106  *	.
    107  *	0x00000000
    108  */
    109 
    110 /*
    111  * The pmap structure itself.
    112  */
    113 struct pmap {
    114 	struct uvm_object	pm_obj;		/* uvm_object */
    115 #define	pm_lock	pm_obj.vmobjlock
    116 	LIST_ENTRY(pmap)	pm_list;	/* list (lck by pm_list lock) */
    117 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
    118 	struct l1pt		*pm_l1pt;	/* L1 table metadata */
    119 	paddr_t                 pm_pptpt;	/* PA of pt's page table */
    120 	vaddr_t                 pm_vptpt;	/* VA of pt's page table */
    121 	struct pmap_statistics	pm_stats;	/* pmap statistics */
    122 	struct vm_page		*pm_ptphint;	/* recently used PT */
    123 };
    124 
    125 typedef struct pmap *pmap_t;
    126 
    127 /*
    128  * Physical / virtual address structure. In a number of places (particularly
    129  * during bootstrapping) we need to keep track of the physical and virtual
    130  * addresses of various pages
    131  */
    132 typedef struct pv_addr {
    133 	SLIST_ENTRY(pv_addr) pv_list;
    134 	paddr_t pv_pa;
    135 	vaddr_t pv_va;
    136 } pv_addr_t;
    137 
    138 /*
    139  * Determine various modes for PTEs (user vs. kernel, cacheable
    140  * vs. non-cacheable).
    141  */
    142 #define	PTE_KERNEL	0
    143 #define	PTE_USER	1
    144 #define	PTE_NOCACHE	0
    145 #define	PTE_CACHE	1
    146 
    147 /*
    148  * Flags that indicate attributes of pages or mappings of pages.
    149  *
    150  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    151  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    152  * pv_entry's for each page.  They live in the same "namespace" so
    153  * that we can clear multiple attributes at a time.
    154  *
    155  * Note the "non-cacheable" flag generally means the page has
    156  * multiple mappings in a given address space.
    157  */
    158 #define	PVF_MOD		0x01		/* page is modified */
    159 #define	PVF_REF		0x02		/* page is referenced */
    160 #define	PVF_WIRED	0x04		/* mapping is wired */
    161 #define	PVF_WRITE	0x08		/* mapping is writable */
    162 #define	PVF_EXEC	0x10		/* mapping is executable */
    163 #define	PVF_NC		0x20		/* mapping is non-cacheable */
    164 
    165 /*
    166  * Commonly referenced structures
    167  */
    168 extern struct pmap	kernel_pmap_store;
    169 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    170 
    171 /*
    172  * Macros that we need to export
    173  */
    174 #define pmap_kernel()			(&kernel_pmap_store)
    175 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    176 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    177 
    178 #define	pmap_is_modified(pg)	\
    179 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    180 #define	pmap_is_referenced(pg)	\
    181 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    182 
    183 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    184 
    185 /* ARGSUSED */
    186 static __inline void
    187 pmap_remove_all(struct pmap *pmap)
    188 {
    189 	/* Nothing. */
    190 }
    191 
    192 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    193 
    194 /*
    195  * Functions that we need to export
    196  */
    197 void	pmap_procwr(struct proc *, vaddr_t, int);
    198 
    199 #define	PMAP_NEED_PROCWR
    200 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    201 
    202 /* Functions we use internally. */
    203 void	pmap_bootstrap(pd_entry_t *, pv_addr_t);
    204 void	pmap_debug(int);
    205 int	pmap_handled_emulation(struct pmap *, vaddr_t);
    206 int	pmap_modified_emulation(struct pmap *, vaddr_t);
    207 void	pmap_postinit(void);
    208 
    209 void	vector_page_setprot(int);
    210 
    211 /* Bootstrapping routines. */
    212 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    213 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    214 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    215 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    216 
    217 /*
    218  * Special page zero routine for use by the idle loop (no cache cleans).
    219  */
    220 boolean_t	pmap_pageidlezero __P((paddr_t));
    221 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    222 
    223 /*
    224  * The current top of kernel VM
    225  */
    226 extern vaddr_t	pmap_curmaxkvaddr;
    227 
    228 /*
    229  * Useful macros and constants
    230  */
    231 
    232 /*
    233  * While the ARM MMU's L1 descriptors describe a 1M "section", each
    234  * one pointing to a 1K L2 table, NetBSD's VM system allocates the
    235  * page tables in 4K chunks, and thus we describe 4M "super sections".
    236  *
    237  * We'll lift terminology from another architecture and refer to this as
    238  * the "page directory" size.
    239  */
    240 #define	PD_SIZE		(L1_S_SIZE * 4)		/* 4M */
    241 #define	PD_OFFSET	(PD_SIZE - 1)
    242 #define	PD_FRAME	(~PD_OFFSET)
    243 #define	PD_SHIFT	22
    244 
    245 /* Virtual address to page table entry */
    246 #define vtopte(va) \
    247 	(((pt_entry_t *)PTE_BASE) + arm_btop((vaddr_t) (va)))
    248 
    249 /* Virtual address to physical address */
    250 #define vtophys(va) \
    251 	((*vtopte(va) & L2_S_FRAME) | ((vaddr_t) (va) & L2_S_OFFSET))
    252 
    253 #define	PTE_SYNC(pte) \
    254 	cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t))
    255 #define	PTE_FLUSH(pte) \
    256 	cpu_dcache_wbinv_range((vaddr_t)(pte), sizeof(pt_entry_t))
    257 
    258 #define	PTE_SYNC_RANGE(pte, cnt) \
    259 	cpu_dcache_wb_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
    260 #define	PTE_FLUSH_RANGE(pte, cnt) \
    261 	cpu_dcache_wbinv_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
    262 
    263 #define	l1pte_valid(pde)	((pde) != 0)
    264 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    265 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    266 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    267 
    268 #define	l2pte_valid(pte)	((pte) != 0)
    269 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    270 
    271 /* L1 and L2 page table macros */
    272 #define pmap_pdei(v)		((v & L1_S_FRAME) >> L1_S_SHIFT)
    273 #define pmap_pde(m, v)		(&((m)->pm_pdir[pmap_pdei(v)]))
    274 
    275 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    276 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    277 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    278 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    279 
    280 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    281 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    282 
    283 
    284 /* Size of the kernel part of the L1 page table */
    285 #define KERNEL_PD_SIZE	\
    286 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    287 
    288 /************************* ARM MMU configuration *****************************/
    289 
    290 #if ARM_MMU_GENERIC == 1
    291 void	pmap_copy_page_generic(paddr_t, paddr_t);
    292 void	pmap_zero_page_generic(paddr_t);
    293 
    294 void	pmap_pte_init_generic(void);
    295 #if defined(CPU_ARM9)
    296 void	pmap_pte_init_arm9(void);
    297 #endif /* CPU_ARM9 */
    298 #endif /* ARM_MMU_GENERIC == 1 */
    299 
    300 #if ARM_MMU_XSCALE == 1
    301 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    302 void	pmap_zero_page_xscale(paddr_t);
    303 
    304 void	pmap_pte_init_xscale(void);
    305 
    306 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    307 #endif /* ARM_MMU_XSCALE == 1 */
    308 
    309 extern pt_entry_t		pte_l1_s_cache_mode;
    310 extern pt_entry_t		pte_l1_s_cache_mask;
    311 
    312 extern pt_entry_t		pte_l2_l_cache_mode;
    313 extern pt_entry_t		pte_l2_l_cache_mask;
    314 
    315 extern pt_entry_t		pte_l2_s_cache_mode;
    316 extern pt_entry_t		pte_l2_s_cache_mask;
    317 
    318 extern pt_entry_t		pte_l2_s_prot_u;
    319 extern pt_entry_t		pte_l2_s_prot_w;
    320 extern pt_entry_t		pte_l2_s_prot_mask;
    321 
    322 extern pt_entry_t		pte_l1_s_proto;
    323 extern pt_entry_t		pte_l1_c_proto;
    324 extern pt_entry_t		pte_l2_s_proto;
    325 
    326 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    327 extern void (*pmap_zero_page_func)(paddr_t);
    328 
    329 /*****************************************************************************/
    330 
    331 /*
    332  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    333  */
    334 #define PMAP_CACHE_VIVT
    335 
    336 /*
    337  * These macros define the various bit masks in the PTE.
    338  *
    339  * We use these macros since we use different bits on different processor
    340  * models.
    341  */
    342 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    343 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    344 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    345 
    346 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    347 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    348 
    349 #define	L2_L_PROT_U		(L2_AP(AP_U))
    350 #define	L2_L_PROT_W		(L2_AP(AP_W))
    351 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    352 
    353 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    354 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    355 
    356 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    357 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    358 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    359 
    360 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    361 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    362 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    363 
    364 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    365 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    366 
    367 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    368 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    369 
    370 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    371 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    372 
    373 #define	L2_L_PROTO		(L2_TYPE_L)
    374 
    375 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    376 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    377 
    378 /*
    379  * User-visible names for the ones that vary with MMU class.
    380  */
    381 
    382 #if ARM_NMMUS > 1
    383 /* More than one MMU class configured; use variables. */
    384 #define	L2_S_PROT_U		pte_l2_s_prot_u
    385 #define	L2_S_PROT_W		pte_l2_s_prot_w
    386 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    387 
    388 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    389 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    390 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    391 
    392 #define	L1_S_PROTO		pte_l1_s_proto
    393 #define	L1_C_PROTO		pte_l1_c_proto
    394 #define	L2_S_PROTO		pte_l2_s_proto
    395 
    396 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    397 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    398 #elif ARM_MMU_GENERIC == 1
    399 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    400 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    401 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    402 
    403 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    404 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    405 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    406 
    407 #define	L1_S_PROTO		L1_S_PROTO_generic
    408 #define	L1_C_PROTO		L1_C_PROTO_generic
    409 #define	L2_S_PROTO		L2_S_PROTO_generic
    410 
    411 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    412 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    413 #elif ARM_MMU_XSCALE == 1
    414 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    415 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    416 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    417 
    418 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    419 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    420 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    421 
    422 #define	L1_S_PROTO		L1_S_PROTO_xscale
    423 #define	L1_C_PROTO		L1_C_PROTO_xscale
    424 #define	L2_S_PROTO		L2_S_PROTO_xscale
    425 
    426 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    427 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    428 #endif /* ARM_NMMUS > 1 */
    429 
    430 /*
    431  * These macros return various bits based on kernel/user and protection.
    432  * Note that the compiler will usually fold these at compile time.
    433  */
    434 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    435 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    436 
    437 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    438 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    439 
    440 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    441 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    442 
    443 /*
    444  * Hooks for the pool allocator.
    445  */
    446 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    447 
    448 #endif /* _KERNEL */
    449 
    450 #endif	/* _ARM32_PMAP_H_ */
    451