Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.68
      1 /*	$NetBSD: pmap.h,v 1.68 2003/04/18 23:45:50 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/cpufunc.h>
     75 #include <arm/arm32/pte.h>
     76 #include <uvm/uvm_object.h>
     77 
     78 /*
     79  * a pmap describes a processes' 4GB virtual address space.  this
     80  * virtual address space can be broken up into 4096 1MB regions which
     81  * are described by L1 PTEs in the L1 table.
     82  *
     83  * There is a line drawn at KERNEL_BASE.  Everything below that line
     84  * changes when the VM context is switched.  Everything above that line
     85  * is the same no matter which VM context is running.  This is achieved
     86  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     87  * kernel L2 tables.
     88  *
     89  *#ifndef ARM32_PMAP_NEW
     90  * The L2 tables are mapped linearly starting at PTE_BASE.  PTE_BASE
     91  * is below KERNEL_BASE, which means that the current process's PTEs
     92  * are always available starting at PTE_BASE.  Another region of KVA
     93  * above KERNEL_BASE, APTE_BASE, is reserved for mapping in the PTEs
     94  * of another process, should we need to manipulate them.
     95  *#endif
     96  *
     97  * The basic layout of the virtual address space thus looks like this:
     98  *
     99  *	0xffffffff
    100  *	.
    101  *	.
    102  *	.
    103  *	KERNEL_BASE
    104  *	--------------------
    105  *#ifndef ARM32_PMAP_NEW
    106  *	PTE_BASE
    107  *#endif
    108  *	.
    109  *	.
    110  *	.
    111  *	0x00000000
    112  */
    113 
    114 #ifdef ARM32_PMAP_NEW
    115 /*
    116  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    117  * A bucket size of 16 provides for 16MB of contiguous virtual address
    118  * space per l2_dtable. Most processes will, therefore, require only two or
    119  * three of these to map their whole working set.
    120  */
    121 #define	L2_BUCKET_LOG2	4
    122 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    123 
    124 /*
    125  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    126  * of l2_dtable structures required to track all possible page descriptors
    127  * mappable by an L1 translation table is given by the following constants:
    128  */
    129 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    130 #define	L2_SIZE		(1 << L2_LOG2)
    131 
    132 struct l1_ttable;
    133 struct l2_dtable;
    134 
    135 /*
    136  * Track cache/tlb occupancy using the following structure
    137  */
    138 union pmap_cache_state {
    139 	struct {
    140 		union {
    141 			u_int8_t csu_cache_b[2];
    142 			u_int16_t csu_cache;
    143 		} cs_cache_u;
    144 
    145 		union {
    146 			u_int8_t csu_tlb_b[2];
    147 			u_int16_t csu_tlb;
    148 		} cs_tlb_u;
    149 	} cs_s;
    150 	u_int32_t cs_all;
    151 };
    152 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    153 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    154 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    155 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    156 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    157 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    158 
    159 /*
    160  * Assigned to cs_all to force cacheops to work for a particular pmap
    161  */
    162 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    163 
    164 /*
    165  * The pmap structure itself
    166  */
    167 struct pmap {
    168 	u_int8_t		pm_domain;
    169 	boolean_t		pm_remove_all;
    170 	struct l1_ttable	*pm_l1;
    171 	union pmap_cache_state	pm_cstate;
    172 	struct uvm_object	pm_obj;
    173 #define	pm_lock pm_obj.vmobjlock
    174 	struct l2_dtable	*pm_l2[L2_SIZE];
    175 	struct pmap_statistics	pm_stats;
    176 	LIST_ENTRY(pmap)	pm_list;
    177 };
    178 
    179 #else	/* !ARM32_PMAP_NEW */
    180 
    181 /*
    182  * The pmap structure itself.
    183  */
    184 struct pmap {
    185 	struct uvm_object	pm_obj;		/* uvm_object */
    186 #define	pm_lock	pm_obj.vmobjlock
    187 	LIST_ENTRY(pmap)	pm_list;	/* list (lck by pm_list lock) */
    188 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
    189 	struct l1pt		*pm_l1pt;	/* L1 table metadata */
    190 	paddr_t                 pm_pptpt;	/* PA of pt's page table */
    191 	vaddr_t                 pm_vptpt;	/* VA of pt's page table */
    192 	struct pmap_statistics	pm_stats;	/* pmap statistics */
    193 	struct vm_page		*pm_ptphint;	/* recently used PT */
    194 };
    195 #endif	/* ARM32_PMAP_NEW */
    196 
    197 typedef struct pmap *pmap_t;
    198 
    199 /*
    200  * Physical / virtual address structure. In a number of places (particularly
    201  * during bootstrapping) we need to keep track of the physical and virtual
    202  * addresses of various pages
    203  */
    204 typedef struct pv_addr {
    205 	SLIST_ENTRY(pv_addr) pv_list;
    206 	paddr_t pv_pa;
    207 	vaddr_t pv_va;
    208 } pv_addr_t;
    209 
    210 /*
    211  * Determine various modes for PTEs (user vs. kernel, cacheable
    212  * vs. non-cacheable).
    213  */
    214 #define	PTE_KERNEL	0
    215 #define	PTE_USER	1
    216 #define	PTE_NOCACHE	0
    217 #define	PTE_CACHE	1
    218 #ifdef ARM32_PMAP_NEW
    219 #define	PTE_PAGETABLE	2
    220 #endif
    221 
    222 /*
    223  * Flags that indicate attributes of pages or mappings of pages.
    224  *
    225  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    226  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    227  * pv_entry's for each page.  They live in the same "namespace" so
    228  * that we can clear multiple attributes at a time.
    229  *
    230  * Note the "non-cacheable" flag generally means the page has
    231  * multiple mappings in a given address space.
    232  */
    233 #define	PVF_MOD		0x01		/* page is modified */
    234 #define	PVF_REF		0x02		/* page is referenced */
    235 #define	PVF_WIRED	0x04		/* mapping is wired */
    236 #define	PVF_WRITE	0x08		/* mapping is writable */
    237 #define	PVF_EXEC	0x10		/* mapping is executable */
    238 #ifndef ARM32_PMAP_NEW
    239 #define	PVF_NC		0x20		/* mapping is non-cacheable */
    240 #else
    241 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    242 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    243 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    244 #endif
    245 
    246 /*
    247  * Commonly referenced structures
    248  */
    249 extern struct pmap	kernel_pmap_store;
    250 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    251 
    252 /*
    253  * Macros that we need to export
    254  */
    255 #define pmap_kernel()			(&kernel_pmap_store)
    256 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    257 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    258 
    259 #define	pmap_is_modified(pg)	\
    260 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    261 #define	pmap_is_referenced(pg)	\
    262 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    263 
    264 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    265 
    266 #ifndef ARM32_PMAP_NEW
    267 /* ARGSUSED */
    268 static __inline void
    269 pmap_remove_all(struct pmap *pmap)
    270 {
    271 	/* Nothing. */
    272 }
    273 #endif
    274 
    275 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    276 
    277 /*
    278  * Functions that we need to export
    279  */
    280 void	pmap_procwr(struct proc *, vaddr_t, int);
    281 #ifdef ARM32_PMAP_NEW
    282 void	pmap_remove_all(pmap_t);
    283 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
    284 #endif
    285 
    286 #define	PMAP_NEED_PROCWR
    287 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    288 
    289 /* Functions we use internally. */
    290 #ifndef ARM32_PMAP_NEW
    291 /*
    292  * Old pmap
    293  */
    294 void	pmap_bootstrap(pd_entry_t *, pv_addr_t);
    295 int	pmap_handled_emulation(struct pmap *, vaddr_t);
    296 int	pmap_modified_emulation(struct pmap *, vaddr_t);
    297 #else
    298 /*
    299  * New pmap
    300  */
    301 #ifdef ARM32_NEW_VM_LAYOUT
    302 void	pmap_bootstrap(pd_entry_t *, vaddr_t);
    303 #else
    304 void	pmap_bootstrap(pd_entry_t *);
    305 #endif
    306 
    307 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t);
    308 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    309 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    310 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    311 #endif	/* ARM32_PMAP_NEW */
    312 
    313 void	pmap_debug(int);
    314 void	pmap_postinit(void);
    315 
    316 void	vector_page_setprot(int);
    317 
    318 /* Bootstrapping routines. */
    319 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    320 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    321 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    322 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    323 
    324 /*
    325  * Special page zero routine for use by the idle loop (no cache cleans).
    326  */
    327 boolean_t	pmap_pageidlezero(paddr_t);
    328 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    329 
    330 /*
    331  * The current top of kernel VM
    332  */
    333 extern vaddr_t	pmap_curmaxkvaddr;
    334 
    335 /*
    336  * Useful macros and constants
    337  */
    338 
    339 #ifndef ARM32_PMAP_NEW
    340 /*
    341  * While the ARM MMU's L1 descriptors describe a 1M "section", each
    342  * one pointing to a 1K L2 table, NetBSD's VM system allocates the
    343  * page tables in 4K chunks, and thus we describe 4M "super sections".
    344  *
    345  * We'll lift terminology from another architecture and refer to this as
    346  * the "page directory" size.
    347  */
    348 #define	PD_SIZE		(L1_S_SIZE * 4)		/* 4M */
    349 #define	PD_OFFSET	(PD_SIZE - 1)
    350 #define	PD_FRAME	(~PD_OFFSET)
    351 #define	PD_SHIFT	22
    352 
    353 /* Virtual address to page table entry */
    354 #define vtopte(va) \
    355 	(((pt_entry_t *)PTE_BASE) + arm_btop((vaddr_t) (va)))
    356 
    357 /* Virtual address to physical address */
    358 #define vtophys(va) \
    359 	((*vtopte(va) & L2_S_FRAME) | ((vaddr_t) (va) & L2_S_OFFSET))
    360 
    361 #define	PTE_SYNC(pte) \
    362 	cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t))
    363 #define	PTE_FLUSH(pte) \
    364 	cpu_dcache_wbinv_range((vaddr_t)(pte), sizeof(pt_entry_t))
    365 
    366 #define	PTE_SYNC_RANGE(pte, cnt) \
    367 	cpu_dcache_wb_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
    368 #define	PTE_FLUSH_RANGE(pte, cnt) \
    369 	cpu_dcache_wbinv_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
    370 
    371 #else	/* ARM32_PMAP_NEW */
    372 
    373 /* Virtual address to page table entry */
    374 static __inline pt_entry_t *
    375 vtopte(vaddr_t va)
    376 {
    377 	pd_entry_t *pdep;
    378 	pt_entry_t *ptep;
    379 
    380 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
    381 		return (NULL);
    382 	return (ptep);
    383 }
    384 
    385 /*
    386  * Virtual address to physical address
    387  */
    388 static __inline paddr_t
    389 vtophys(vaddr_t va)
    390 {
    391 	paddr_t pa;
    392 
    393 	if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    394 		return (0);	/* XXXSCW: Panic? */
    395 
    396 	return (pa);
    397 }
    398 #endif	/* ARM32_PMAP_NEW */
    399 
    400 /*
    401  * The new pmap ensures that page-tables are always mapping Write-Thru.
    402  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    403  * on every change.
    404  *
    405  * Actually, this may not work out quite as well as I'd planned.
    406  * According to some documentation, the cache-mode "write-thru, unbuffered",
    407  * as used by the pmap for page tables, may not work correctly on all types
    408  * of cache.
    409  */
    410 #if !defined(ARM32_PMAP_NEW) || defined(ARM32_PMAP_NEEDS_PTE_SYNC)
    411 #define	PTE_SYNC(pte) \
    412 	cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t))
    413 #define	PTE_FLUSH(pte) \
    414 	cpu_dcache_wbinv_range((vaddr_t)(pte), sizeof(pt_entry_t))
    415 
    416 #define	PTE_SYNC_RANGE(pte, cnt) \
    417 	cpu_dcache_wb_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
    418 #define	PTE_FLUSH_RANGE(pte, cnt) \
    419 	cpu_dcache_wbinv_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
    420 #else
    421 #define	PTE_SYNC(x)		/* no-op */
    422 #define	PTE_FLUSH(x)		/* no-op */
    423 #define	PTE_SYNC_RANGE(x,y)	/* no-op */
    424 #define	PTE_FLUSH_RANGE(x,y)	/* no-op */
    425 #endif
    426 
    427 #define	l1pte_valid(pde)	((pde) != 0)
    428 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    429 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    430 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    431 
    432 #ifdef ARM32_PMAP_NEW
    433 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    434 #endif
    435 #define	l2pte_valid(pte)	((pte) != 0)
    436 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    437 
    438 /* L1 and L2 page table macros */
    439 #ifndef ARM32_PMAP_NEW
    440 #define pmap_pdei(v)		((v & L1_S_FRAME) >> L1_S_SHIFT)
    441 #define pmap_pde(m, v)		(&((m)->pm_pdir[pmap_pdei(v)]))
    442 #endif
    443 
    444 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    445 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    446 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    447 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    448 
    449 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    450 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    451 
    452 /* Size of the kernel part of the L1 page table */
    453 #define KERNEL_PD_SIZE	\
    454 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    455 
    456 /************************* ARM MMU configuration *****************************/
    457 
    458 #if ARM_MMU_GENERIC == 1
    459 void	pmap_copy_page_generic(paddr_t, paddr_t);
    460 void	pmap_zero_page_generic(paddr_t);
    461 
    462 void	pmap_pte_init_generic(void);
    463 #if defined(CPU_ARM9)
    464 void	pmap_pte_init_arm9(void);
    465 #endif /* CPU_ARM9 */
    466 #endif /* ARM_MMU_GENERIC == 1 */
    467 
    468 #if ARM_MMU_XSCALE == 1
    469 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    470 void	pmap_zero_page_xscale(paddr_t);
    471 
    472 void	pmap_pte_init_xscale(void);
    473 
    474 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    475 #endif /* ARM_MMU_XSCALE == 1 */
    476 
    477 extern pt_entry_t		pte_l1_s_cache_mode;
    478 extern pt_entry_t		pte_l1_s_cache_mask;
    479 
    480 extern pt_entry_t		pte_l2_l_cache_mode;
    481 extern pt_entry_t		pte_l2_l_cache_mask;
    482 
    483 extern pt_entry_t		pte_l2_s_cache_mode;
    484 extern pt_entry_t		pte_l2_s_cache_mask;
    485 
    486 #ifdef ARM32_PMAP_NEW
    487 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    488 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    489 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    490 #endif
    491 
    492 extern pt_entry_t		pte_l2_s_prot_u;
    493 extern pt_entry_t		pte_l2_s_prot_w;
    494 extern pt_entry_t		pte_l2_s_prot_mask;
    495 
    496 extern pt_entry_t		pte_l1_s_proto;
    497 extern pt_entry_t		pte_l1_c_proto;
    498 extern pt_entry_t		pte_l2_s_proto;
    499 
    500 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    501 extern void (*pmap_zero_page_func)(paddr_t);
    502 
    503 /*****************************************************************************/
    504 
    505 /*
    506  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    507  */
    508 #define PMAP_CACHE_VIVT
    509 
    510 #ifdef ARM32_PMAP_NEW
    511 /*
    512  * Definitions for MMU domains
    513  */
    514 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
    515 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
    516 #endif
    517 
    518 /*
    519  * These macros define the various bit masks in the PTE.
    520  *
    521  * We use these macros since we use different bits on different processor
    522  * models.
    523  */
    524 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    525 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    526 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    527 
    528 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    529 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    530 
    531 #define	L2_L_PROT_U		(L2_AP(AP_U))
    532 #define	L2_L_PROT_W		(L2_AP(AP_W))
    533 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    534 
    535 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    536 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    537 
    538 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    539 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    540 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    541 
    542 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    543 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    544 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    545 
    546 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    547 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    548 
    549 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    550 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    551 
    552 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    553 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    554 
    555 #define	L2_L_PROTO		(L2_TYPE_L)
    556 
    557 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    558 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    559 
    560 /*
    561  * User-visible names for the ones that vary with MMU class.
    562  */
    563 
    564 #if ARM_NMMUS > 1
    565 /* More than one MMU class configured; use variables. */
    566 #define	L2_S_PROT_U		pte_l2_s_prot_u
    567 #define	L2_S_PROT_W		pte_l2_s_prot_w
    568 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    569 
    570 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    571 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    572 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    573 
    574 #define	L1_S_PROTO		pte_l1_s_proto
    575 #define	L1_C_PROTO		pte_l1_c_proto
    576 #define	L2_S_PROTO		pte_l2_s_proto
    577 
    578 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    579 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    580 #elif ARM_MMU_GENERIC == 1
    581 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    582 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    583 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    584 
    585 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    586 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    587 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    588 
    589 #define	L1_S_PROTO		L1_S_PROTO_generic
    590 #define	L1_C_PROTO		L1_C_PROTO_generic
    591 #define	L2_S_PROTO		L2_S_PROTO_generic
    592 
    593 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    594 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    595 #elif ARM_MMU_XSCALE == 1
    596 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    597 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    598 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    599 
    600 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    601 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    602 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    603 
    604 #define	L1_S_PROTO		L1_S_PROTO_xscale
    605 #define	L1_C_PROTO		L1_C_PROTO_xscale
    606 #define	L2_S_PROTO		L2_S_PROTO_xscale
    607 
    608 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    609 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    610 #endif /* ARM_NMMUS > 1 */
    611 
    612 /*
    613  * These macros return various bits based on kernel/user and protection.
    614  * Note that the compiler will usually fold these at compile time.
    615  */
    616 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    617 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    618 
    619 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    620 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    621 
    622 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    623 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    624 
    625 /*
    626  * Macros to test if a mapping is mappable with an L1 Section mapping
    627  * or an L2 Large Page mapping.
    628  */
    629 #define	L1_S_MAPPABLE_P(va, pa, size)					\
    630 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    631 
    632 #define	L2_L_MAPPABLE_P(va, pa, size)					\
    633 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    634 
    635 /*
    636  * Hooks for the pool allocator.
    637  */
    638 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    639 
    640 #endif /* _KERNEL */
    641 
    642 #endif	/* _ARM32_PMAP_H_ */
    643