pmap.h revision 1.68 1 /* $NetBSD: pmap.h,v 1.68 2003/04/18 23:45:50 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/cpufunc.h>
75 #include <arm/arm32/pte.h>
76 #include <uvm/uvm_object.h>
77
78 /*
79 * a pmap describes a processes' 4GB virtual address space. this
80 * virtual address space can be broken up into 4096 1MB regions which
81 * are described by L1 PTEs in the L1 table.
82 *
83 * There is a line drawn at KERNEL_BASE. Everything below that line
84 * changes when the VM context is switched. Everything above that line
85 * is the same no matter which VM context is running. This is achieved
86 * by making the L1 PTEs for those slots above KERNEL_BASE reference
87 * kernel L2 tables.
88 *
89 *#ifndef ARM32_PMAP_NEW
90 * The L2 tables are mapped linearly starting at PTE_BASE. PTE_BASE
91 * is below KERNEL_BASE, which means that the current process's PTEs
92 * are always available starting at PTE_BASE. Another region of KVA
93 * above KERNEL_BASE, APTE_BASE, is reserved for mapping in the PTEs
94 * of another process, should we need to manipulate them.
95 *#endif
96 *
97 * The basic layout of the virtual address space thus looks like this:
98 *
99 * 0xffffffff
100 * .
101 * .
102 * .
103 * KERNEL_BASE
104 * --------------------
105 *#ifndef ARM32_PMAP_NEW
106 * PTE_BASE
107 *#endif
108 * .
109 * .
110 * .
111 * 0x00000000
112 */
113
114 #ifdef ARM32_PMAP_NEW
115 /*
116 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
117 * A bucket size of 16 provides for 16MB of contiguous virtual address
118 * space per l2_dtable. Most processes will, therefore, require only two or
119 * three of these to map their whole working set.
120 */
121 #define L2_BUCKET_LOG2 4
122 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
123
124 /*
125 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
126 * of l2_dtable structures required to track all possible page descriptors
127 * mappable by an L1 translation table is given by the following constants:
128 */
129 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
130 #define L2_SIZE (1 << L2_LOG2)
131
132 struct l1_ttable;
133 struct l2_dtable;
134
135 /*
136 * Track cache/tlb occupancy using the following structure
137 */
138 union pmap_cache_state {
139 struct {
140 union {
141 u_int8_t csu_cache_b[2];
142 u_int16_t csu_cache;
143 } cs_cache_u;
144
145 union {
146 u_int8_t csu_tlb_b[2];
147 u_int16_t csu_tlb;
148 } cs_tlb_u;
149 } cs_s;
150 u_int32_t cs_all;
151 };
152 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
153 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
154 #define cs_cache cs_s.cs_cache_u.csu_cache
155 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
156 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
157 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
158
159 /*
160 * Assigned to cs_all to force cacheops to work for a particular pmap
161 */
162 #define PMAP_CACHE_STATE_ALL 0xffffffffu
163
164 /*
165 * The pmap structure itself
166 */
167 struct pmap {
168 u_int8_t pm_domain;
169 boolean_t pm_remove_all;
170 struct l1_ttable *pm_l1;
171 union pmap_cache_state pm_cstate;
172 struct uvm_object pm_obj;
173 #define pm_lock pm_obj.vmobjlock
174 struct l2_dtable *pm_l2[L2_SIZE];
175 struct pmap_statistics pm_stats;
176 LIST_ENTRY(pmap) pm_list;
177 };
178
179 #else /* !ARM32_PMAP_NEW */
180
181 /*
182 * The pmap structure itself.
183 */
184 struct pmap {
185 struct uvm_object pm_obj; /* uvm_object */
186 #define pm_lock pm_obj.vmobjlock
187 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
188 pd_entry_t *pm_pdir; /* KVA of page directory */
189 struct l1pt *pm_l1pt; /* L1 table metadata */
190 paddr_t pm_pptpt; /* PA of pt's page table */
191 vaddr_t pm_vptpt; /* VA of pt's page table */
192 struct pmap_statistics pm_stats; /* pmap statistics */
193 struct vm_page *pm_ptphint; /* recently used PT */
194 };
195 #endif /* ARM32_PMAP_NEW */
196
197 typedef struct pmap *pmap_t;
198
199 /*
200 * Physical / virtual address structure. In a number of places (particularly
201 * during bootstrapping) we need to keep track of the physical and virtual
202 * addresses of various pages
203 */
204 typedef struct pv_addr {
205 SLIST_ENTRY(pv_addr) pv_list;
206 paddr_t pv_pa;
207 vaddr_t pv_va;
208 } pv_addr_t;
209
210 /*
211 * Determine various modes for PTEs (user vs. kernel, cacheable
212 * vs. non-cacheable).
213 */
214 #define PTE_KERNEL 0
215 #define PTE_USER 1
216 #define PTE_NOCACHE 0
217 #define PTE_CACHE 1
218 #ifdef ARM32_PMAP_NEW
219 #define PTE_PAGETABLE 2
220 #endif
221
222 /*
223 * Flags that indicate attributes of pages or mappings of pages.
224 *
225 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
226 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
227 * pv_entry's for each page. They live in the same "namespace" so
228 * that we can clear multiple attributes at a time.
229 *
230 * Note the "non-cacheable" flag generally means the page has
231 * multiple mappings in a given address space.
232 */
233 #define PVF_MOD 0x01 /* page is modified */
234 #define PVF_REF 0x02 /* page is referenced */
235 #define PVF_WIRED 0x04 /* mapping is wired */
236 #define PVF_WRITE 0x08 /* mapping is writable */
237 #define PVF_EXEC 0x10 /* mapping is executable */
238 #ifndef ARM32_PMAP_NEW
239 #define PVF_NC 0x20 /* mapping is non-cacheable */
240 #else
241 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
242 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
243 #define PVF_NC (PVF_UNC|PVF_KNC)
244 #endif
245
246 /*
247 * Commonly referenced structures
248 */
249 extern struct pmap kernel_pmap_store;
250 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
251
252 /*
253 * Macros that we need to export
254 */
255 #define pmap_kernel() (&kernel_pmap_store)
256 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
257 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
258
259 #define pmap_is_modified(pg) \
260 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
261 #define pmap_is_referenced(pg) \
262 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
263
264 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
265
266 #ifndef ARM32_PMAP_NEW
267 /* ARGSUSED */
268 static __inline void
269 pmap_remove_all(struct pmap *pmap)
270 {
271 /* Nothing. */
272 }
273 #endif
274
275 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
276
277 /*
278 * Functions that we need to export
279 */
280 void pmap_procwr(struct proc *, vaddr_t, int);
281 #ifdef ARM32_PMAP_NEW
282 void pmap_remove_all(pmap_t);
283 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
284 #endif
285
286 #define PMAP_NEED_PROCWR
287 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
288
289 /* Functions we use internally. */
290 #ifndef ARM32_PMAP_NEW
291 /*
292 * Old pmap
293 */
294 void pmap_bootstrap(pd_entry_t *, pv_addr_t);
295 int pmap_handled_emulation(struct pmap *, vaddr_t);
296 int pmap_modified_emulation(struct pmap *, vaddr_t);
297 #else
298 /*
299 * New pmap
300 */
301 #ifdef ARM32_NEW_VM_LAYOUT
302 void pmap_bootstrap(pd_entry_t *, vaddr_t);
303 #else
304 void pmap_bootstrap(pd_entry_t *);
305 #endif
306
307 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t);
308 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
309 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
310 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
311 #endif /* ARM32_PMAP_NEW */
312
313 void pmap_debug(int);
314 void pmap_postinit(void);
315
316 void vector_page_setprot(int);
317
318 /* Bootstrapping routines. */
319 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
320 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
321 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
322 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
323
324 /*
325 * Special page zero routine for use by the idle loop (no cache cleans).
326 */
327 boolean_t pmap_pageidlezero(paddr_t);
328 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
329
330 /*
331 * The current top of kernel VM
332 */
333 extern vaddr_t pmap_curmaxkvaddr;
334
335 /*
336 * Useful macros and constants
337 */
338
339 #ifndef ARM32_PMAP_NEW
340 /*
341 * While the ARM MMU's L1 descriptors describe a 1M "section", each
342 * one pointing to a 1K L2 table, NetBSD's VM system allocates the
343 * page tables in 4K chunks, and thus we describe 4M "super sections".
344 *
345 * We'll lift terminology from another architecture and refer to this as
346 * the "page directory" size.
347 */
348 #define PD_SIZE (L1_S_SIZE * 4) /* 4M */
349 #define PD_OFFSET (PD_SIZE - 1)
350 #define PD_FRAME (~PD_OFFSET)
351 #define PD_SHIFT 22
352
353 /* Virtual address to page table entry */
354 #define vtopte(va) \
355 (((pt_entry_t *)PTE_BASE) + arm_btop((vaddr_t) (va)))
356
357 /* Virtual address to physical address */
358 #define vtophys(va) \
359 ((*vtopte(va) & L2_S_FRAME) | ((vaddr_t) (va) & L2_S_OFFSET))
360
361 #define PTE_SYNC(pte) \
362 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t))
363 #define PTE_FLUSH(pte) \
364 cpu_dcache_wbinv_range((vaddr_t)(pte), sizeof(pt_entry_t))
365
366 #define PTE_SYNC_RANGE(pte, cnt) \
367 cpu_dcache_wb_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
368 #define PTE_FLUSH_RANGE(pte, cnt) \
369 cpu_dcache_wbinv_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
370
371 #else /* ARM32_PMAP_NEW */
372
373 /* Virtual address to page table entry */
374 static __inline pt_entry_t *
375 vtopte(vaddr_t va)
376 {
377 pd_entry_t *pdep;
378 pt_entry_t *ptep;
379
380 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
381 return (NULL);
382 return (ptep);
383 }
384
385 /*
386 * Virtual address to physical address
387 */
388 static __inline paddr_t
389 vtophys(vaddr_t va)
390 {
391 paddr_t pa;
392
393 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
394 return (0); /* XXXSCW: Panic? */
395
396 return (pa);
397 }
398 #endif /* ARM32_PMAP_NEW */
399
400 /*
401 * The new pmap ensures that page-tables are always mapping Write-Thru.
402 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
403 * on every change.
404 *
405 * Actually, this may not work out quite as well as I'd planned.
406 * According to some documentation, the cache-mode "write-thru, unbuffered",
407 * as used by the pmap for page tables, may not work correctly on all types
408 * of cache.
409 */
410 #if !defined(ARM32_PMAP_NEW) || defined(ARM32_PMAP_NEEDS_PTE_SYNC)
411 #define PTE_SYNC(pte) \
412 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t))
413 #define PTE_FLUSH(pte) \
414 cpu_dcache_wbinv_range((vaddr_t)(pte), sizeof(pt_entry_t))
415
416 #define PTE_SYNC_RANGE(pte, cnt) \
417 cpu_dcache_wb_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
418 #define PTE_FLUSH_RANGE(pte, cnt) \
419 cpu_dcache_wbinv_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
420 #else
421 #define PTE_SYNC(x) /* no-op */
422 #define PTE_FLUSH(x) /* no-op */
423 #define PTE_SYNC_RANGE(x,y) /* no-op */
424 #define PTE_FLUSH_RANGE(x,y) /* no-op */
425 #endif
426
427 #define l1pte_valid(pde) ((pde) != 0)
428 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
429 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
430 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
431
432 #ifdef ARM32_PMAP_NEW
433 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
434 #endif
435 #define l2pte_valid(pte) ((pte) != 0)
436 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
437
438 /* L1 and L2 page table macros */
439 #ifndef ARM32_PMAP_NEW
440 #define pmap_pdei(v) ((v & L1_S_FRAME) >> L1_S_SHIFT)
441 #define pmap_pde(m, v) (&((m)->pm_pdir[pmap_pdei(v)]))
442 #endif
443
444 #define pmap_pde_v(pde) l1pte_valid(*(pde))
445 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
446 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
447 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
448
449 #define pmap_pte_v(pte) l2pte_valid(*(pte))
450 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
451
452 /* Size of the kernel part of the L1 page table */
453 #define KERNEL_PD_SIZE \
454 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
455
456 /************************* ARM MMU configuration *****************************/
457
458 #if ARM_MMU_GENERIC == 1
459 void pmap_copy_page_generic(paddr_t, paddr_t);
460 void pmap_zero_page_generic(paddr_t);
461
462 void pmap_pte_init_generic(void);
463 #if defined(CPU_ARM9)
464 void pmap_pte_init_arm9(void);
465 #endif /* CPU_ARM9 */
466 #endif /* ARM_MMU_GENERIC == 1 */
467
468 #if ARM_MMU_XSCALE == 1
469 void pmap_copy_page_xscale(paddr_t, paddr_t);
470 void pmap_zero_page_xscale(paddr_t);
471
472 void pmap_pte_init_xscale(void);
473
474 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
475 #endif /* ARM_MMU_XSCALE == 1 */
476
477 extern pt_entry_t pte_l1_s_cache_mode;
478 extern pt_entry_t pte_l1_s_cache_mask;
479
480 extern pt_entry_t pte_l2_l_cache_mode;
481 extern pt_entry_t pte_l2_l_cache_mask;
482
483 extern pt_entry_t pte_l2_s_cache_mode;
484 extern pt_entry_t pte_l2_s_cache_mask;
485
486 #ifdef ARM32_PMAP_NEW
487 extern pt_entry_t pte_l1_s_cache_mode_pt;
488 extern pt_entry_t pte_l2_l_cache_mode_pt;
489 extern pt_entry_t pte_l2_s_cache_mode_pt;
490 #endif
491
492 extern pt_entry_t pte_l2_s_prot_u;
493 extern pt_entry_t pte_l2_s_prot_w;
494 extern pt_entry_t pte_l2_s_prot_mask;
495
496 extern pt_entry_t pte_l1_s_proto;
497 extern pt_entry_t pte_l1_c_proto;
498 extern pt_entry_t pte_l2_s_proto;
499
500 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
501 extern void (*pmap_zero_page_func)(paddr_t);
502
503 /*****************************************************************************/
504
505 /*
506 * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
507 */
508 #define PMAP_CACHE_VIVT
509
510 #ifdef ARM32_PMAP_NEW
511 /*
512 * Definitions for MMU domains
513 */
514 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
515 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
516 #endif
517
518 /*
519 * These macros define the various bit masks in the PTE.
520 *
521 * We use these macros since we use different bits on different processor
522 * models.
523 */
524 #define L1_S_PROT_U (L1_S_AP(AP_U))
525 #define L1_S_PROT_W (L1_S_AP(AP_W))
526 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
527
528 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
529 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
530
531 #define L2_L_PROT_U (L2_AP(AP_U))
532 #define L2_L_PROT_W (L2_AP(AP_W))
533 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
534
535 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
536 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
537
538 #define L2_S_PROT_U_generic (L2_AP(AP_U))
539 #define L2_S_PROT_W_generic (L2_AP(AP_W))
540 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
541
542 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
543 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
544 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
545
546 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
547 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
548
549 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
550 #define L1_S_PROTO_xscale (L1_TYPE_S)
551
552 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
553 #define L1_C_PROTO_xscale (L1_TYPE_C)
554
555 #define L2_L_PROTO (L2_TYPE_L)
556
557 #define L2_S_PROTO_generic (L2_TYPE_S)
558 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
559
560 /*
561 * User-visible names for the ones that vary with MMU class.
562 */
563
564 #if ARM_NMMUS > 1
565 /* More than one MMU class configured; use variables. */
566 #define L2_S_PROT_U pte_l2_s_prot_u
567 #define L2_S_PROT_W pte_l2_s_prot_w
568 #define L2_S_PROT_MASK pte_l2_s_prot_mask
569
570 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
571 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
572 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
573
574 #define L1_S_PROTO pte_l1_s_proto
575 #define L1_C_PROTO pte_l1_c_proto
576 #define L2_S_PROTO pte_l2_s_proto
577
578 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
579 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
580 #elif ARM_MMU_GENERIC == 1
581 #define L2_S_PROT_U L2_S_PROT_U_generic
582 #define L2_S_PROT_W L2_S_PROT_W_generic
583 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
584
585 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
586 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
587 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
588
589 #define L1_S_PROTO L1_S_PROTO_generic
590 #define L1_C_PROTO L1_C_PROTO_generic
591 #define L2_S_PROTO L2_S_PROTO_generic
592
593 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
594 #define pmap_zero_page(d) pmap_zero_page_generic((d))
595 #elif ARM_MMU_XSCALE == 1
596 #define L2_S_PROT_U L2_S_PROT_U_xscale
597 #define L2_S_PROT_W L2_S_PROT_W_xscale
598 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
599
600 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
601 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
602 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
603
604 #define L1_S_PROTO L1_S_PROTO_xscale
605 #define L1_C_PROTO L1_C_PROTO_xscale
606 #define L2_S_PROTO L2_S_PROTO_xscale
607
608 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
609 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
610 #endif /* ARM_NMMUS > 1 */
611
612 /*
613 * These macros return various bits based on kernel/user and protection.
614 * Note that the compiler will usually fold these at compile time.
615 */
616 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
617 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
618
619 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
620 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
621
622 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
623 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
624
625 /*
626 * Macros to test if a mapping is mappable with an L1 Section mapping
627 * or an L2 Large Page mapping.
628 */
629 #define L1_S_MAPPABLE_P(va, pa, size) \
630 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
631
632 #define L2_L_MAPPABLE_P(va, pa, size) \
633 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
634
635 /*
636 * Hooks for the pool allocator.
637 */
638 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
639
640 #endif /* _KERNEL */
641
642 #endif /* _ARM32_PMAP_H_ */
643