pmap.h revision 1.69 1 /* $NetBSD: pmap.h,v 1.69 2003/04/22 00:24:50 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/cpufunc.h>
75 #include <arm/arm32/pte.h>
76 #include <uvm/uvm_object.h>
77
78 /*
79 * a pmap describes a processes' 4GB virtual address space. this
80 * virtual address space can be broken up into 4096 1MB regions which
81 * are described by L1 PTEs in the L1 table.
82 *
83 * There is a line drawn at KERNEL_BASE. Everything below that line
84 * changes when the VM context is switched. Everything above that line
85 * is the same no matter which VM context is running. This is achieved
86 * by making the L1 PTEs for those slots above KERNEL_BASE reference
87 * kernel L2 tables.
88 *
89 *#ifndef ARM32_PMAP_NEW
90 * The L2 tables are mapped linearly starting at PTE_BASE. PTE_BASE
91 * is below KERNEL_BASE, which means that the current process's PTEs
92 * are always available starting at PTE_BASE. Another region of KVA
93 * above KERNEL_BASE, APTE_BASE, is reserved for mapping in the PTEs
94 * of another process, should we need to manipulate them.
95 *#endif
96 *
97 * The basic layout of the virtual address space thus looks like this:
98 *
99 * 0xffffffff
100 * .
101 * .
102 * .
103 * KERNEL_BASE
104 * --------------------
105 *#ifndef ARM32_PMAP_NEW
106 * PTE_BASE
107 *#endif
108 * .
109 * .
110 * .
111 * 0x00000000
112 */
113
114 #ifdef ARM32_PMAP_NEW
115 /*
116 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
117 * A bucket size of 16 provides for 16MB of contiguous virtual address
118 * space per l2_dtable. Most processes will, therefore, require only two or
119 * three of these to map their whole working set.
120 */
121 #define L2_BUCKET_LOG2 4
122 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
123
124 /*
125 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
126 * of l2_dtable structures required to track all possible page descriptors
127 * mappable by an L1 translation table is given by the following constants:
128 */
129 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
130 #define L2_SIZE (1 << L2_LOG2)
131
132 struct l1_ttable;
133 struct l2_dtable;
134
135 /*
136 * Track cache/tlb occupancy using the following structure
137 */
138 union pmap_cache_state {
139 struct {
140 union {
141 u_int8_t csu_cache_b[2];
142 u_int16_t csu_cache;
143 } cs_cache_u;
144
145 union {
146 u_int8_t csu_tlb_b[2];
147 u_int16_t csu_tlb;
148 } cs_tlb_u;
149 } cs_s;
150 u_int32_t cs_all;
151 };
152 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
153 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
154 #define cs_cache cs_s.cs_cache_u.csu_cache
155 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
156 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
157 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
158
159 /*
160 * Assigned to cs_all to force cacheops to work for a particular pmap
161 */
162 #define PMAP_CACHE_STATE_ALL 0xffffffffu
163
164 /*
165 * The pmap structure itself
166 */
167 struct pmap {
168 u_int8_t pm_domain;
169 boolean_t pm_remove_all;
170 struct l1_ttable *pm_l1;
171 union pmap_cache_state pm_cstate;
172 struct uvm_object pm_obj;
173 #define pm_lock pm_obj.vmobjlock
174 struct l2_dtable *pm_l2[L2_SIZE];
175 struct pmap_statistics pm_stats;
176 LIST_ENTRY(pmap) pm_list;
177 };
178
179 #else /* !ARM32_PMAP_NEW */
180
181 /*
182 * The pmap structure itself.
183 */
184 struct pmap {
185 struct uvm_object pm_obj; /* uvm_object */
186 #define pm_lock pm_obj.vmobjlock
187 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
188 pd_entry_t *pm_pdir; /* KVA of page directory */
189 struct l1pt *pm_l1pt; /* L1 table metadata */
190 paddr_t pm_pptpt; /* PA of pt's page table */
191 vaddr_t pm_vptpt; /* VA of pt's page table */
192 struct pmap_statistics pm_stats; /* pmap statistics */
193 struct vm_page *pm_ptphint; /* recently used PT */
194 };
195 #endif /* ARM32_PMAP_NEW */
196
197 typedef struct pmap *pmap_t;
198
199 /*
200 * Physical / virtual address structure. In a number of places (particularly
201 * during bootstrapping) we need to keep track of the physical and virtual
202 * addresses of various pages
203 */
204 typedef struct pv_addr {
205 SLIST_ENTRY(pv_addr) pv_list;
206 paddr_t pv_pa;
207 vaddr_t pv_va;
208 } pv_addr_t;
209
210 /*
211 * Determine various modes for PTEs (user vs. kernel, cacheable
212 * vs. non-cacheable).
213 */
214 #define PTE_KERNEL 0
215 #define PTE_USER 1
216 #define PTE_NOCACHE 0
217 #define PTE_CACHE 1
218 #ifdef ARM32_PMAP_NEW
219 #define PTE_PAGETABLE 2
220 #endif
221
222 /*
223 * Flags that indicate attributes of pages or mappings of pages.
224 *
225 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
226 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
227 * pv_entry's for each page. They live in the same "namespace" so
228 * that we can clear multiple attributes at a time.
229 *
230 * Note the "non-cacheable" flag generally means the page has
231 * multiple mappings in a given address space.
232 */
233 #define PVF_MOD 0x01 /* page is modified */
234 #define PVF_REF 0x02 /* page is referenced */
235 #define PVF_WIRED 0x04 /* mapping is wired */
236 #define PVF_WRITE 0x08 /* mapping is writable */
237 #define PVF_EXEC 0x10 /* mapping is executable */
238 #ifndef ARM32_PMAP_NEW
239 #define PVF_NC 0x20 /* mapping is non-cacheable */
240 #else
241 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
242 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
243 #define PVF_NC (PVF_UNC|PVF_KNC)
244 #endif
245
246 /*
247 * Commonly referenced structures
248 */
249 extern struct pmap kernel_pmap_store;
250 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
251
252 /*
253 * Macros that we need to export
254 */
255 #define pmap_kernel() (&kernel_pmap_store)
256 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
257 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
258
259 #define pmap_is_modified(pg) \
260 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
261 #define pmap_is_referenced(pg) \
262 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
263
264 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
265
266 #ifndef ARM32_PMAP_NEW
267 /* ARGSUSED */
268 static __inline void
269 pmap_remove_all(struct pmap *pmap)
270 {
271 /* Nothing. */
272 }
273 #endif
274
275 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
276
277 /*
278 * Functions that we need to export
279 */
280 void pmap_procwr(struct proc *, vaddr_t, int);
281 #ifdef ARM32_PMAP_NEW
282 void pmap_remove_all(pmap_t);
283 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
284 #endif
285
286 #define PMAP_NEED_PROCWR
287 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
288
289 /* Functions we use internally. */
290 #ifndef ARM32_PMAP_NEW
291 /*
292 * Old pmap
293 */
294 void pmap_bootstrap(pd_entry_t *, pv_addr_t);
295 int pmap_handled_emulation(struct pmap *, vaddr_t);
296 int pmap_modified_emulation(struct pmap *, vaddr_t);
297 #else
298 /*
299 * New pmap
300 */
301 #ifdef ARM32_NEW_VM_LAYOUT
302 void pmap_bootstrap(pd_entry_t *, vaddr_t);
303 #else
304 void pmap_bootstrap(pd_entry_t *);
305 #endif
306
307 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t);
308 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
309 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
310 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
311 #endif /* ARM32_PMAP_NEW */
312
313 void pmap_debug(int);
314 void pmap_postinit(void);
315
316 void vector_page_setprot(int);
317
318 /* Bootstrapping routines. */
319 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
320 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
321 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
322 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
323
324 /*
325 * Special page zero routine for use by the idle loop (no cache cleans).
326 */
327 boolean_t pmap_pageidlezero(paddr_t);
328 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
329
330 /*
331 * The current top of kernel VM
332 */
333 extern vaddr_t pmap_curmaxkvaddr;
334
335 /*
336 * Useful macros and constants
337 */
338
339 #ifndef ARM32_PMAP_NEW
340 /*
341 * While the ARM MMU's L1 descriptors describe a 1M "section", each
342 * one pointing to a 1K L2 table, NetBSD's VM system allocates the
343 * page tables in 4K chunks, and thus we describe 4M "super sections".
344 *
345 * We'll lift terminology from another architecture and refer to this as
346 * the "page directory" size.
347 */
348 #define PD_SIZE (L1_S_SIZE * 4) /* 4M */
349 #define PD_OFFSET (PD_SIZE - 1)
350 #define PD_FRAME (~PD_OFFSET)
351 #define PD_SHIFT 22
352
353 /* Virtual address to page table entry */
354 #define vtopte(va) \
355 (((pt_entry_t *)PTE_BASE) + arm_btop((vaddr_t) (va)))
356
357 /* Virtual address to physical address */
358 #define vtophys(va) \
359 ((*vtopte(va) & L2_S_FRAME) | ((vaddr_t) (va) & L2_S_OFFSET))
360
361 #define PTE_SYNC(pte) \
362 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t))
363 #define PTE_FLUSH(pte) \
364 cpu_dcache_wbinv_range((vaddr_t)(pte), sizeof(pt_entry_t))
365
366 #define PTE_SYNC_RANGE(pte, cnt) \
367 cpu_dcache_wb_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
368 #define PTE_FLUSH_RANGE(pte, cnt) \
369 cpu_dcache_wbinv_range((vaddr_t)(pte), (cnt) << 2) /* * sizeof(...) */
370
371 #else /* ARM32_PMAP_NEW */
372
373 /* Virtual address to page table entry */
374 static __inline pt_entry_t *
375 vtopte(vaddr_t va)
376 {
377 pd_entry_t *pdep;
378 pt_entry_t *ptep;
379
380 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
381 return (NULL);
382 return (ptep);
383 }
384
385 /*
386 * Virtual address to physical address
387 */
388 static __inline paddr_t
389 vtophys(vaddr_t va)
390 {
391 paddr_t pa;
392
393 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
394 return (0); /* XXXSCW: Panic? */
395
396 return (pa);
397 }
398
399 /*
400 * The new pmap ensures that page-tables are always mapping Write-Thru.
401 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
402 * on every change.
403 *
404 * Unfortunately, not all CPUs have a write-through cache mode. So we
405 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
406 * and if there is the chance for PTE syncs to be needed, we define
407 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
408 * the code.
409 */
410 extern int pmap_needs_pte_sync;
411 #if defined(_KERNEL_OPT)
412 /*
413 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
414 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
415 * this at compile time.
416 */
417 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
418 #define PMAP_NEEDS_PTE_SYNC 1
419 #define PMAP_INCLUDE_PTE_SYNC
420 #elif (ARM_MMU_SA1 == 0)
421 #define PMAP_NEEDS_PTE_SYNC 0
422 #endif
423 #endif /* _KERNEL_OPT */
424
425 /*
426 * Provide a fallback in case we were not able to determine it at
427 * compile-time.
428 */
429 #ifndef PMAP_NEEDS_PTE_SYNC
430 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
431 #define PMAP_INCLUDE_PTE_SYNC
432 #endif
433
434 #define PTE_SYNC(pte) \
435 do { \
436 if (PMAP_NEEDS_PTE_SYNC) \
437 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
438 } while (/*CONSTCOND*/0)
439
440 #define PTE_SYNC_RANGE(pte, cnt) \
441 do { \
442 if (PMAP_NEEDS_PTE_SYNC) { \
443 cpu_dcache_wb_range((vaddr_t)(pte), \
444 (cnt) << 2); /* * sizeof(pt_entry_t) */ \
445 } \
446 } while (/*CONSTCOND*/0)
447 #endif /* ARM32_PMAP_NEW */
448
449 #define l1pte_valid(pde) ((pde) != 0)
450 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
451 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
452 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
453
454 #ifdef ARM32_PMAP_NEW
455 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
456 #endif
457 #define l2pte_valid(pte) ((pte) != 0)
458 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
459
460 /* L1 and L2 page table macros */
461 #ifndef ARM32_PMAP_NEW
462 #define pmap_pdei(v) ((v & L1_S_FRAME) >> L1_S_SHIFT)
463 #define pmap_pde(m, v) (&((m)->pm_pdir[pmap_pdei(v)]))
464 #endif
465
466 #define pmap_pde_v(pde) l1pte_valid(*(pde))
467 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
468 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
469 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
470
471 #define pmap_pte_v(pte) l2pte_valid(*(pte))
472 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
473
474 /* Size of the kernel part of the L1 page table */
475 #define KERNEL_PD_SIZE \
476 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
477
478 /************************* ARM MMU configuration *****************************/
479
480 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
481 void pmap_copy_page_generic(paddr_t, paddr_t);
482 void pmap_zero_page_generic(paddr_t);
483
484 void pmap_pte_init_generic(void);
485 #if defined(CPU_ARM8)
486 void pmap_pte_init_arm8(void);
487 #endif
488 #if defined(CPU_ARM9)
489 void pmap_pte_init_arm9(void);
490 #endif /* CPU_ARM9 */
491 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
492
493 #if ARM_MMU_SA1 == 1
494 void pmap_pte_init_sa1(void);
495 #endif /* ARM_MMU_SA1 == 1 */
496
497 #if ARM_MMU_XSCALE == 1
498 void pmap_copy_page_xscale(paddr_t, paddr_t);
499 void pmap_zero_page_xscale(paddr_t);
500
501 void pmap_pte_init_xscale(void);
502
503 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
504 #endif /* ARM_MMU_XSCALE == 1 */
505
506 extern pt_entry_t pte_l1_s_cache_mode;
507 extern pt_entry_t pte_l1_s_cache_mask;
508
509 extern pt_entry_t pte_l2_l_cache_mode;
510 extern pt_entry_t pte_l2_l_cache_mask;
511
512 extern pt_entry_t pte_l2_s_cache_mode;
513 extern pt_entry_t pte_l2_s_cache_mask;
514
515 #ifdef ARM32_PMAP_NEW
516 extern pt_entry_t pte_l1_s_cache_mode_pt;
517 extern pt_entry_t pte_l2_l_cache_mode_pt;
518 extern pt_entry_t pte_l2_s_cache_mode_pt;
519 #endif
520
521 extern pt_entry_t pte_l2_s_prot_u;
522 extern pt_entry_t pte_l2_s_prot_w;
523 extern pt_entry_t pte_l2_s_prot_mask;
524
525 extern pt_entry_t pte_l1_s_proto;
526 extern pt_entry_t pte_l1_c_proto;
527 extern pt_entry_t pte_l2_s_proto;
528
529 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
530 extern void (*pmap_zero_page_func)(paddr_t);
531
532 /*****************************************************************************/
533
534 /*
535 * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
536 */
537 #define PMAP_CACHE_VIVT
538
539 #ifdef ARM32_PMAP_NEW
540 /*
541 * Definitions for MMU domains
542 */
543 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
544 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
545 #endif
546
547 /*
548 * These macros define the various bit masks in the PTE.
549 *
550 * We use these macros since we use different bits on different processor
551 * models.
552 */
553 #define L1_S_PROT_U (L1_S_AP(AP_U))
554 #define L1_S_PROT_W (L1_S_AP(AP_W))
555 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
556
557 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
558 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
559
560 #define L2_L_PROT_U (L2_AP(AP_U))
561 #define L2_L_PROT_W (L2_AP(AP_W))
562 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
563
564 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
565 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
566
567 #define L2_S_PROT_U_generic (L2_AP(AP_U))
568 #define L2_S_PROT_W_generic (L2_AP(AP_W))
569 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
570
571 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
572 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
573 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
574
575 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
576 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
577
578 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
579 #define L1_S_PROTO_xscale (L1_TYPE_S)
580
581 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
582 #define L1_C_PROTO_xscale (L1_TYPE_C)
583
584 #define L2_L_PROTO (L2_TYPE_L)
585
586 #define L2_S_PROTO_generic (L2_TYPE_S)
587 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
588
589 /*
590 * User-visible names for the ones that vary with MMU class.
591 */
592
593 #if ARM_NMMUS > 1
594 /* More than one MMU class configured; use variables. */
595 #define L2_S_PROT_U pte_l2_s_prot_u
596 #define L2_S_PROT_W pte_l2_s_prot_w
597 #define L2_S_PROT_MASK pte_l2_s_prot_mask
598
599 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
600 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
601 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
602
603 #define L1_S_PROTO pte_l1_s_proto
604 #define L1_C_PROTO pte_l1_c_proto
605 #define L2_S_PROTO pte_l2_s_proto
606
607 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
608 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
609 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
610 #define L2_S_PROT_U L2_S_PROT_U_generic
611 #define L2_S_PROT_W L2_S_PROT_W_generic
612 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
613
614 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
615 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
616 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
617
618 #define L1_S_PROTO L1_S_PROTO_generic
619 #define L1_C_PROTO L1_C_PROTO_generic
620 #define L2_S_PROTO L2_S_PROTO_generic
621
622 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
623 #define pmap_zero_page(d) pmap_zero_page_generic((d))
624 #elif ARM_MMU_XSCALE == 1
625 #define L2_S_PROT_U L2_S_PROT_U_xscale
626 #define L2_S_PROT_W L2_S_PROT_W_xscale
627 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
628
629 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
630 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
631 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
632
633 #define L1_S_PROTO L1_S_PROTO_xscale
634 #define L1_C_PROTO L1_C_PROTO_xscale
635 #define L2_S_PROTO L2_S_PROTO_xscale
636
637 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
638 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
639 #endif /* ARM_NMMUS > 1 */
640
641 /*
642 * These macros return various bits based on kernel/user and protection.
643 * Note that the compiler will usually fold these at compile time.
644 */
645 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
646 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
647
648 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
649 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
650
651 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
652 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
653
654 /*
655 * Macros to test if a mapping is mappable with an L1 Section mapping
656 * or an L2 Large Page mapping.
657 */
658 #define L1_S_MAPPABLE_P(va, pa, size) \
659 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
660
661 #define L2_L_MAPPABLE_P(va, pa, size) \
662 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
663
664 /*
665 * Hooks for the pool allocator.
666 */
667 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
668
669 #endif /* _KERNEL */
670
671 #endif /* _ARM32_PMAP_H_ */
672