Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.72
      1 /*	$NetBSD: pmap.h,v 1.72 2003/05/21 18:04:43 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/cpufunc.h>
     75 #include <arm/arm32/pte.h>
     76 #include <uvm/uvm_object.h>
     77 
     78 /*
     79  * a pmap describes a processes' 4GB virtual address space.  this
     80  * virtual address space can be broken up into 4096 1MB regions which
     81  * are described by L1 PTEs in the L1 table.
     82  *
     83  * There is a line drawn at KERNEL_BASE.  Everything below that line
     84  * changes when the VM context is switched.  Everything above that line
     85  * is the same no matter which VM context is running.  This is achieved
     86  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     87  * kernel L2 tables.
     88  *
     89  * The basic layout of the virtual address space thus looks like this:
     90  *
     91  *	0xffffffff
     92  *	.
     93  *	.
     94  *	.
     95  *	KERNEL_BASE
     96  *	--------------------
     97  *	.
     98  *	.
     99  *	.
    100  *	0x00000000
    101  */
    102 
    103 /*
    104  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    105  * A bucket size of 16 provides for 16MB of contiguous virtual address
    106  * space per l2_dtable. Most processes will, therefore, require only two or
    107  * three of these to map their whole working set.
    108  */
    109 #define	L2_BUCKET_LOG2	4
    110 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    111 
    112 /*
    113  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    114  * of l2_dtable structures required to track all possible page descriptors
    115  * mappable by an L1 translation table is given by the following constants:
    116  */
    117 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    118 #define	L2_SIZE		(1 << L2_LOG2)
    119 
    120 struct l1_ttable;
    121 struct l2_dtable;
    122 
    123 /*
    124  * Track cache/tlb occupancy using the following structure
    125  */
    126 union pmap_cache_state {
    127 	struct {
    128 		union {
    129 			u_int8_t csu_cache_b[2];
    130 			u_int16_t csu_cache;
    131 		} cs_cache_u;
    132 
    133 		union {
    134 			u_int8_t csu_tlb_b[2];
    135 			u_int16_t csu_tlb;
    136 		} cs_tlb_u;
    137 	} cs_s;
    138 	u_int32_t cs_all;
    139 };
    140 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    141 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    142 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    143 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    144 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    145 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    146 
    147 /*
    148  * Assigned to cs_all to force cacheops to work for a particular pmap
    149  */
    150 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    151 
    152 /*
    153  * The pmap structure itself
    154  */
    155 struct pmap {
    156 	u_int8_t		pm_domain;
    157 	boolean_t		pm_remove_all;
    158 	struct l1_ttable	*pm_l1;
    159 	union pmap_cache_state	pm_cstate;
    160 	struct uvm_object	pm_obj;
    161 #define	pm_lock pm_obj.vmobjlock
    162 	struct l2_dtable	*pm_l2[L2_SIZE];
    163 	struct pmap_statistics	pm_stats;
    164 	LIST_ENTRY(pmap)	pm_list;
    165 };
    166 
    167 typedef struct pmap *pmap_t;
    168 
    169 /*
    170  * Physical / virtual address structure. In a number of places (particularly
    171  * during bootstrapping) we need to keep track of the physical and virtual
    172  * addresses of various pages
    173  */
    174 typedef struct pv_addr {
    175 	SLIST_ENTRY(pv_addr) pv_list;
    176 	paddr_t pv_pa;
    177 	vaddr_t pv_va;
    178 } pv_addr_t;
    179 
    180 /*
    181  * Determine various modes for PTEs (user vs. kernel, cacheable
    182  * vs. non-cacheable).
    183  */
    184 #define	PTE_KERNEL	0
    185 #define	PTE_USER	1
    186 #define	PTE_NOCACHE	0
    187 #define	PTE_CACHE	1
    188 #define	PTE_PAGETABLE	2
    189 
    190 /*
    191  * Flags that indicate attributes of pages or mappings of pages.
    192  *
    193  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    194  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    195  * pv_entry's for each page.  They live in the same "namespace" so
    196  * that we can clear multiple attributes at a time.
    197  *
    198  * Note the "non-cacheable" flag generally means the page has
    199  * multiple mappings in a given address space.
    200  */
    201 #define	PVF_MOD		0x01		/* page is modified */
    202 #define	PVF_REF		0x02		/* page is referenced */
    203 #define	PVF_WIRED	0x04		/* mapping is wired */
    204 #define	PVF_WRITE	0x08		/* mapping is writable */
    205 #define	PVF_EXEC	0x10		/* mapping is executable */
    206 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    207 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    208 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    209 
    210 /*
    211  * Commonly referenced structures
    212  */
    213 extern struct pmap	kernel_pmap_store;
    214 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    215 
    216 /*
    217  * Macros that we need to export
    218  */
    219 #define pmap_kernel()			(&kernel_pmap_store)
    220 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    221 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    222 
    223 #define	pmap_is_modified(pg)	\
    224 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    225 #define	pmap_is_referenced(pg)	\
    226 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    227 
    228 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    229 
    230 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    231 
    232 /*
    233  * Functions that we need to export
    234  */
    235 void	pmap_procwr(struct proc *, vaddr_t, int);
    236 void	pmap_remove_all(pmap_t);
    237 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
    238 
    239 #define	PMAP_NEED_PROCWR
    240 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    241 
    242 /* Functions we use internally. */
    243 void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
    244 
    245 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    246 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    247 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    248 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    249 
    250 void	pmap_debug(int);
    251 void	pmap_postinit(void);
    252 
    253 void	vector_page_setprot(int);
    254 
    255 /* Bootstrapping routines. */
    256 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    257 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    258 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    259 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    260 
    261 /*
    262  * Special page zero routine for use by the idle loop (no cache cleans).
    263  */
    264 boolean_t	pmap_pageidlezero(paddr_t);
    265 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    266 
    267 /*
    268  * The current top of kernel VM
    269  */
    270 extern vaddr_t	pmap_curmaxkvaddr;
    271 
    272 /*
    273  * Useful macros and constants
    274  */
    275 
    276 /* Virtual address to page table entry */
    277 static __inline pt_entry_t *
    278 vtopte(vaddr_t va)
    279 {
    280 	pd_entry_t *pdep;
    281 	pt_entry_t *ptep;
    282 
    283 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
    284 		return (NULL);
    285 	return (ptep);
    286 }
    287 
    288 /*
    289  * Virtual address to physical address
    290  */
    291 static __inline paddr_t
    292 vtophys(vaddr_t va)
    293 {
    294 	paddr_t pa;
    295 
    296 	if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    297 		return (0);	/* XXXSCW: Panic? */
    298 
    299 	return (pa);
    300 }
    301 
    302 /*
    303  * The new pmap ensures that page-tables are always mapping Write-Thru.
    304  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    305  * on every change.
    306  *
    307  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    308  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    309  * and if there is the chance for PTE syncs to be needed, we define
    310  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    311  * the code.
    312  */
    313 extern int pmap_needs_pte_sync;
    314 #if defined(_KERNEL_OPT)
    315 /*
    316  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    317  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    318  * this at compile time.
    319  */
    320 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
    321 #define	PMAP_NEEDS_PTE_SYNC	1
    322 #define	PMAP_INCLUDE_PTE_SYNC
    323 #elif (ARM_MMU_SA1 == 0)
    324 #define	PMAP_NEEDS_PTE_SYNC	0
    325 #endif
    326 #endif /* _KERNEL_OPT */
    327 
    328 /*
    329  * Provide a fallback in case we were not able to determine it at
    330  * compile-time.
    331  */
    332 #ifndef PMAP_NEEDS_PTE_SYNC
    333 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    334 #define	PMAP_INCLUDE_PTE_SYNC
    335 #endif
    336 
    337 #define	PTE_SYNC(pte)							\
    338 do {									\
    339 	if (PMAP_NEEDS_PTE_SYNC)					\
    340 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
    341 } while (/*CONSTCOND*/0)
    342 
    343 #define	PTE_SYNC_RANGE(pte, cnt)					\
    344 do {									\
    345 	if (PMAP_NEEDS_PTE_SYNC) {					\
    346 		cpu_dcache_wb_range((vaddr_t)(pte),			\
    347 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
    348 	}								\
    349 } while (/*CONSTCOND*/0)
    350 
    351 #define	l1pte_valid(pde)	((pde) != 0)
    352 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    353 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    354 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    355 
    356 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    357 #define	l2pte_valid(pte)	((pte) != 0)
    358 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    359 
    360 /* L1 and L2 page table macros */
    361 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    362 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    363 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    364 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    365 
    366 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    367 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    368 
    369 /* Size of the kernel part of the L1 page table */
    370 #define KERNEL_PD_SIZE	\
    371 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    372 
    373 /************************* ARM MMU configuration *****************************/
    374 
    375 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    376 void	pmap_copy_page_generic(paddr_t, paddr_t);
    377 void	pmap_zero_page_generic(paddr_t);
    378 
    379 void	pmap_pte_init_generic(void);
    380 #if defined(CPU_ARM8)
    381 void	pmap_pte_init_arm8(void);
    382 #endif
    383 #if defined(CPU_ARM9)
    384 void	pmap_pte_init_arm9(void);
    385 #endif /* CPU_ARM9 */
    386 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    387 
    388 #if ARM_MMU_SA1 == 1
    389 void	pmap_pte_init_sa1(void);
    390 #endif /* ARM_MMU_SA1 == 1 */
    391 
    392 #if ARM_MMU_XSCALE == 1
    393 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    394 void	pmap_zero_page_xscale(paddr_t);
    395 
    396 void	pmap_pte_init_xscale(void);
    397 
    398 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    399 #endif /* ARM_MMU_XSCALE == 1 */
    400 
    401 extern pt_entry_t		pte_l1_s_cache_mode;
    402 extern pt_entry_t		pte_l1_s_cache_mask;
    403 
    404 extern pt_entry_t		pte_l2_l_cache_mode;
    405 extern pt_entry_t		pte_l2_l_cache_mask;
    406 
    407 extern pt_entry_t		pte_l2_s_cache_mode;
    408 extern pt_entry_t		pte_l2_s_cache_mask;
    409 
    410 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    411 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    412 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    413 
    414 extern pt_entry_t		pte_l2_s_prot_u;
    415 extern pt_entry_t		pte_l2_s_prot_w;
    416 extern pt_entry_t		pte_l2_s_prot_mask;
    417 
    418 extern pt_entry_t		pte_l1_s_proto;
    419 extern pt_entry_t		pte_l1_c_proto;
    420 extern pt_entry_t		pte_l2_s_proto;
    421 
    422 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    423 extern void (*pmap_zero_page_func)(paddr_t);
    424 
    425 /*****************************************************************************/
    426 
    427 /*
    428  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    429  */
    430 #define PMAP_CACHE_VIVT
    431 
    432 /*
    433  * Definitions for MMU domains
    434  */
    435 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
    436 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
    437 
    438 /*
    439  * These macros define the various bit masks in the PTE.
    440  *
    441  * We use these macros since we use different bits on different processor
    442  * models.
    443  */
    444 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    445 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    446 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    447 
    448 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    449 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    450 
    451 #define	L2_L_PROT_U		(L2_AP(AP_U))
    452 #define	L2_L_PROT_W		(L2_AP(AP_W))
    453 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    454 
    455 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    456 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    457 
    458 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    459 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    460 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    461 
    462 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    463 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    464 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    465 
    466 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    467 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    468 
    469 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    470 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    471 
    472 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    473 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    474 
    475 #define	L2_L_PROTO		(L2_TYPE_L)
    476 
    477 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    478 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    479 
    480 /*
    481  * User-visible names for the ones that vary with MMU class.
    482  */
    483 
    484 #if ARM_NMMUS > 1
    485 /* More than one MMU class configured; use variables. */
    486 #define	L2_S_PROT_U		pte_l2_s_prot_u
    487 #define	L2_S_PROT_W		pte_l2_s_prot_w
    488 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    489 
    490 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    491 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    492 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    493 
    494 #define	L1_S_PROTO		pte_l1_s_proto
    495 #define	L1_C_PROTO		pte_l1_c_proto
    496 #define	L2_S_PROTO		pte_l2_s_proto
    497 
    498 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    499 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    500 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    501 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    502 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    503 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    504 
    505 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    506 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    507 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    508 
    509 #define	L1_S_PROTO		L1_S_PROTO_generic
    510 #define	L1_C_PROTO		L1_C_PROTO_generic
    511 #define	L2_S_PROTO		L2_S_PROTO_generic
    512 
    513 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    514 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    515 #elif ARM_MMU_XSCALE == 1
    516 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    517 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    518 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    519 
    520 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    521 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    522 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    523 
    524 #define	L1_S_PROTO		L1_S_PROTO_xscale
    525 #define	L1_C_PROTO		L1_C_PROTO_xscale
    526 #define	L2_S_PROTO		L2_S_PROTO_xscale
    527 
    528 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    529 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    530 #endif /* ARM_NMMUS > 1 */
    531 
    532 /*
    533  * These macros return various bits based on kernel/user and protection.
    534  * Note that the compiler will usually fold these at compile time.
    535  */
    536 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    537 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    538 
    539 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    540 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    541 
    542 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    543 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    544 
    545 /*
    546  * Macros to test if a mapping is mappable with an L1 Section mapping
    547  * or an L2 Large Page mapping.
    548  */
    549 #define	L1_S_MAPPABLE_P(va, pa, size)					\
    550 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    551 
    552 #define	L2_L_MAPPABLE_P(va, pa, size)					\
    553 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    554 
    555 /*
    556  * Hooks for the pool allocator.
    557  */
    558 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    559 
    560 #endif /* _KERNEL */
    561 
    562 #endif	/* _ARM32_PMAP_H_ */
    563