Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.74
      1 /*	$NetBSD: pmap.h,v 1.74 2003/06/15 18:18:17 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/cpufunc.h>
     75 #include <arm/arm32/pte.h>
     76 #include <uvm/uvm_object.h>
     77 
     78 /*
     79  * a pmap describes a processes' 4GB virtual address space.  this
     80  * virtual address space can be broken up into 4096 1MB regions which
     81  * are described by L1 PTEs in the L1 table.
     82  *
     83  * There is a line drawn at KERNEL_BASE.  Everything below that line
     84  * changes when the VM context is switched.  Everything above that line
     85  * is the same no matter which VM context is running.  This is achieved
     86  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     87  * kernel L2 tables.
     88  *
     89  * The basic layout of the virtual address space thus looks like this:
     90  *
     91  *	0xffffffff
     92  *	.
     93  *	.
     94  *	.
     95  *	KERNEL_BASE
     96  *	--------------------
     97  *	.
     98  *	.
     99  *	.
    100  *	0x00000000
    101  */
    102 
    103 /*
    104  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    105  * A bucket size of 16 provides for 16MB of contiguous virtual address
    106  * space per l2_dtable. Most processes will, therefore, require only two or
    107  * three of these to map their whole working set.
    108  */
    109 #define	L2_BUCKET_LOG2	4
    110 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    111 
    112 /*
    113  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    114  * of l2_dtable structures required to track all possible page descriptors
    115  * mappable by an L1 translation table is given by the following constants:
    116  */
    117 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    118 #define	L2_SIZE		(1 << L2_LOG2)
    119 
    120 struct l1_ttable;
    121 struct l2_dtable;
    122 
    123 /*
    124  * Track cache/tlb occupancy using the following structure
    125  */
    126 union pmap_cache_state {
    127 	struct {
    128 		union {
    129 			u_int8_t csu_cache_b[2];
    130 			u_int16_t csu_cache;
    131 		} cs_cache_u;
    132 
    133 		union {
    134 			u_int8_t csu_tlb_b[2];
    135 			u_int16_t csu_tlb;
    136 		} cs_tlb_u;
    137 	} cs_s;
    138 	u_int32_t cs_all;
    139 };
    140 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    141 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    142 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    143 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    144 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    145 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    146 
    147 /*
    148  * Assigned to cs_all to force cacheops to work for a particular pmap
    149  */
    150 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    151 
    152 /*
    153  * This structure is used by machine-dependent code to describe
    154  * static mappings of devices, created at bootstrap time.
    155  */
    156 struct pmap_devmap {
    157 	vaddr_t		pd_va;		/* virtual address */
    158 	paddr_t		pd_pa;		/* physical address */
    159 	psize_t		pd_size;	/* size of region */
    160 	vm_prot_t	pd_prot;	/* protection code */
    161 	int		pd_cache;	/* cache attributes */
    162 };
    163 
    164 /*
    165  * The pmap structure itself
    166  */
    167 struct pmap {
    168 	u_int8_t		pm_domain;
    169 	boolean_t		pm_remove_all;
    170 	struct l1_ttable	*pm_l1;
    171 	union pmap_cache_state	pm_cstate;
    172 	struct uvm_object	pm_obj;
    173 #define	pm_lock pm_obj.vmobjlock
    174 	struct l2_dtable	*pm_l2[L2_SIZE];
    175 	struct pmap_statistics	pm_stats;
    176 	LIST_ENTRY(pmap)	pm_list;
    177 };
    178 
    179 typedef struct pmap *pmap_t;
    180 
    181 /*
    182  * Physical / virtual address structure. In a number of places (particularly
    183  * during bootstrapping) we need to keep track of the physical and virtual
    184  * addresses of various pages
    185  */
    186 typedef struct pv_addr {
    187 	SLIST_ENTRY(pv_addr) pv_list;
    188 	paddr_t pv_pa;
    189 	vaddr_t pv_va;
    190 } pv_addr_t;
    191 
    192 /*
    193  * Determine various modes for PTEs (user vs. kernel, cacheable
    194  * vs. non-cacheable).
    195  */
    196 #define	PTE_KERNEL	0
    197 #define	PTE_USER	1
    198 #define	PTE_NOCACHE	0
    199 #define	PTE_CACHE	1
    200 #define	PTE_PAGETABLE	2
    201 
    202 /*
    203  * Flags that indicate attributes of pages or mappings of pages.
    204  *
    205  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    206  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    207  * pv_entry's for each page.  They live in the same "namespace" so
    208  * that we can clear multiple attributes at a time.
    209  *
    210  * Note the "non-cacheable" flag generally means the page has
    211  * multiple mappings in a given address space.
    212  */
    213 #define	PVF_MOD		0x01		/* page is modified */
    214 #define	PVF_REF		0x02		/* page is referenced */
    215 #define	PVF_WIRED	0x04		/* mapping is wired */
    216 #define	PVF_WRITE	0x08		/* mapping is writable */
    217 #define	PVF_EXEC	0x10		/* mapping is executable */
    218 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    219 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    220 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    221 
    222 /*
    223  * Commonly referenced structures
    224  */
    225 extern struct pmap	kernel_pmap_store;
    226 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    227 
    228 /*
    229  * Macros that we need to export
    230  */
    231 #define pmap_kernel()			(&kernel_pmap_store)
    232 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    233 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    234 
    235 #define	pmap_is_modified(pg)	\
    236 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    237 #define	pmap_is_referenced(pg)	\
    238 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    239 
    240 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    241 
    242 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    243 
    244 /*
    245  * Functions that we need to export
    246  */
    247 void	pmap_procwr(struct proc *, vaddr_t, int);
    248 void	pmap_remove_all(pmap_t);
    249 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
    250 
    251 #define	PMAP_NEED_PROCWR
    252 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    253 
    254 /* Functions we use internally. */
    255 void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
    256 
    257 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    258 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    259 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    260 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    261 
    262 void	pmap_debug(int);
    263 void	pmap_postinit(void);
    264 
    265 void	vector_page_setprot(int);
    266 
    267 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    268 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    269 
    270 /* Bootstrapping routines. */
    271 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    272 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    273 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    274 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    275 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    276 void	pmap_devmap_register(const struct pmap_devmap *);
    277 
    278 /*
    279  * Special page zero routine for use by the idle loop (no cache cleans).
    280  */
    281 boolean_t	pmap_pageidlezero(paddr_t);
    282 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    283 
    284 /*
    285  * The current top of kernel VM
    286  */
    287 extern vaddr_t	pmap_curmaxkvaddr;
    288 
    289 /*
    290  * Useful macros and constants
    291  */
    292 
    293 /* Virtual address to page table entry */
    294 static __inline pt_entry_t *
    295 vtopte(vaddr_t va)
    296 {
    297 	pd_entry_t *pdep;
    298 	pt_entry_t *ptep;
    299 
    300 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
    301 		return (NULL);
    302 	return (ptep);
    303 }
    304 
    305 /*
    306  * Virtual address to physical address
    307  */
    308 static __inline paddr_t
    309 vtophys(vaddr_t va)
    310 {
    311 	paddr_t pa;
    312 
    313 	if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    314 		return (0);	/* XXXSCW: Panic? */
    315 
    316 	return (pa);
    317 }
    318 
    319 /*
    320  * The new pmap ensures that page-tables are always mapping Write-Thru.
    321  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    322  * on every change.
    323  *
    324  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    325  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    326  * and if there is the chance for PTE syncs to be needed, we define
    327  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    328  * the code.
    329  */
    330 extern int pmap_needs_pte_sync;
    331 #if defined(_KERNEL_OPT)
    332 /*
    333  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    334  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    335  * this at compile time.
    336  */
    337 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
    338 #define	PMAP_NEEDS_PTE_SYNC	1
    339 #define	PMAP_INCLUDE_PTE_SYNC
    340 #elif (ARM_MMU_SA1 == 0)
    341 #define	PMAP_NEEDS_PTE_SYNC	0
    342 #endif
    343 #endif /* _KERNEL_OPT */
    344 
    345 /*
    346  * Provide a fallback in case we were not able to determine it at
    347  * compile-time.
    348  */
    349 #ifndef PMAP_NEEDS_PTE_SYNC
    350 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    351 #define	PMAP_INCLUDE_PTE_SYNC
    352 #endif
    353 
    354 #define	PTE_SYNC(pte)							\
    355 do {									\
    356 	if (PMAP_NEEDS_PTE_SYNC)					\
    357 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
    358 } while (/*CONSTCOND*/0)
    359 
    360 #define	PTE_SYNC_RANGE(pte, cnt)					\
    361 do {									\
    362 	if (PMAP_NEEDS_PTE_SYNC) {					\
    363 		cpu_dcache_wb_range((vaddr_t)(pte),			\
    364 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
    365 	}								\
    366 } while (/*CONSTCOND*/0)
    367 
    368 #define	l1pte_valid(pde)	((pde) != 0)
    369 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    370 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    371 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    372 
    373 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    374 #define	l2pte_valid(pte)	((pte) != 0)
    375 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    376 
    377 /* L1 and L2 page table macros */
    378 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    379 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    380 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    381 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    382 
    383 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    384 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    385 
    386 /* Size of the kernel part of the L1 page table */
    387 #define KERNEL_PD_SIZE	\
    388 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    389 
    390 /************************* ARM MMU configuration *****************************/
    391 
    392 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    393 void	pmap_copy_page_generic(paddr_t, paddr_t);
    394 void	pmap_zero_page_generic(paddr_t);
    395 
    396 void	pmap_pte_init_generic(void);
    397 #if defined(CPU_ARM8)
    398 void	pmap_pte_init_arm8(void);
    399 #endif
    400 #if defined(CPU_ARM9)
    401 void	pmap_pte_init_arm9(void);
    402 #endif /* CPU_ARM9 */
    403 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    404 
    405 #if ARM_MMU_SA1 == 1
    406 void	pmap_pte_init_sa1(void);
    407 #endif /* ARM_MMU_SA1 == 1 */
    408 
    409 #if ARM_MMU_XSCALE == 1
    410 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    411 void	pmap_zero_page_xscale(paddr_t);
    412 
    413 void	pmap_pte_init_xscale(void);
    414 
    415 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    416 #endif /* ARM_MMU_XSCALE == 1 */
    417 
    418 extern pt_entry_t		pte_l1_s_cache_mode;
    419 extern pt_entry_t		pte_l1_s_cache_mask;
    420 
    421 extern pt_entry_t		pte_l2_l_cache_mode;
    422 extern pt_entry_t		pte_l2_l_cache_mask;
    423 
    424 extern pt_entry_t		pte_l2_s_cache_mode;
    425 extern pt_entry_t		pte_l2_s_cache_mask;
    426 
    427 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    428 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    429 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    430 
    431 extern pt_entry_t		pte_l2_s_prot_u;
    432 extern pt_entry_t		pte_l2_s_prot_w;
    433 extern pt_entry_t		pte_l2_s_prot_mask;
    434 
    435 extern pt_entry_t		pte_l1_s_proto;
    436 extern pt_entry_t		pte_l1_c_proto;
    437 extern pt_entry_t		pte_l2_s_proto;
    438 
    439 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    440 extern void (*pmap_zero_page_func)(paddr_t);
    441 
    442 /*****************************************************************************/
    443 
    444 /*
    445  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    446  */
    447 #define PMAP_CACHE_VIVT
    448 
    449 /*
    450  * Definitions for MMU domains
    451  */
    452 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
    453 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
    454 
    455 /*
    456  * These macros define the various bit masks in the PTE.
    457  *
    458  * We use these macros since we use different bits on different processor
    459  * models.
    460  */
    461 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    462 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    463 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    464 
    465 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    466 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    467 
    468 #define	L2_L_PROT_U		(L2_AP(AP_U))
    469 #define	L2_L_PROT_W		(L2_AP(AP_W))
    470 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    471 
    472 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    473 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    474 
    475 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    476 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    477 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    478 
    479 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    480 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    481 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    482 
    483 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    484 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    485 
    486 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    487 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    488 
    489 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    490 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    491 
    492 #define	L2_L_PROTO		(L2_TYPE_L)
    493 
    494 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    495 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    496 
    497 /*
    498  * User-visible names for the ones that vary with MMU class.
    499  */
    500 
    501 #if ARM_NMMUS > 1
    502 /* More than one MMU class configured; use variables. */
    503 #define	L2_S_PROT_U		pte_l2_s_prot_u
    504 #define	L2_S_PROT_W		pte_l2_s_prot_w
    505 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    506 
    507 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    508 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    509 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    510 
    511 #define	L1_S_PROTO		pte_l1_s_proto
    512 #define	L1_C_PROTO		pte_l1_c_proto
    513 #define	L2_S_PROTO		pte_l2_s_proto
    514 
    515 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    516 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    517 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    518 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    519 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    520 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    521 
    522 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    523 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    524 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    525 
    526 #define	L1_S_PROTO		L1_S_PROTO_generic
    527 #define	L1_C_PROTO		L1_C_PROTO_generic
    528 #define	L2_S_PROTO		L2_S_PROTO_generic
    529 
    530 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    531 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    532 #elif ARM_MMU_XSCALE == 1
    533 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    534 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    535 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    536 
    537 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    538 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    539 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    540 
    541 #define	L1_S_PROTO		L1_S_PROTO_xscale
    542 #define	L1_C_PROTO		L1_C_PROTO_xscale
    543 #define	L2_S_PROTO		L2_S_PROTO_xscale
    544 
    545 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    546 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    547 #endif /* ARM_NMMUS > 1 */
    548 
    549 /*
    550  * These macros return various bits based on kernel/user and protection.
    551  * Note that the compiler will usually fold these at compile time.
    552  */
    553 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    554 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    555 
    556 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    557 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    558 
    559 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    560 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    561 
    562 /*
    563  * Macros to test if a mapping is mappable with an L1 Section mapping
    564  * or an L2 Large Page mapping.
    565  */
    566 #define	L1_S_MAPPABLE_P(va, pa, size)					\
    567 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    568 
    569 #define	L2_L_MAPPABLE_P(va, pa, size)					\
    570 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    571 
    572 /*
    573  * Hooks for the pool allocator.
    574  */
    575 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    576 
    577 #endif /* _KERNEL */
    578 
    579 #endif	/* _ARM32_PMAP_H_ */
    580