pmap.h revision 1.75 1 /* $NetBSD: pmap.h,v 1.75 2003/06/18 02:58:09 bsh Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #include <arm/cpufunc.h>
77 #include <uvm/uvm_object.h>
78 #endif
79
80 /*
81 * a pmap describes a processes' 4GB virtual address space. this
82 * virtual address space can be broken up into 4096 1MB regions which
83 * are described by L1 PTEs in the L1 table.
84 *
85 * There is a line drawn at KERNEL_BASE. Everything below that line
86 * changes when the VM context is switched. Everything above that line
87 * is the same no matter which VM context is running. This is achieved
88 * by making the L1 PTEs for those slots above KERNEL_BASE reference
89 * kernel L2 tables.
90 *
91 * The basic layout of the virtual address space thus looks like this:
92 *
93 * 0xffffffff
94 * .
95 * .
96 * .
97 * KERNEL_BASE
98 * --------------------
99 * .
100 * .
101 * .
102 * 0x00000000
103 */
104
105 /*
106 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
107 * A bucket size of 16 provides for 16MB of contiguous virtual address
108 * space per l2_dtable. Most processes will, therefore, require only two or
109 * three of these to map their whole working set.
110 */
111 #define L2_BUCKET_LOG2 4
112 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
113
114 /*
115 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
116 * of l2_dtable structures required to track all possible page descriptors
117 * mappable by an L1 translation table is given by the following constants:
118 */
119 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
120 #define L2_SIZE (1 << L2_LOG2)
121
122 #ifndef _LOCORE
123
124 struct l1_ttable;
125 struct l2_dtable;
126
127 /*
128 * Track cache/tlb occupancy using the following structure
129 */
130 union pmap_cache_state {
131 struct {
132 union {
133 u_int8_t csu_cache_b[2];
134 u_int16_t csu_cache;
135 } cs_cache_u;
136
137 union {
138 u_int8_t csu_tlb_b[2];
139 u_int16_t csu_tlb;
140 } cs_tlb_u;
141 } cs_s;
142 u_int32_t cs_all;
143 };
144 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
145 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
146 #define cs_cache cs_s.cs_cache_u.csu_cache
147 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
148 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
149 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
150
151 /*
152 * Assigned to cs_all to force cacheops to work for a particular pmap
153 */
154 #define PMAP_CACHE_STATE_ALL 0xffffffffu
155
156 /*
157 * This structure is used by machine-dependent code to describe
158 * static mappings of devices, created at bootstrap time.
159 */
160 struct pmap_devmap {
161 vaddr_t pd_va; /* virtual address */
162 paddr_t pd_pa; /* physical address */
163 psize_t pd_size; /* size of region */
164 vm_prot_t pd_prot; /* protection code */
165 int pd_cache; /* cache attributes */
166 };
167
168 /*
169 * The pmap structure itself
170 */
171 struct pmap {
172 u_int8_t pm_domain;
173 boolean_t pm_remove_all;
174 struct l1_ttable *pm_l1;
175 union pmap_cache_state pm_cstate;
176 struct uvm_object pm_obj;
177 #define pm_lock pm_obj.vmobjlock
178 struct l2_dtable *pm_l2[L2_SIZE];
179 struct pmap_statistics pm_stats;
180 LIST_ENTRY(pmap) pm_list;
181 };
182
183 typedef struct pmap *pmap_t;
184
185 /*
186 * Physical / virtual address structure. In a number of places (particularly
187 * during bootstrapping) we need to keep track of the physical and virtual
188 * addresses of various pages
189 */
190 typedef struct pv_addr {
191 SLIST_ENTRY(pv_addr) pv_list;
192 paddr_t pv_pa;
193 vaddr_t pv_va;
194 } pv_addr_t;
195
196 /*
197 * Determine various modes for PTEs (user vs. kernel, cacheable
198 * vs. non-cacheable).
199 */
200 #define PTE_KERNEL 0
201 #define PTE_USER 1
202 #define PTE_NOCACHE 0
203 #define PTE_CACHE 1
204 #define PTE_PAGETABLE 2
205
206 /*
207 * Flags that indicate attributes of pages or mappings of pages.
208 *
209 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
210 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
211 * pv_entry's for each page. They live in the same "namespace" so
212 * that we can clear multiple attributes at a time.
213 *
214 * Note the "non-cacheable" flag generally means the page has
215 * multiple mappings in a given address space.
216 */
217 #define PVF_MOD 0x01 /* page is modified */
218 #define PVF_REF 0x02 /* page is referenced */
219 #define PVF_WIRED 0x04 /* mapping is wired */
220 #define PVF_WRITE 0x08 /* mapping is writable */
221 #define PVF_EXEC 0x10 /* mapping is executable */
222 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
223 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
224 #define PVF_NC (PVF_UNC|PVF_KNC)
225
226 /*
227 * Commonly referenced structures
228 */
229 extern struct pmap kernel_pmap_store;
230 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
231
232 /*
233 * Macros that we need to export
234 */
235 #define pmap_kernel() (&kernel_pmap_store)
236 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
237 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
238
239 #define pmap_is_modified(pg) \
240 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
241 #define pmap_is_referenced(pg) \
242 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
243
244 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
245
246 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
247
248 /*
249 * Functions that we need to export
250 */
251 void pmap_procwr(struct proc *, vaddr_t, int);
252 void pmap_remove_all(pmap_t);
253 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
254
255 #define PMAP_NEED_PROCWR
256 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
257
258 /* Functions we use internally. */
259 void pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
260
261 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
262 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
263 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
264 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
265
266 void pmap_debug(int);
267 void pmap_postinit(void);
268
269 void vector_page_setprot(int);
270
271 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
272 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
273
274 /* Bootstrapping routines. */
275 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
276 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
277 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
278 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
279 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
280 void pmap_devmap_register(const struct pmap_devmap *);
281
282 /*
283 * Special page zero routine for use by the idle loop (no cache cleans).
284 */
285 boolean_t pmap_pageidlezero(paddr_t);
286 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
287
288 /*
289 * The current top of kernel VM
290 */
291 extern vaddr_t pmap_curmaxkvaddr;
292
293 /*
294 * Useful macros and constants
295 */
296
297 /* Virtual address to page table entry */
298 static __inline pt_entry_t *
299 vtopte(vaddr_t va)
300 {
301 pd_entry_t *pdep;
302 pt_entry_t *ptep;
303
304 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
305 return (NULL);
306 return (ptep);
307 }
308
309 /*
310 * Virtual address to physical address
311 */
312 static __inline paddr_t
313 vtophys(vaddr_t va)
314 {
315 paddr_t pa;
316
317 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
318 return (0); /* XXXSCW: Panic? */
319
320 return (pa);
321 }
322
323 /*
324 * The new pmap ensures that page-tables are always mapping Write-Thru.
325 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
326 * on every change.
327 *
328 * Unfortunately, not all CPUs have a write-through cache mode. So we
329 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
330 * and if there is the chance for PTE syncs to be needed, we define
331 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
332 * the code.
333 */
334 extern int pmap_needs_pte_sync;
335 #if defined(_KERNEL_OPT)
336 /*
337 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
338 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
339 * this at compile time.
340 */
341 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
342 #define PMAP_NEEDS_PTE_SYNC 1
343 #define PMAP_INCLUDE_PTE_SYNC
344 #elif (ARM_MMU_SA1 == 0)
345 #define PMAP_NEEDS_PTE_SYNC 0
346 #endif
347 #endif /* _KERNEL_OPT */
348
349 /*
350 * Provide a fallback in case we were not able to determine it at
351 * compile-time.
352 */
353 #ifndef PMAP_NEEDS_PTE_SYNC
354 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
355 #define PMAP_INCLUDE_PTE_SYNC
356 #endif
357
358 #define PTE_SYNC(pte) \
359 do { \
360 if (PMAP_NEEDS_PTE_SYNC) \
361 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
362 } while (/*CONSTCOND*/0)
363
364 #define PTE_SYNC_RANGE(pte, cnt) \
365 do { \
366 if (PMAP_NEEDS_PTE_SYNC) { \
367 cpu_dcache_wb_range((vaddr_t)(pte), \
368 (cnt) << 2); /* * sizeof(pt_entry_t) */ \
369 } \
370 } while (/*CONSTCOND*/0)
371
372 #define l1pte_valid(pde) ((pde) != 0)
373 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
374 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
375 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
376
377 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
378 #define l2pte_valid(pte) ((pte) != 0)
379 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
380
381 /* L1 and L2 page table macros */
382 #define pmap_pde_v(pde) l1pte_valid(*(pde))
383 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
384 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
385 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
386
387 #define pmap_pte_v(pte) l2pte_valid(*(pte))
388 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
389
390 /* Size of the kernel part of the L1 page table */
391 #define KERNEL_PD_SIZE \
392 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
393
394 /************************* ARM MMU configuration *****************************/
395
396 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
397 void pmap_copy_page_generic(paddr_t, paddr_t);
398 void pmap_zero_page_generic(paddr_t);
399
400 void pmap_pte_init_generic(void);
401 #if defined(CPU_ARM8)
402 void pmap_pte_init_arm8(void);
403 #endif
404 #if defined(CPU_ARM9)
405 void pmap_pte_init_arm9(void);
406 #endif /* CPU_ARM9 */
407 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
408
409 #if ARM_MMU_SA1 == 1
410 void pmap_pte_init_sa1(void);
411 #endif /* ARM_MMU_SA1 == 1 */
412
413 #if ARM_MMU_XSCALE == 1
414 void pmap_copy_page_xscale(paddr_t, paddr_t);
415 void pmap_zero_page_xscale(paddr_t);
416
417 void pmap_pte_init_xscale(void);
418
419 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
420 #endif /* ARM_MMU_XSCALE == 1 */
421
422 extern pt_entry_t pte_l1_s_cache_mode;
423 extern pt_entry_t pte_l1_s_cache_mask;
424
425 extern pt_entry_t pte_l2_l_cache_mode;
426 extern pt_entry_t pte_l2_l_cache_mask;
427
428 extern pt_entry_t pte_l2_s_cache_mode;
429 extern pt_entry_t pte_l2_s_cache_mask;
430
431 extern pt_entry_t pte_l1_s_cache_mode_pt;
432 extern pt_entry_t pte_l2_l_cache_mode_pt;
433 extern pt_entry_t pte_l2_s_cache_mode_pt;
434
435 extern pt_entry_t pte_l2_s_prot_u;
436 extern pt_entry_t pte_l2_s_prot_w;
437 extern pt_entry_t pte_l2_s_prot_mask;
438
439 extern pt_entry_t pte_l1_s_proto;
440 extern pt_entry_t pte_l1_c_proto;
441 extern pt_entry_t pte_l2_s_proto;
442
443 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
444 extern void (*pmap_zero_page_func)(paddr_t);
445
446 #endif /* !_LOCORE */
447
448 /*****************************************************************************/
449
450 /*
451 * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
452 */
453 #define PMAP_CACHE_VIVT
454
455 /*
456 * Definitions for MMU domains
457 */
458 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
459 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
460
461 /*
462 * These macros define the various bit masks in the PTE.
463 *
464 * We use these macros since we use different bits on different processor
465 * models.
466 */
467 #define L1_S_PROT_U (L1_S_AP(AP_U))
468 #define L1_S_PROT_W (L1_S_AP(AP_W))
469 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
470
471 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
472 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
473
474 #define L2_L_PROT_U (L2_AP(AP_U))
475 #define L2_L_PROT_W (L2_AP(AP_W))
476 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
477
478 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
479 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
480
481 #define L2_S_PROT_U_generic (L2_AP(AP_U))
482 #define L2_S_PROT_W_generic (L2_AP(AP_W))
483 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
484
485 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
486 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
487 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
488
489 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
490 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
491
492 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
493 #define L1_S_PROTO_xscale (L1_TYPE_S)
494
495 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
496 #define L1_C_PROTO_xscale (L1_TYPE_C)
497
498 #define L2_L_PROTO (L2_TYPE_L)
499
500 #define L2_S_PROTO_generic (L2_TYPE_S)
501 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
502
503 /*
504 * User-visible names for the ones that vary with MMU class.
505 */
506
507 #if ARM_NMMUS > 1
508 /* More than one MMU class configured; use variables. */
509 #define L2_S_PROT_U pte_l2_s_prot_u
510 #define L2_S_PROT_W pte_l2_s_prot_w
511 #define L2_S_PROT_MASK pte_l2_s_prot_mask
512
513 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
514 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
515 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
516
517 #define L1_S_PROTO pte_l1_s_proto
518 #define L1_C_PROTO pte_l1_c_proto
519 #define L2_S_PROTO pte_l2_s_proto
520
521 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
522 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
523 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
524 #define L2_S_PROT_U L2_S_PROT_U_generic
525 #define L2_S_PROT_W L2_S_PROT_W_generic
526 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
527
528 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
529 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
530 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
531
532 #define L1_S_PROTO L1_S_PROTO_generic
533 #define L1_C_PROTO L1_C_PROTO_generic
534 #define L2_S_PROTO L2_S_PROTO_generic
535
536 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
537 #define pmap_zero_page(d) pmap_zero_page_generic((d))
538 #elif ARM_MMU_XSCALE == 1
539 #define L2_S_PROT_U L2_S_PROT_U_xscale
540 #define L2_S_PROT_W L2_S_PROT_W_xscale
541 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
542
543 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
544 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
545 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
546
547 #define L1_S_PROTO L1_S_PROTO_xscale
548 #define L1_C_PROTO L1_C_PROTO_xscale
549 #define L2_S_PROTO L2_S_PROTO_xscale
550
551 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
552 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
553 #endif /* ARM_NMMUS > 1 */
554
555 /*
556 * These macros return various bits based on kernel/user and protection.
557 * Note that the compiler will usually fold these at compile time.
558 */
559 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
560 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
561
562 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
563 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
564
565 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
566 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
567
568 /*
569 * Macros to test if a mapping is mappable with an L1 Section mapping
570 * or an L2 Large Page mapping.
571 */
572 #define L1_S_MAPPABLE_P(va, pa, size) \
573 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
574
575 #define L2_L_MAPPABLE_P(va, pa, size) \
576 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
577
578 /*
579 * Hooks for the pool allocator.
580 */
581 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
582
583 #endif /* _KERNEL */
584
585 #endif /* _ARM32_PMAP_H_ */
586