Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.75
      1 /*	$NetBSD: pmap.h,v 1.75 2003/06/18 02:58:09 bsh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #include <arm/cpufunc.h>
     77 #include <uvm/uvm_object.h>
     78 #endif
     79 
     80 /*
     81  * a pmap describes a processes' 4GB virtual address space.  this
     82  * virtual address space can be broken up into 4096 1MB regions which
     83  * are described by L1 PTEs in the L1 table.
     84  *
     85  * There is a line drawn at KERNEL_BASE.  Everything below that line
     86  * changes when the VM context is switched.  Everything above that line
     87  * is the same no matter which VM context is running.  This is achieved
     88  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     89  * kernel L2 tables.
     90  *
     91  * The basic layout of the virtual address space thus looks like this:
     92  *
     93  *	0xffffffff
     94  *	.
     95  *	.
     96  *	.
     97  *	KERNEL_BASE
     98  *	--------------------
     99  *	.
    100  *	.
    101  *	.
    102  *	0x00000000
    103  */
    104 
    105 /*
    106  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    107  * A bucket size of 16 provides for 16MB of contiguous virtual address
    108  * space per l2_dtable. Most processes will, therefore, require only two or
    109  * three of these to map their whole working set.
    110  */
    111 #define	L2_BUCKET_LOG2	4
    112 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    113 
    114 /*
    115  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    116  * of l2_dtable structures required to track all possible page descriptors
    117  * mappable by an L1 translation table is given by the following constants:
    118  */
    119 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    120 #define	L2_SIZE		(1 << L2_LOG2)
    121 
    122 #ifndef _LOCORE
    123 
    124 struct l1_ttable;
    125 struct l2_dtable;
    126 
    127 /*
    128  * Track cache/tlb occupancy using the following structure
    129  */
    130 union pmap_cache_state {
    131 	struct {
    132 		union {
    133 			u_int8_t csu_cache_b[2];
    134 			u_int16_t csu_cache;
    135 		} cs_cache_u;
    136 
    137 		union {
    138 			u_int8_t csu_tlb_b[2];
    139 			u_int16_t csu_tlb;
    140 		} cs_tlb_u;
    141 	} cs_s;
    142 	u_int32_t cs_all;
    143 };
    144 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    145 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    146 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    147 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    148 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    149 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    150 
    151 /*
    152  * Assigned to cs_all to force cacheops to work for a particular pmap
    153  */
    154 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    155 
    156 /*
    157  * This structure is used by machine-dependent code to describe
    158  * static mappings of devices, created at bootstrap time.
    159  */
    160 struct pmap_devmap {
    161 	vaddr_t		pd_va;		/* virtual address */
    162 	paddr_t		pd_pa;		/* physical address */
    163 	psize_t		pd_size;	/* size of region */
    164 	vm_prot_t	pd_prot;	/* protection code */
    165 	int		pd_cache;	/* cache attributes */
    166 };
    167 
    168 /*
    169  * The pmap structure itself
    170  */
    171 struct pmap {
    172 	u_int8_t		pm_domain;
    173 	boolean_t		pm_remove_all;
    174 	struct l1_ttable	*pm_l1;
    175 	union pmap_cache_state	pm_cstate;
    176 	struct uvm_object	pm_obj;
    177 #define	pm_lock pm_obj.vmobjlock
    178 	struct l2_dtable	*pm_l2[L2_SIZE];
    179 	struct pmap_statistics	pm_stats;
    180 	LIST_ENTRY(pmap)	pm_list;
    181 };
    182 
    183 typedef struct pmap *pmap_t;
    184 
    185 /*
    186  * Physical / virtual address structure. In a number of places (particularly
    187  * during bootstrapping) we need to keep track of the physical and virtual
    188  * addresses of various pages
    189  */
    190 typedef struct pv_addr {
    191 	SLIST_ENTRY(pv_addr) pv_list;
    192 	paddr_t pv_pa;
    193 	vaddr_t pv_va;
    194 } pv_addr_t;
    195 
    196 /*
    197  * Determine various modes for PTEs (user vs. kernel, cacheable
    198  * vs. non-cacheable).
    199  */
    200 #define	PTE_KERNEL	0
    201 #define	PTE_USER	1
    202 #define	PTE_NOCACHE	0
    203 #define	PTE_CACHE	1
    204 #define	PTE_PAGETABLE	2
    205 
    206 /*
    207  * Flags that indicate attributes of pages or mappings of pages.
    208  *
    209  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    210  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    211  * pv_entry's for each page.  They live in the same "namespace" so
    212  * that we can clear multiple attributes at a time.
    213  *
    214  * Note the "non-cacheable" flag generally means the page has
    215  * multiple mappings in a given address space.
    216  */
    217 #define	PVF_MOD		0x01		/* page is modified */
    218 #define	PVF_REF		0x02		/* page is referenced */
    219 #define	PVF_WIRED	0x04		/* mapping is wired */
    220 #define	PVF_WRITE	0x08		/* mapping is writable */
    221 #define	PVF_EXEC	0x10		/* mapping is executable */
    222 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    223 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    224 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    225 
    226 /*
    227  * Commonly referenced structures
    228  */
    229 extern struct pmap	kernel_pmap_store;
    230 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    231 
    232 /*
    233  * Macros that we need to export
    234  */
    235 #define pmap_kernel()			(&kernel_pmap_store)
    236 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    237 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    238 
    239 #define	pmap_is_modified(pg)	\
    240 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    241 #define	pmap_is_referenced(pg)	\
    242 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    243 
    244 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    245 
    246 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    247 
    248 /*
    249  * Functions that we need to export
    250  */
    251 void	pmap_procwr(struct proc *, vaddr_t, int);
    252 void	pmap_remove_all(pmap_t);
    253 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
    254 
    255 #define	PMAP_NEED_PROCWR
    256 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    257 
    258 /* Functions we use internally. */
    259 void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
    260 
    261 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    262 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    263 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    264 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    265 
    266 void	pmap_debug(int);
    267 void	pmap_postinit(void);
    268 
    269 void	vector_page_setprot(int);
    270 
    271 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    272 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    273 
    274 /* Bootstrapping routines. */
    275 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    276 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    277 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    278 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    279 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    280 void	pmap_devmap_register(const struct pmap_devmap *);
    281 
    282 /*
    283  * Special page zero routine for use by the idle loop (no cache cleans).
    284  */
    285 boolean_t	pmap_pageidlezero(paddr_t);
    286 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    287 
    288 /*
    289  * The current top of kernel VM
    290  */
    291 extern vaddr_t	pmap_curmaxkvaddr;
    292 
    293 /*
    294  * Useful macros and constants
    295  */
    296 
    297 /* Virtual address to page table entry */
    298 static __inline pt_entry_t *
    299 vtopte(vaddr_t va)
    300 {
    301 	pd_entry_t *pdep;
    302 	pt_entry_t *ptep;
    303 
    304 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
    305 		return (NULL);
    306 	return (ptep);
    307 }
    308 
    309 /*
    310  * Virtual address to physical address
    311  */
    312 static __inline paddr_t
    313 vtophys(vaddr_t va)
    314 {
    315 	paddr_t pa;
    316 
    317 	if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    318 		return (0);	/* XXXSCW: Panic? */
    319 
    320 	return (pa);
    321 }
    322 
    323 /*
    324  * The new pmap ensures that page-tables are always mapping Write-Thru.
    325  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    326  * on every change.
    327  *
    328  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    329  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    330  * and if there is the chance for PTE syncs to be needed, we define
    331  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    332  * the code.
    333  */
    334 extern int pmap_needs_pte_sync;
    335 #if defined(_KERNEL_OPT)
    336 /*
    337  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    338  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    339  * this at compile time.
    340  */
    341 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
    342 #define	PMAP_NEEDS_PTE_SYNC	1
    343 #define	PMAP_INCLUDE_PTE_SYNC
    344 #elif (ARM_MMU_SA1 == 0)
    345 #define	PMAP_NEEDS_PTE_SYNC	0
    346 #endif
    347 #endif /* _KERNEL_OPT */
    348 
    349 /*
    350  * Provide a fallback in case we were not able to determine it at
    351  * compile-time.
    352  */
    353 #ifndef PMAP_NEEDS_PTE_SYNC
    354 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    355 #define	PMAP_INCLUDE_PTE_SYNC
    356 #endif
    357 
    358 #define	PTE_SYNC(pte)							\
    359 do {									\
    360 	if (PMAP_NEEDS_PTE_SYNC)					\
    361 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
    362 } while (/*CONSTCOND*/0)
    363 
    364 #define	PTE_SYNC_RANGE(pte, cnt)					\
    365 do {									\
    366 	if (PMAP_NEEDS_PTE_SYNC) {					\
    367 		cpu_dcache_wb_range((vaddr_t)(pte),			\
    368 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
    369 	}								\
    370 } while (/*CONSTCOND*/0)
    371 
    372 #define	l1pte_valid(pde)	((pde) != 0)
    373 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    374 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    375 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    376 
    377 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    378 #define	l2pte_valid(pte)	((pte) != 0)
    379 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    380 
    381 /* L1 and L2 page table macros */
    382 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    383 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    384 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    385 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    386 
    387 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    388 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    389 
    390 /* Size of the kernel part of the L1 page table */
    391 #define KERNEL_PD_SIZE	\
    392 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    393 
    394 /************************* ARM MMU configuration *****************************/
    395 
    396 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    397 void	pmap_copy_page_generic(paddr_t, paddr_t);
    398 void	pmap_zero_page_generic(paddr_t);
    399 
    400 void	pmap_pte_init_generic(void);
    401 #if defined(CPU_ARM8)
    402 void	pmap_pte_init_arm8(void);
    403 #endif
    404 #if defined(CPU_ARM9)
    405 void	pmap_pte_init_arm9(void);
    406 #endif /* CPU_ARM9 */
    407 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    408 
    409 #if ARM_MMU_SA1 == 1
    410 void	pmap_pte_init_sa1(void);
    411 #endif /* ARM_MMU_SA1 == 1 */
    412 
    413 #if ARM_MMU_XSCALE == 1
    414 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    415 void	pmap_zero_page_xscale(paddr_t);
    416 
    417 void	pmap_pte_init_xscale(void);
    418 
    419 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    420 #endif /* ARM_MMU_XSCALE == 1 */
    421 
    422 extern pt_entry_t		pte_l1_s_cache_mode;
    423 extern pt_entry_t		pte_l1_s_cache_mask;
    424 
    425 extern pt_entry_t		pte_l2_l_cache_mode;
    426 extern pt_entry_t		pte_l2_l_cache_mask;
    427 
    428 extern pt_entry_t		pte_l2_s_cache_mode;
    429 extern pt_entry_t		pte_l2_s_cache_mask;
    430 
    431 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    432 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    433 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    434 
    435 extern pt_entry_t		pte_l2_s_prot_u;
    436 extern pt_entry_t		pte_l2_s_prot_w;
    437 extern pt_entry_t		pte_l2_s_prot_mask;
    438 
    439 extern pt_entry_t		pte_l1_s_proto;
    440 extern pt_entry_t		pte_l1_c_proto;
    441 extern pt_entry_t		pte_l2_s_proto;
    442 
    443 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    444 extern void (*pmap_zero_page_func)(paddr_t);
    445 
    446 #endif /* !_LOCORE */
    447 
    448 /*****************************************************************************/
    449 
    450 /*
    451  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    452  */
    453 #define PMAP_CACHE_VIVT
    454 
    455 /*
    456  * Definitions for MMU domains
    457  */
    458 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
    459 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
    460 
    461 /*
    462  * These macros define the various bit masks in the PTE.
    463  *
    464  * We use these macros since we use different bits on different processor
    465  * models.
    466  */
    467 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    468 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    469 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    470 
    471 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    472 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    473 
    474 #define	L2_L_PROT_U		(L2_AP(AP_U))
    475 #define	L2_L_PROT_W		(L2_AP(AP_W))
    476 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    477 
    478 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    479 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    480 
    481 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    482 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    483 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    484 
    485 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    486 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    487 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    488 
    489 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    490 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    491 
    492 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    493 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    494 
    495 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    496 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    497 
    498 #define	L2_L_PROTO		(L2_TYPE_L)
    499 
    500 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    501 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    502 
    503 /*
    504  * User-visible names for the ones that vary with MMU class.
    505  */
    506 
    507 #if ARM_NMMUS > 1
    508 /* More than one MMU class configured; use variables. */
    509 #define	L2_S_PROT_U		pte_l2_s_prot_u
    510 #define	L2_S_PROT_W		pte_l2_s_prot_w
    511 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    512 
    513 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    514 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    515 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    516 
    517 #define	L1_S_PROTO		pte_l1_s_proto
    518 #define	L1_C_PROTO		pte_l1_c_proto
    519 #define	L2_S_PROTO		pte_l2_s_proto
    520 
    521 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    522 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    523 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    524 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    525 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    526 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    527 
    528 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    529 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    530 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    531 
    532 #define	L1_S_PROTO		L1_S_PROTO_generic
    533 #define	L1_C_PROTO		L1_C_PROTO_generic
    534 #define	L2_S_PROTO		L2_S_PROTO_generic
    535 
    536 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    537 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    538 #elif ARM_MMU_XSCALE == 1
    539 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    540 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    541 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    542 
    543 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    544 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    545 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    546 
    547 #define	L1_S_PROTO		L1_S_PROTO_xscale
    548 #define	L1_C_PROTO		L1_C_PROTO_xscale
    549 #define	L2_S_PROTO		L2_S_PROTO_xscale
    550 
    551 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    552 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    553 #endif /* ARM_NMMUS > 1 */
    554 
    555 /*
    556  * These macros return various bits based on kernel/user and protection.
    557  * Note that the compiler will usually fold these at compile time.
    558  */
    559 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    560 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    561 
    562 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    563 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    564 
    565 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    566 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    567 
    568 /*
    569  * Macros to test if a mapping is mappable with an L1 Section mapping
    570  * or an L2 Large Page mapping.
    571  */
    572 #define	L1_S_MAPPABLE_P(va, pa, size)					\
    573 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    574 
    575 #define	L2_L_MAPPABLE_P(va, pa, size)					\
    576 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    577 
    578 /*
    579  * Hooks for the pool allocator.
    580  */
    581 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    582 
    583 #endif /* _KERNEL */
    584 
    585 #endif	/* _ARM32_PMAP_H_ */
    586